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Abstract

We investigate a stochastic multi-armed bandit problem in which the forecaster’s choice
is restricted. In this problem, rounds are divided into lock-up periods and the forecaster
must select the same arm throughout a period. While there has been much work on
finding optimal algorithms for the stochastic multi-armed bandit problem, their use under
restricted conditions is not obvious. We extend the application ranges of these algorithms
by proposing their natural conversion from ones for the stochastic bandit problem (index-
based algorithms and greedy algorithms) to ones for the multi-armed bandit problem with
lock-up periods. We prove that the regret of the converted algorithms is O(log T +Lmax),
where T is the total number of rounds and Lmax is the maximum size of the lock-up periods.
The regret is preferable, except for the case when the maximum size of the lock-up periods
is large. For these cases, we propose a meta-algorithm that results in a smaller regret by
using a empirical best arm for large periods. We empirically compare and discuss these
algorithms.

Keywords: Multi-armed bandits, Online Learning, Stochastic Optimization

1. Introduction

A multi-armed bandit problem models many real-world sequential decision problems under
uncertainty. In the problem, there are K bandit arms (options) from which to select. In each
round, a forecaster pulls one of the arms and receives a reward. The reward distributions of
the arms are initially unknown and the forecaster gradually acquires information through the
game. The forecaster aims to maximize the sum of rewards, which is achieved by balancing
Exploration and Exploitation. The performance of the algorithm is evaluated by a regret,
or the difference between the total reward of the best arm and that of the policy. The
multi-armed bandit problem has attracted attention of the Machine Learning community
in particular and many extensions have been proposed, such as contextual recommendation
(Langford and Zhang, 2007; Li et al., 2010), optimization (Dani et al., 2008), model selection
(Maron and Moore, 1993; Mnih et al., 2008), and tree search (Kocsis and Szepesvári, 2006).
Still, the base bandit problem itself is of great interest.

In studying the bandit problems, a forecaster has the freedom to select an arbitrary arm
for each round. However, in real situations there are various restrictions for selecting arms.
Many requirements, such as operation ease or resource constraints prevent the forecaster
from free allocation. The examples below are typical scenarios.
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Example 1 (A/B testings (Scott, 2010)) A/B testing is a well-known method when releas-
ing new web page features. By comparing the user responses for multiple versions of web
pages, administrators can estimate the effectiveness of the releases. There are many targets
of A/B testing, e.g., ad placements, emails and top pages. Optimizing user attention is of
great importance for most large-scale websites. However, there are many constraints pre-
venting optimal allocation. For example, ad banners must be shown for a certain duration
due to contracts with publishers.

Example 2 (Clinical trials (Gittins, 1989; Berry, 1978; Press, 2009)) Clinical trials are
conducted in the final stages of drug development. The aim of such trials is to ensure the
effectiveness and safety of newly developed drugs. There are many conditions necessary for
this, e.g., amounts of drugs, placebo conditions, patients conditions. The trials are divided
into many test phases. Between each test, the results of the previous test are reported. The
next test is based on the information up to that and including that of the previous test.
For the simplicity of operation, each test should be done with a single option. We would
like to optimize the allocation even within these restrictions.

Essentially, these problems lie midway between sequential and batch problems. Forecast-
ers are restricted to selecting the same option for certain rounds due to external constraints.
Also, the sum of rewards is the quantity to optimize. To model these scenarios, we propose
and study a multi-armed bandit problem with lock-up periods (lock-up bandit). The term
“lock-up period” is a financial term meaning the predefined amount of time during which
people concerned cannot sell shares. In the problem, we define the lock-up period as a set
of successive rounds where the forecaster cannot change the arm to pull.
Structure of this paper: In Section 2 we formalize the proposed problem and discuss
related works. In the following sections, we start from the stochastic multi-armed bandit
(stochastic bandit) algorithms and prove they can keep small regrets in the existence of
lock-up periods.

(1) The state-of-the-art algorithms for the stochastic bandit problem are not directly
applicable to restricted environments. In Section 3, we discuss the natural conversion
from the standard stochastic bandit algorithms to lock-up bandit ones. We prove the
upper-bound regret of converted UCB, which is optimal up to a constant factor when
the periods are small compared with the total number of rounds.

(2) The regrets of the converted algorithms are upper bounded by the size of the largest
lock-up period. In some cases, there are large lock-up periods and in these cases
the regret is linear to that much sizes. For such a case, we want to minimize the
regret during these the large periods. In Section 4, we propose the balancing and
recommendation (BaR) meta-algorithm, which effectively reduces the regret losses in
large periods. The regret of this meta-algorithm is represented using the cumulative
and simple regrets of the base algorithm.

(3) In Section 5, we discuss two sets of experiments we conducted. The first was the em-
pirical relation between the period size and the regret. The second set of experiments
involved the before-after analysis of the BaR meta-algorithm.

Finally, we conclude the paper in Section 6.
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Figure 1: Lock-up bandit. Black dots represent rounds and rectangles represent lock-up
periods.

2. Multi-armed bandit problem with lock-up periods

Our lock-up bandit is based on the stochastic bandit problem, in which the forecaster can
select one arm for each round. However, in lock-up bandit, the rounds are divided into
lock-up periods and the forecaster must select one arm for each lock-up period (Figure 1).
The lock-up bandit problem is formally defined as follows. There are K arms associated
with constant reward distributions {ν1, ..., νK}. There are T rounds and rounds are divided
into lock-up periods L1, ..., LN where

∑N
n=1 Ln = T . We denote the start and end rounds

of each periods as (s1, f1), ..., (sN , fN ). Note that s1 = 1,fN = T , sn+1 − 1 = fn and
Ln = fn − sn + 1 hold for all periods n ∈ [1, ..., N − 1]. Before the start of the first round,
the forecaster is notified of K and L1, ..., LN . On each round t = 1, ..., T , if the round is the
start of a period, the forecaster selects an arm. If not, he or she uses the same arm as the
previous round. We denote the selected arm at round t as It. After selecting an arm, the
forecaster receives the reward X(t) ∈ [0, 1] ∼ νIt1.

The goal of the forecaster is to minimize the (cumulative) regret

R[T ] = µ∗T −
K∑
i=1

µiTi(T ), (1)

where µi = E[νi], µ∗ is maxi µi, and Ti(T ) is the number of rounds arm i was selected
in T rounds. We also use the gap ∆i = µ∗ − µi and the minimum nonzero gap ∆ =
mini∈{1,...,K},i 6=i∗ ∆i. By the definition above, selecting suboptimal arm i increases the
regret by ∆i and that can be considered as a loss.

Remark 1 Multi-armed bandit with lock-up periods L1, ..., LN ,
∑

n Ln = T is more diffi-
cult than T -round stochastic bandit, where the forecaster can switch arms for every round.
That is, a lower bound of the stochastic bandit problem also works as a lower bound of the
lock-up bandit problem with the same number of rounds.

1. We assume the reward is in [0, 1]. Generalization to any finite support [a, b] is easy.
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2.1. Round-wise notation and period-wise notation

Throughout this paper, we use t as a variable representing a round and n as a variable
representing a period. We use i as a variable representing an arm. For example, the
number of rounds the arm i was selected in T rounds is denoted as follows.

Ti(T ) =
T∑
t=1

IIt=i, (2)

where IA = 1 if A is true and otherwise = 0. As the forecaster must select one arm during
a period, we can denote In to represent the arm selected in n. Also, the same quality Ti
can be expressed as follows.

Ti(L1, ..., LN ) =

N∑
n=1

LnIIn=i. (3)

2.2. Period Ordering

In lock-up bandit, the order of periods matters. Remember the length of first period is
denoted as L1 and that of the second is L2 , etc. For example, the lock-up bandit problem
with L1, ..., L9 = 1, L10 = 10 is much easier than the one with L1 = 10, L2, ..., L10 = 1. This
is because in the former problem the forecaster can select the arm at period 10 based on the
reward information in periods 1, ..., 9 while in the latter one there is no information at the
first period and no way to avoid 10 round losses (at least probability 1/K). On the other
hand, the size of the lock-up periods is also of great interest. We use parentheses to denote
size-sorted periods: “(1)” indicates arg max

n
Ln and “(2)” indicates the second largest, etc.

L(1) is also denoted as Lmax.

2.3. Related Works

Multi-armed bandit problems have been extensively studied in the area of Machine Learn-
ing and Operations Research due to their simplicity and wide applications. The stochastic
multi-armed bandit problem, in which the rewards of arms are drawn from some distribu-
tions are assumed, has attracted the most attention. UCB (Auer et al., 2002) is an efficient
index-based algorithm and is widely used.

Interesting problems that pose restrictions on forecasters’ selection have been investi-
gated. The bandit problem with switching costs is extensively studied. In this problem,
the switching of arms generates a certain amount of loss, and the forecaster is motivated to
stay with the current decision. For further details, see (Jun, 2004; Mahajan and Teneketzis;
Guha and Munagala, 2009).

Committing bandit (Bui et al., 2011) is a two phases bandit problem. The forecaster
can select the arms freely in the experimentation phase but must commit to a single arm
in the commitment phase. Three settings were investigated in the paper for the length of
the experimentation phase. For two of the three settings, the forecaster can extend the
experimentation phase with a certain amount of cost, and the main result of the paper
is the algorithms for finding the optimal time to end the experimentation phase. For the
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third setting2, the experimentation phase has a fixed length Ne, and they showed optimal
algorithm up to a constant factor. This setting is equal to lock-up bandit with periods
L1, ..., LNe = 1 and LNe+1 = T −Ne + 1. Our lock-up bandit and committing bandit differ
in two respects. First, we assume the restrictions are tight, namely the forecaster cannot ex-
tend or shorten the lock-up periods. Second, we do not separate the experimentation phase
and commitment phase. Our theory is applicable to any sizes lock-up periods restriction.

Lock-up bandit is also related to the best arm identification problem with fixed budget
(Audibert et al., 2010). In the best arm identification problem, the task of the forecaster
is to find the best arm among K arms. There is a fixed test period, and immediately after
the end of the test period the forecaster outputs a “recommendation” arm he believes is
the best. In the test period, the forecaster can select the arm for each round freely and
receives the rewards. The test period has a fixed length d and the forecaster is evaluated
based on the probability that the recommendation arm he selects corresponds to the real
best arm. This setting is equal to the lock-up bandit with L1, ..., Ld = 1 and Ld+1 → ∞,
because when the last period is sufficiently large, the regret in the test period is negligible.

3. Conversion from standard stochastic algorithms

There have been many studies on the stochastic bandit and many algorithms have been
proposed. Stochastic bandit algorithms are based on the fact that at every round the
forecaster can select an arm. However, once the choice is restricted, it is not clear how to
determine the next arms when possible. In this section, we discuss the simple conversion
from stochastic bandit algorithms into lock-up bandit algorithms. We also show that the
converted UCB’s regret is O(log T + Lmax).

Proposition 2 (Conversion of the stochastic bandit algorithms into lock-up bandit algo-
rithms)
We call a stochastic bandit algorithm A. We define an algorithm A′ for the lock-up bandit

that uses A as an internal algorithm. If each round is the start of the lock-up period, A′
invokes A and receives an arm. Then uses the arm as A’s selection. When the round is
not the start of the lock-up period, A′ must select the same arm as the last round. In this
case, invoke A and discard its selection. After receiving a reward, A′ feeds A the selection
and reward tuple (It, X(t)). A learns from the reward tuple as if it were selected by itself.

It is true that the conversion above is not promised to be applicable for all algorithms
in stochastic bandit3. However, most algorithms, including index-based algorithms (UCB,
UCB-Tuned (Auer et al., 2002), UCB-E (Audibert et al., 2010), UCB-V (Audibert et al.,
2008), MOSS (Audibert and Bubeck, 2009), KL-UCB (Garivier and Cappé, 2011), etc.),
and εn-greedy can be converted into lock-up bandit algorithms with the above procedure.

We denote converted algorithms using primes. For example, UCB and εn-greedy con-
verted are UCB′ and εn-greedy′. Remember that our main concern is the regret in lock-up
bandit.

2. The authors called it a “hard experimentation deadline setting.”
3. For example, for algorithms that maintain lists and select the next arms from the lists, the conversion

above is not directly applicable.
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Theorem 3 (Regret upper bound of UCB′) The regret of UCB′ in lock-up bandit is upper
bounded as follows.

E[R(L1, ..., LN )] ≤
∑
i 6=i∗

{
8 log T

∆i
+ Lmax∆i

(
1 +

π2

3

)}
. (4)

Proof sketch: The proof is the extension of (Auer et al., 2002) to the lock-up bandit.
The base theorem relies on the fact that the probability of suboptimal arm i played after
Ti(t) ≥ d(8 log T )/∆2

i e is sufficiently low and its sum is loosely bounded by π2/3. In lock-up
bandit, there are two main changes,

(1) (8 log T )/∆2
i is replaced with (8 log T )/∆2

i + (Lmax−1). The number of arms selected
before Ti(t) ≥ (8 log T )/∆2

i is upper bounded by this quantity.

(2) π2/3 is multiplied by Lmax.

The full proof is presented in Appendix.
Theorem 3 indicates that the regret of UCB′ is bounded by O(log T + Lmax) for any

list of lock-up periods L1, ..., LN ,
∑

n Ln = T . When Lmax is small compared with T ,
UCB′ achieves O(log T ) regret. A logarithmic bound is optimal up to a constant factor in
stochastic bandit. Since lock-up bandit is more difficult than stochastic bandit (c.f. Remark
1), the bound is optimal up to a constant factor. However, when there are some periods that
are bigger than the order of log T , the regret in the periods matters. In the next section,
we propose a meta-algorithm to reduce the regrets in large periods.

4. How to reduce regrets in large periods

In this section, we propose BaR, a general meta-algorithm for reducing regrets in large
periods.

4.1. Minimizing regret in large periods

In lock-up bandit, an algorithm cannot change the arm during a lock-up period. If an
algorithm selects a suboptimal arm i at the start of a round n, the regret is increased
by ∆iLn. For this reason, we want to avoid choosing a suboptimal arm at the start of
large periods. The notion of simple regret introduced by Bubeck et al. (2009) describes
the minimum possible regret in a specific round. They proposed a pure exploration bandit
problem. In this problem, for each round the algorithm selects an arm and receives a reward.
After receiving the reward, the algorithm outputs an additional arm: the recommendation
arm. At a certain round the game ends, and the algorithm is evaluated based on the quality
of the recommendation arm. The goal with the algorithm is to minimize the simple regret,
or the one-time regret of the recommendation arm. In summary, the pure exploration bandit
problem is the same framework as the stochastic bandit problem except for the existence
of the recommendation arm and the goal. In terms of the Exploration and Exploitation
tradeoff, recommendation arm is an exploitation-only arm. The simple regret describes the
best possible accuracy of the recommendation arm. In contrast with the simple regret,
the sum of rewards during the game is called a cumulative regret, which is the quantity to
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optimize in the stochastic bandit. We denote the cumulative regrets as R(T ) and the simple
regret as r(T ) (in the period-wise notation, R(L1, ..., LN ) and r(L1, ..., LN )). Interestingly,
there is a tradeoff between the two regrets.

Theorem 4 (Cumulative regret and simple regret tradeoff (Bubeck et al., 2009)) For all
allocation strategies φ and all function ξ, if there exists some constant C and the allocation
policy satisfies

E[R(T )] ≤ Cξ(T ), (5)

for all Bernoulli reward distributions {ν1, ..., νK}, then the simple regret of any recommen-
dation strategies based on the allocation strategies φ has the following lower bound: For
all sets of K ≥ 3 distinct Bernoulli reward distributions, all different from Dirac distribu-
tions centered at 1, there exists a constant D and ordering {ν1, ..., νK} of the considered
distributions with

E[r(T )] ≥ ∆

2
exp (−Dξ(T )). (6)

An intuitive explanation of Theorem 4 is as follows: the minimum possible simple regret
for a round is determined by the cumulative regret to that point. Bubeck et al. (2009)
proposed three natural recommendation policies: Empirical Best Arm (EBA), Most Played
Arm (MPA) and Empirical Distribution of Plays (EDP). We use EBA, which recommends
the arm of the best empirical mean, throughout this paper.

4.2. BaR meta-algorithm

Algorithm 1 BaR meta-algorithm

Require: K arms, L1, ..., LN , Nr, and base algorithm A
1: for n ∈ 1, ..., N do
2: if n ∈ {(1), ..., (Nr)} then
3: invokes A to query for recommendation arm ψ
4: select arm In = ψ
5: receive reward X until the period ends. The reward information is discarded.
6: else
7: invokes A to query for the arm selection φ
8: select arm In = φ
9: receive reward X and feed A with the reward tuple (In, X) until the period ends.

10: end if
11: end for

Good algorithms of the multi-armed bandit problem balance exploration and exploita-
tion and result in O(log T ) expected cumulative regret. If there are lock-up periods, this
balance is perturbed by O(Lmax). If the value of exploration becomes large (i.e., a sub-
optimal arm is chosen at the start of the largest period (Lmax � log T ) ), it is difficult
to restore the optimal balance of exploration and exploitation. The main idea of the BaR
meta-algorithm (Algorithm 1) is using the recommendation arms as its selection at large
periods to avoid choosing suboptimal arms. This meta-algorithm uses a base lock-up bandit
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Figure 2: BaR meta-algorithm. Two large periods are assigned to the recommendation set.

algorithm, which we denote as A. Before the start of BaR, we decide the recommendation
set {(1), ..., (Nr)}, or the Top-Nr subset of the lock-up periods sorted by size. If each pe-
riod is in the recommendation set, the algorithm queries A for the recommendation arm
and uses it as the selection. A is not notified of the reward information. Otherwise, the
algorithm works as a wrapper of A. From the viewpoint of A, it seems as if the periods in
the recommendation set were banished (Figure 2). The regret of BaR can be derived from
A’s cumulative and simple regrets.

Remark 5 (Regret of [BaR, A]) If BaR is run with the recommendation set {(1), ..., (Nr)},
the regret is denoted by the base algorithm’s cumulative and simple regret as,

R(L1, ..., LN ) = Rbase(L1, ..., LN \ L(1), ..., L(Nr))

+

Nr∑
n=1

L(n)rbase([Ln′ |n′ < (n), Ln′ /∈ {(1), ..., (Nr)}]),
(7)

where, the first term of RHS is the cumulative regret of A run in the environment
where {(1), ..., (Nr)} are removed. Also, in the second term of RHS, [Ln′ |n′ < (n), n′ /∈
{(1), ..., (Nr)}] means the list of periods before the period (n) and not in {(1), ..., (Nr)} .
For example, suppose N = 100 and the recommendation set {(1), ..., (Nr)} is {(1), (2)} =
{50, 100}. The cumulative regret is defined as the regret of the base algorithm run at
the lock-up periods 1, ..., 49, 51, ..., 99. The sum of simple regret is 50’s simple regret after
periods 1, ..., 49 and period 100’s simple regret after periods 1, ..., 49, 51, ..., 99. The BaR
meta-algorithm decomposes the regrets into the cumulative and the simple. The cumulative
regret is dependent upon the maximum size of the periods (Theorem 3). By removing large
periods, we can reduce the maximum size of the periods. Also, the recommendation is the
best method for selecting the optimal arm. Therefore, it can minimize the regret generated
from the simple regret part.

Our next concern is how to estimate the cumulative and simple regrets of base algo-
rithms. In Section 3, we defined the uniform upper bound of a cumulative regret of UCB′.
However, we have not introduced any simple regret so far. In the next subsection, we
describe UCB-E and discuss its regret.

4.3. UCB-E

UCB-E was introduced by Audibert et al. (2010) as an explorative algorithm for stochastic
bandit. It uses

√
a/Ti(t) as the confidence bound. In the fixed horizon bandit game (i.e. T

is known), the algorithm is flexible. When we set a = 2 log T , we obtain exactly the same
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the cumulative regret upper bound as UCB and can choose a large value to obtain a better
simple regret bound. We convert UCB-E by using the Proposition procedure 2 to obtain
UCB-E′.

Theorem 6 (Uniform cumulative regret upper bound of UCB-E′) If UCB-E′ is run with
parameter a ≥ 2 log T , it satisfies

E[R(L1, ..., LN )] ≤
∑
i 6=i∗

{
4a

∆i
+ ∆iLmax

(
1 +

π2

3

)}
. (8)

The proof is very similar to Theorem 3. The proof is presented in Appendix.

Theorem 7 (Uniform simple regret upper bound of UCB-E′) If UCB-E′ is run with pa-
rameter 0 < a ≤ 25

36
T−KLmax

H1
then it satisfies

E[r(L1, ..., LN )] ≤ 2TK exp

(
−2a

25

)
, (9)

where, H1 =
∑

i 6=i∗ 1/∆2
i + 1/∆2.

Proof Sketch: The proof relies on the fact that the empirical mean never deviates from
the thin confidence bound 1/5

√
a/Ti(t) with high-probability. It holds in all a ≤ 25(T −

KLmax)/(36H1), even in the existence of lock-up periods. The full proof is presented in
Appendix.

5. Experiments

We conducted two sets of experiments to support the theoretical results in the previous two
sections.

(1) In Section 3 we proposed a simple conversion of stochastic bandit algorithms to
obtain lock-up bandit algorithms. The converted algorithms’ regrets are linearly dependent
upon the maximum period size. In the first set of experiments (Experiments 1 and 2), we
studied the dependency between the maximum period size and a regret.

(2) In Section 4, we proposed the BaR meta-algorithm, which reduces the regret in
large periods. In the second set of experiments (Experiments 3 and 4), we conducted a
before/after analysis of BaR.

5.1. Experimental settings

All experiments involved ten-armed lock-up bandits with T = 10000. The rewards of arms
were Bernoulli distributions with means
(µ1, ..., µ10) = (0.1, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.01, 0.01, 0.01).
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Figure 3: Experimental results. Experiments 1 and 2 show regret as function of maximum
period size. Experiments 3 and 4 show regret before/after application of BaR.

5.1.1. Settings of Experiments 1 and 2

The algorithms we used were UCB-E′ (Audibert et al., 2010) with parameter a = 2 log T ,
a = 1/2 log T , εn-greedy′ (Auer et al., 2002) with parameters (c, d) = (0.15, 0.1), MOSS′

(Audibert and Bubeck, 2009), KL-UCB′ (Garivier and Cappé, 2011) with parameter c = 0,
and UCB-Tuned′ 4 (Auer et al., 2002). We do not intend to argue which algorithm is
better5.

We showed the regret as a function of maximum period size S (6). In all experiments,
for each value of S we show an averaged regret over 10,000 different runs. For each run,
the lock-up periods in the experiments were randomly generated as follows. Until the total
number of rounds reached T (i.e.,

∑
n Ln < T ), we appended a new period of size {1, ..., S}

with the same probability (Experiments 1) or the probability proportional to the inverse of
size (Experiments 2). The last period was decreased to satisfy

∑
n Ln = T .

4. The setting of UCB-Tuned was the same as described in Section 4 of (Auer et al., 2002)
5. The parameters in εn-greedy′ were chosen to be empirically good (c.f. Section 4 in (Auer et al., 2002)).

Therefore, it was no surprise εn-greedy′ performed better than UCB-E′.
6. S is the maximum period size to be possibly generated. Lmax, the maximum period size to be actually

generated, is smaller than or equal to S.
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5.1.2. Settings of Experiments 3 and 4

In the second set of experiments (Experiments 3 and 4), we showed the regret as a function
of rounds. The algorithms we used were UCB-E′ with parameter a = 1/2 log T (Experiment
3) and εn-greedy′ with parameters (c, d) = (0.15, 0.1) (Experiment 4). In both experiments,
the regrets were averaged over 10,000 different runs. In each run, the periods were generated
as follows. For the first 2,000 rounds there were no lock-up periods (i.e., L1, ..., L2000 = 1).
From rounds 2,001 to 10,000, the periods were generated by a process similar to Experiments
2 and 4. Until the sum of the periods reached 10,000, we appended a new period of size
{1, ..., 1000} with the probability proportional to the inverse of size. We compared the base
algorithm (UCB-E′ and εn-greedy′) before and after application of BaR. We also show the
regret of the base algorithm run with no lock-up period (= standard stochastic bandit),
which is much easier than lock-up bandit. As for the recommendation set, we used all
periods larger than 400.

5.2. Experimental Results and Discussions

5.2.1. Results of Experiments 1 and 2

Figure 3 is the results of the experiments. In Experiments 1 and 2, we observed linear
relation between the maximum period size and the regret for all algorithms. Note that,
between Experiments 1 and 2, the number of large periods differed greatly. In Experiment
2, large periods had a small probability (inverse to its size) to be generated compared with
Experiment 1; however, Experiments 1 and 2 look very much alike. This fact supports that
the regret in lock-up bandit is dependent upon the size of the maximum periods.

5.2.2. Results of Experiments 3 and 4

Experiments 3 and 4 showed the effect of BaR. In both experiments, using BaR makes
the regret significantly smaller. In Experiments 3, the results of [BaR, UCB-E′] were even
better than those of the base algorithm in the standard bandit game. This is surprising
because the bandit problem with lock-up periods is much more difficult than the standard
bandit problem. This can be explained as follows. The regret of UCB-E′ is higher than
that of εn-greedy′. This means that UCB-E′ does more exploration than it should and
there is some room for exploitation.number of recommendation periods In the Experiments
4, the regret of [BaR, εn-greedy′] was higher than that of no lock-ups, which is natural.
This results are not specific to UCB-E and εn-greedy. We also conducted experiments with
many state-of-the-art algorithms (KL-UCB (Garivier and Cappé, 2011), Moss (Audibert
and Bubeck, 2009) and UCB-Tuned (Auer et al., 2002)) and obtained similar results. They
are not presented here due to space limitations.

5.2.3. Discussions

The use of the BaR meta-algorithm effectively reduces regret for the following reason.
When T is large, the ratio of exploration to exploitation is small (i.e. O(log T/T ) → 0).
Therefore, if the forecaster does more exploration than it should do, restoring the optimal
balance is virtually impossible. Conversely, if it does less exploration is smaller than it
should, restoring the optimal balance is relatively easy. This is why BaR, which increases
exploitation during the large lock-up periods, works well.
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6. Conclusion and future works

We proposed and studied a bandit game with a lock-up period restriction, which is expected
to model the practical scenarios that naturally arise when we apply stochastic bandit to real
problems. We studied how the exploration and exploitation balance is perturbed by lock-
up restrictions and proposed methods to recover the balance. For further understanding
of related problems, better bounds for the simple regret is of great interest. Contrary to
the cumulative regret, the simple regret is less known. In our theory, the simple regret is
important and finer bound preferred.
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Appendix: Proofs

In this section, we prove the theorems in this paper. The overall goal with the proofs is
to show that the existing bounds in stochastic bandit also holds even in the existence of
lock-up periods.

Array-UCB

The proofs of the cumulative regrets in UCB and UCB-E rely on the same bound. To avoid
redundancy, we define Array-UCB, the generalization of UCB and UCB-E.

Definition 8 (Array-UCB) Array-UCB is defined as the index-based policy with index

Bi,s,t = X̂i,s +

√
a(t)

s
, (10)

where, (a(1), a(2), ...) is an array of real numbers. For each round t, the forecaster selects
the arm i with maximum Bi,Ti(t−1),t−1

When a(t) = 2 log t, Array-UCB is equal to UCB. When a(t) = a (constant), Array-UCB
is equal to UCB-E.

Proofs of Theorem 3 and Theorem 6

In this subsection, we prove Theorem 3 and Theorem 6, the uniform cumulative regret of
UCB′ and UCB-E′. We convert Array-UCB to an algorithm for lock-up bandit with the
procedure of Proposition 2. We call the converted algorithm Array-UCB′.

Theorem 9 For Array-UCB′ with a(t) ≥ 2 log t, the cumulative regret R is upper bounded
as

E[R(L1, ..., LN )] ≤
∑
i 6=i∗

{
4amax

∆i
+ ∆iLmax

(
1 +

π

3

)}
, (11)

where amax = maxt∈{1,...,T} a(t).
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Theorem 3 and 6 are directly derived as the specialization of Theorem 9 with a(t) =
2 log t and a(t) = a ≥ 2 log T .
Proof [Theorem 9]

The proof is based on Proof 1 in (Auer et al., 2002). The base proof is applied to
UCB in stochastic bandit. We extend this proof in two respects. First, the UCB index is
generalized to the Array-UCB index (Equation (10)). Second, we take lock-up periods into
consideration.

We upper bound Ti(T ), or the number of rounds suboptimal arm i is pulled in T rounds.
Let ct,s =

√
a(t)/s. Remember (sn, fn) tuple means the start and end round of the period n.

We use both the period-wise notation with symbol n and round-wise notation with symbol
t (c.f. Section 2.1).

Ti(L1, ..., LN ) =

N∑
n=1

LnI{In = i} (12)

= (l + Lmax − 1) +

N∑
n=K+1

LnI{In = i, Ti(sn − 1) ≥ l}, (13)

where the transformation at (13) comes from the fact that Ti is at most l+Lmax− 1 at the
first period after Ti exceeds or equals l. The condition i is selected at n ≥ 2 is transformed
as follows.

I{In = i} ≤ I{X̂i∗,Ti∗ (sn−1) + csn−1,Ti∗ (sn−1) ≤ (14)

X̂i,Ti(sn−1) + csn−1,Ti(sn−1)} (15)

≤ I{ min
0<t1<sn

X̂i∗,t1 + csn−1,t1 ≤ max
l<t2<sn

X̂i,t2 + csn−1,t2} (16)

≤
sn−1∑
t1=1

sn−1∑
t2=1

I{X̂i∗,t1 + csn−1,t1 ≤ X̂i,t2 + csn−1,t2}. (17)

The condition X̂i∗,t1 + csn−1,t1 ≤ X̂i,t2 + csn−1,t2 in (17) implies that at least one of the
following three conditions must hold.

X̂i∗,t1 ≤ µ∗ −

√
a(sn − 1)

t1
, (18)

X̂i,t2 ≥ µi +

√
a(sn − 1)

t2
, (19)

µ∗ < µi + 2

√
a(sn − 1)

t2
. (20)
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Now, we bound the probabilities of inequalities (18), (19), and (20). First, (20) never occurs
when l ≥ d4amax

∆2
i
e. The probability of (18) is upper bounded as

P[(18) is true] = P

X̂i∗,t1 ≤ µ∗ −

√
a(sn − 1)

t1

 (21)

≤ P

X̂i∗,t1 ≤ µ∗ −

√
2 log (sn − 1)

t1

 (22)

≤ exp (−4 log (sn − 1)) ≤ (sn − 1)−4, (23)

where we use the assumption a(t) > 2 log t at (22) and the Hoeffding inequality at (23). By
using the same arguments, we obtain the same bound for (19). By using inequalities (13),
(17) and (23), we obtain

E[Ti(N)] ≤
(⌈

4amax

∆2
i

⌉
+ Lmax − 1

)
(24)

+
N∑

n=K+1

sn−1∑
t1=1

sn−1∑
t2=1

Ls

{
P[((18) is true)] + P[((19) is true)]

}
(25)

≤
(

4amax

∆2
i

+ Lmax

)
+ Lmax

N∑
n=K+1

sn−1∑
t1=1

sn−1∑
t2=1

(2(sn − 1)−4) (26)

≤
(

4amax

∆2
i

+ Lmax

)
+ Lmax

∞∑
t=1

(2t−2) (27)

≤
(

4amax

∆2
i

+ Lmax

)
+ Lmax ·

π2

3
=

4amax

∆2
i

+ Lmax

(
1 +

π2

3

)
. (28)

Proof of Theorem 7

Proof [Theorem 7]
We extend Theorem 1 in (Audibert et al., 2010) to lock-up bandit. Consider an event

ξ =

{
∀i ∈ {1, ...,K}, t ∈ {1, ..., T}, |X̂i,t − µi| <

1

5

√
a

t

}
. (29)

By using the Hoeffding inequality for each event and union bound, we have P(ξ) ≥ 1 −
2TK exp (−2a

25 ). Indeed, the event is the sufficient condition for that the empirically best
arm corresponds to the truly best arm. Since we assume event ξ, it is enough to prove that

1

5

√
a

Ti(T )
≤ ∆i

2
,∀i ∈ {1, ...,K}, (30)

114



Multi-armed Bandit Problem with Lock-up Periods

or equivalently

Ti(T ) ≥ 4

25

a

∆2
i

. (31)

First, we prove the upper bound of the number of the suboptimal arms pulled, namely

Ti(t) ≤
36

25

a

∆2
i

+ Lmax,∀i 6= i∗. (32)

Since the algorithm can select an arm only at the start of each lock-up period, we use
induction based on each period. Namely, we show (32) is true at the end of any periods.
Remember, we denote the start and end of the lock-up period n as (sn, fn). We also denote
the UCB-E index as Bi,s = X̂i,s +

√
a/s. Obviously the inequality holds when n = 1. We

now assume the inequality is true at time n − 1. If In 6= i, Ti(fn) = Ti(fn−1) and the
inequality still holds. On the other hand, if In = i then it means Bi,Ti(sn−1) ≥ Bi∗,Ti∗ (sn−1).

Since event ξ holds, we have Bi∗,Ti∗ (sn−1) ≥ µ∗ and Bi,Ti(sn−1) ≤ µi+ 6
5

√
a

Ti(sn−1) . Summing

up these conditions, we obtain 6
5

√
a

Ti(sn−1) ≥ ∆i. The arm i is chosen during the lock-up

period n. Since fn − (sn − 1) = Ln ≤ Lmax, (32) still holds.
Next, we prove the lower bound of suboptimal arms selected

Ti(t) ≥
4

25
min

(
a

∆2
i

,
25

36
(Ti∗(t)− Lmax)

)
,∀i 6= i∗. (33)

We also use induction based on each lock-up period. We assume (33) holds at the end of
n − 1. Then, at period n , if Bi,Ti(sn−1) > Bi∗,Ti∗ (sn−1), then Ti∗ does not increase, so it
still holds. On the other hand, in the case of Bi,Ti(sn−1) ≤ Bi∗,Ti∗ (sn−1), Ti∗ might increase.
Since we are on ξ,

µ∗ +
6

5

√
a

Ti∗(sn − 1)
≥ Bi∗,Ti∗ (sn−1) ≥ Bi,Ti(sn−1) ≥ µi +

4

5

√
a

Ti(sn − 1)
, (34)

which gives

Ti(sn − 1) ≥ 16

25

a(
∆i + 6

5

√
a

Ti∗ (sn−1)

)2 . (35)

By using u+ v ≥ 2 max (u, v), Ti(fn) = Ti(sn − 1), and Ti∗(fn) ≥ Ti∗(sn − 1) + Lmax, (33)
holds. From (33), we only have to show that, for all i 6= i∗

25

36
(Ti∗(T )− Lmax) ≥ a

∆2
i

. (36)

By using (32), we obtain

Ti∗(T )− Lmax = T − Lmax −
∑
i 6=i∗

Ti(T ) ≥ T −KLmax −
36

25
a
∑
i 6=i∗

∆−2
i ≥

36

25
a∆−2, (37)

where, we use the assumption of theorem, or 36
25H1a ≥ T −KLmax in the last inequality.
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