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Abstract

In many applications, multiple interlinked
sources of data are available and they cannot
be represented by a single adjacency matrix,
to which large scale factorization method
could be applied. Collective matrix factor-
ization is a simple yet powerful approach to
jointly factorize multiple matrices, each of
which represents a relation between two en-
tity types. Existing algorithms to estimate
parameters of collective matrix factorization
models are based on non-convex formulations
of the problem; in this paper, a convex formu-
lation of this approach is proposed. This en-
ables the derivation of large scale algorithms
to estimate the parameters, including an iter-
ative eigenvalue thresholding algorithm. Nu-
merical experiments illustrate the benefits of
this new approach.

1 Introduction

Knowledge is often encoded in large graphs repre-
senting relational data, such as DBPedia and Free-
base; many smaller size dedicated knowledge bases are
also represented using relational graphs: more flex-
ible than traditional databases, they represent data
without well-defined relational schema. Examples are
Wordnet, OpenCyc or Yago [19].

We propose a novel scalable algorithm to curate, im-
prove, predict and recommend links in large traditional
relational databases, as well as knowledge graphs. One
of the main challenges with such relational data is link
prediction: the prediction of relations between two en-
tities represented by edges linking two nodes in the
knowledge graph. A standard method for link pre-
diction is to use distributed representation, i.e. each

Appearing in Proceedings of the 16th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2013, Scottsdale, AZ, USA. Volume 31 of JMLR: W&CP
31. Copyright 2013 by the authors.

entity is identified by a compact vectorial signature.
Link prediction is then done efficiently via a simple
dot-product between signatures. To learn these signa-
tures, several authors have proposed to represent these
relational databases as tensors. Each relation can be
represented by a sparse matrix and each of the sparse
matrices can be stacked together to form a 3rd order
tensor. Signatures are then extracted by tensor fac-
torization techniques. The problem is that tensors are
notably hard to approximate despite some recent effort
to derive convex relaxations [9, 15, 7].

In this work, we introduce an alternative method based
on collective matrix factorization, a novel technique
to jointly factorize multiple relations [16, 21]. Un-
like generic tensor-factorization techniques, we assume
that two entity types do not share more than one re-
lation, which is relevant in many real situations. This
assumption leads to a convex formulation of the prob-
lem. More specifically, our method extends the (ma-
trix) nuclear norm to a collective nuclear norm on a
set of matrices representing an arbitrary number of
relations in a dataset. The proposed norm is a strict
generalization of the nuclear norm for a single matrix
in the sense that they are equivalent to each other
when there is a single relation.

We present a novel scalable algorithm based on an it-
erative Singular Value Thresholding algorithm. The
main operation of the algorithm is to solve a par-
tial eigenvalue problem, for which efficient (and dis-
tributed) code exists.

For the case of two relations amongst three entity
types, our collective nuclear norm can be understood
as the (matrix) nuclear norm applied to the concate-
nation of the matrices. But for the more general cases
where three or more relations are involved in a data
set, we argue that our extension to the collective nu-
clear norm is nontrivial, and differs in general from the
nuclear norm applied to concatenated matrices, espe-
cially when the structure exhibits loops in the graph
of relations.

Figure 1 illustrates such loopy structure (bottom)
where there are three entity types E1, E2 and E3,
forming a loop through the three relations, E1 − E2,
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E2 − E3 and E3 − E1, encoded in matrices X1, X2

and X3, respectively. A naive approach would be
to apply the nuclear norm on the concatenated ma-

trix1
[

X1 X2

· X3

]
. However, such an approach would

only model two out of the three relations (in this case
E1−E2 and E2−E3 but not E3−E1). In contrast, our
proposed collective nuclear norm is based on the eigen-
decomposition of the symmetric block matrix shown
in the top of Figure 1; it naturally handles such loopy
structure based on an appropriate convex formulation
of the problem.

We further show that the proposed collective nuclear
norm enjoys three essential properties including (1) in-
ducing low-rank solutions, (2) its formulation as a
decomposition norm and the weighted version of the
norm, and (3) allowing us to derive an efficient Singu-
lar Value Thresholding (SVT) algorithm based on an
iterative soft-thresholding of the eigen-decomposition
of a block symmetric matrix. First, the proposed col-
lective nuclear norm induces low-rank solutions, lead-
ing to automatic model selection for collective matrix
factorization by allowing the solution of regularized
pointwise estimations to have a lower dimension than
the rank of the observation matrix. Second, the de-
composition norm formulation enables one to directly
interpret estimation problems regularized by the col-
lective nuclear norm as global solutions of the orig-
inal collective trace norm formulation of Singh and
Gordon[16], Finally, the SVT algorithm originally de-
signed for a single matrix is extended to our collective
matrix factorization case so that we can find the global
optimum efficiently.

In the following sections, we recall the nuclear norm
definitions, extend them for convex collective matrix
factorization, propose efficient algorithms for finding
the global solutions, and demonstrate the superiority
of the proposed convex collective matrix factorization
on simulated and real-world datasets.

2 Nuclear Norm on Multiple Matrices

2.1 Nuclear Norm

The nuclear norm ∥X∥∗ of a rectangular matrix X ∈
Rn1×n2 is defined as the sum of its singular values:

∥X∥∗ =

min(n1,n2)∑
i=1

ςi(X) =
1

2

n1+n2∑
i=1

|σi (B(X))| , (1)

1“·” represents the block matrix that is missing
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Figure 1: A symmetric block matrix representation
of the collective nuclear norm applied on three rela-
tions exhibiting loopy relations among three entities
E1, E2, E3. Shaded blocks represent available relations
(possibly with missing data in each relation), while
unshaded blocks represent unavailable relations. The
bottom graph represents the corresponding set of en-
tities (nodes) and relations (edges).

where N = n1 + n2, B(X) is the symmetric matrix:

B(X) :=

[
0 X

XT 0

]
,

ςi(X) (resp. σi(B(X))) is the i-th singular value (resp.
eigenvalue) of the rectangular matrix X (resp. sym-
metric matrix B(X)), both sorted in decreasing order.
It is well known that B(X) has a symmetric spectrum,
i.e. σi(B(X)) = −σN−i(B(X)), which simplifies the
computation of the nuclear norm by summing over
the set of positive eigenvalues of B(X); they are equal
to the singular values of the rectangular matrix X:
ςi(X) = σi(B(X)) for i = 1, · · · ,min(n1, n2).

The nuclear norm can also be expressed as a decompo-
sition norm [18, 2], i.e., a formulation that decomposes
X into a product of two matrices:

∥X∥∗ =
1

2
min

UV T=X
∥U∥2F + ∥V ∥2F (2)

where U ∈ ℜn1×min(n1,n2), V ∈ ℜn2×min(n1,n2), and
∥ · ∥2F the Frobenius norm. Finally, the nuclear norm
can be equivalently defined as the value of a Semi-
Definite Program (SDP) [18, 12]:

∥X∥∗ =
1

2
min

X1,X2

(trace(X1) + trace(X2))

s.t.

[
X1 X
XT X2

]
∈ S+

N . (3)
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where S+
N denotes the (convex) set of symmetric pos-

itive definite matrices of size N ×N .

2.2 Collective Nuclear Norm

We extend the nuclear norm described above and de-
rive a convex collective factorization framework when
we observe an arbitrary number of relations between
pairs of entity types, i.e., relations can be represented
by matrices. Given K entity types repesented by
E = {E1, · · · , EK}, we assume that there are V re-
lations (or views) where each relation v ∈ {1, · · · , V }
is a pair (rv, cv) ∈ E2. Here, rv and cv are the in-
dices of the row and column entity types, respectively.
The set X = (X1, · · · ,XV ) represents the V available
relations, and takes values in the space:

X = ℜnr1×nc1 ⊗ · · · ⊗ ℜnrV
×ncV . (4)

which is simply the V -ary Cartesian product of view-
specific matrix spaces. We have two restrictions to
the relational graph: (1) at most one relation can be
defined between a given pair of entity types k and k′

and (2) self-relations are allowed if they are symmetric,
i.e. rv = cv implies that Xv(i, j) = Xv(j, i). The set
of unique indices associated to a given entity type k
is denoted by ik = {n̄k−1 + 1, · · · , n̄k}, where n̄k =∑k−1

i=1 ni is the cumulative sum of the entities.

Given a matrix A, the notation A(ik, ik′) represents
the ℜ|ik|×|ik′ | matrix made up by the rows of A with
indices ik and columns with indices ik′ . In addition,
the notation A(ik, :) identifies the matrix made up by
the rows of A with indices ik. We define the new
co-factorization nuclear norm for multiple interlinked
sources of data X ∈ X below:

∥X∥♯ =
1

2

N∑
i=1

|σi(B(X))| (5)

where N = n̄K+1 is the total number of entities in
all the views and the function B : X → SN creates a
symmetric block-matrix representing the set of views:
formally, S = B(X) if

• for all v ∈ {1, · · · , V }, S(irv , icv ) = Xv,

• for all v ∈ {1, · · · , V }, S(icv , irv ) = XT
v (by sym-

metry),

• Sij = 0 at any other entry with index (i, j), i.e.
S(ik, ik′) = 0 if there is no relation linking entity
types k and k′.

Hence, the collective nuclear norm is a simple gener-
alization of the matrix nuclear norm given in Equa-
tion (1), but the spectrum of the block-matrix B(X)

X1 =

[
3 4 5
6 8 10

]
X2 =

 18 21 24 27
24 28 32 36
30 35 40 45


X3 =

[
6 7 8 9

12 14 16 18

]

B(X) =



0 0 3 4 5 6 7 8 9
0 0 6 8 10 12 14 16 18
3 6 0 0 0 18 21 24 27
4 8 0 0 0 24 28 32 36
5 10 0 0 0 30 35 40 45
6 12 18 24 30 0 0 0 0
7 14 21 28 35 0 0 0 0
8 16 24 32 40 0 0 0 0
9 18 27 36 45 0 0 0 0


σ(B(X)) = (118, 0, 0, 0, 0, 0, 0,−8.97,−109)

∥X∥♯ =
1

2
(|118|+ | − 8.97|+ | − 109|) = 117.8

Figure 2: Collective nuclear norm on a toy example.

is no longer symmetric, i.e., the negative eigenvalues
do not have corresponding positive counterparts. As
a toy example, we show in Figure 2 three relational
matrices corresponding to 3 entity types with cardi-
nalities n1 = 2, n2 = 3 and n3 = 4, so that N = 9. All
the relations are observed: r1 = r3 = 1, c1 = r2 = 2
and c2 = c3 = 3 and there are 3 non-zero eigenvalues.

We can show that ∥X∥♯ is indeed a norm:

Proposition 1 (Norm) ∥X∥♯ is a norm on X .

Positive homogeneity, symmetry and separation prop-
erties are straightforward. Triangle inequality is ob-
tained by using the SDP formulation and relaxing the
constraint. The collective nuclear norm also admits a
representation as a decomposition norm:

Proposition 2 (Decomposition norm)

∥X∥♯ =
1

2
min

{Urv (Ucv )
T=Xv}V

v=1

K∑
k=1

∥Uk∥2F, (6)

where Uk are latent matrices for the entity type k with
nk rows and N columns.

This can be shown by explicitely writing the eigen-
decomposition of B(X). Note that Equation (6) is
also a straightforward generalization of the standard
nuclear norm characterization given in Equation (2).
An interesting property of this formulation is that it
has strong similarity with the existing work on col-
lective matrix factorization [16], where the problem
is directly parameterized by low-rank matrices: each
view is constrained to have a factored representation
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and the factors of a given entity type are shared across
all the views in which this type is involved. This con-
nection will be used in the following to derive an un-
constrained gradient descent algorithm.

Finally we can show that the collective nuclear norm
can also be obtained as the solution of a SDP, similarly
to the (matrix) nuclear norm:

∥X∥♯ =
1

4
min

Z1∈S+
N ,Z2∈S+

N

{Z1(irv ,icv )= Xv}V
v=1

{Z2(irv ,icv )=−Xv}V
v=1

trace(Z1) + trace(Z2).

(7)

There are two SDP matrices Z1 and Z2 involved in this
definition due to the negative eigenvalues of the block
matrix B(X). One can see that for a single relation,
the symmetry of the spectrum of B(X) implies that
Z1 = Z2 at the optimum, leading to the matrix SDP
formulation of Equation (3). Note that the linear ob-
jective implies that the SDP constraints are satisfied in
a collective nuclear norm regularized problem, which
implies that the norm is low-rank inducing, i.e., solu-
tions of estimation problems regularized by this norm
will tend to have low rank, similar to the matrix case.

Examples In Figure 1 and Figure 2, we illustrate
loopy structured relations involving three entity types
with three relations. A simple example of such a set-
ting could be the interactions between users, websites
and products: users access websites, websites display
product ads and products are bought by users. As
stated in Section 1, this example is important because
a naive application of the nuclear norm on the concate-
nation of the matrices (illustrated by the block matri-
ces colored with dark gray in Figure 1) would not be
satisfactory in general. The top symmetric matrix in
Figure 1 cannot be easily cast in the SDP formulation
of the nuclear norm in Equation (3), showing that the
co-factorization nuclear norm is not in general a spe-
cial case of the nuclear norm applied to concatenated
matrices.

Finally, it has recently been shown that the nuclear
norm benefits from a weighted variant that signifi-
cantly improves predictive performances [14]. This ap-
plies to our case as well.

3 Collective Nuclear Norm
Regularization

Given that we have defined the collective nuclear norm,
the problem of interest is to minimize a convex loss
Oλ(X) regularized by this collective nuclear norm, i.e:

min
X∈X

Oλ(X), Oλ(X) = ℓ(X) + λ∥X∥♯, (8)

where ℓ(X) is the loss function (e.g., the negative log-
likelihood function) of the noisy observations, λ is the
regularization parameter.

To formalize the matrix completion problem (a.k.a.
data imputation), we define the projection PΩ : X →
X which maps the set of matrices equal to zeros outside
the observed values defined by the set Ω, so that the
(i, j)-th component of the view v in PΩ(X) is equal to
the element indexed by the i-th row and j-th column
in the view Xv if (v, i, j) is in Ω and zero otherwise.
Using the squared Frobenius norm loss function, the
problem (8) becomes:

min
X∈X

∥PΩ(X)− PΩ(Y )∥2F + λ∥X∥♯ , (9)

where Y ∈ X is the set of observed matrices. The
strength of regularization λ > 0 can be optimized on
held-out data removed from the initial set of observa-
tions Ω. This problem could also be written as the
constrained optimization problem minX∈X ∥X∥♯ un-
der the constraint ∥PΩ(X)−PΩ(Y )∥F ≤ ϵ, where ϵ is
chosen by cross-validation.

In the following, we propose two algorithms to solve
the optimization problem: one is based on the singular
value thresholding algorithm, and the other is based on
the unconstrained minimization by stochastic gradient
descent, which are described in the following subsec-
tions.

3.1 Algorithm 1: Singular Value
Thresholding

For the standard matrix nuclear norm (i.e., on a sin-
gle matrix), the solution to least-square problems reg-
ularized by the nuclear norm can be found in terms
of SVD with a shrinkage of the eigenvalues [3]. If the
data matrix is fully observed, a single SVD is needed;
otherwise a simple first order iterative singular value
thresholding (SVT) algorithm, sometimes called Prox-
imal Forward-Backward Splitting [5, 4] can be derived,
alternating between the SVD computation and the im-
putation of missing values. Now we show SVT can be
extended to the collective matrix factorization frame-
work based on the connection between the SVD so-
lution and its corresponding SDP formulation, which
leads to an eigenvalue decomposition of the symmetric
block-matrix discussed in Section 2.

Definition 1 The co-factorization thresholding oper-
ator applied to a set of matrices X = (X1, · · · ,XV )
is defined as:

Sλ(X) := (Lr1DLT
c1 , · · · ,LrV DLT

cV ),

D = diag({Sλ(σi)}Ni=1) (10)
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where LDLT = B(X) is the eigen-decomposition of
the symmetric block matrix B(X), Sλ : ℜ 7→ ℜ is the
soft thresholding function Sλ(x) = sign(x)max(|x| −
λ, 0)) and Lk = L(ik, :).

The computation of Sλ(X) corresponds to the shrink-
age of the positive and negative eigenvalues of the
symmetric matrix B(X) toward 0, keeping the same
eigenvectors. In the toy example of Figure 2, choosing
λ = 10 reduces the rank of B(X) from 3 to 2, be-
cause Sλ(σ(B(X))) = (108, 0, 0, 0, 0, 0, 0, 0,−99). The
following results shows that Sλ(X) is the proximity
operator of λ∥X∥♯:

Proposition 3 For every λ ≥ 0 and every Y ∈ X , the
co-factorization thresholding operator (10) satisfies:

Sλ(Y ) = argmin
X

1

2

V∑
v=1

∥Xv − Yv∥2F + λ∥X∥♯. (11)

Based on the result in Proposition 3, one can directly
use Equation (10) to solve the Equation (9) for fully
observed relations. For partially observed relations,
i.e., when some matrices Yv have missing values, the
solution of Equation (9) is characterized by the fixed
point equation X = Sλγ(X+γPΩ(Y −X)) for γ > 0.
Algorithm 1 implements this procedure.

Algorithm 1 Singular Value Thresholding for Co-
Factorization (Partial observations)

1: INPUT: Observations Ω, values Y , λ
2: OUTPUT: X(T ) approximating Eq. (9)
3: INITIALIZE Z(0) = (0, · · · ,0) to the zero matrix

set in X
4: for t = 1, 2, · · · , T do

5: (X
(t)
1 , · · · ,X(t)

V ) = Sλγt(Z
(t−1))

6: for v = 1, 2, · · · , V do

7: Z
(t)
v = X

(t)
v + γtPΩ(Yv −X

(t)
v )

8: end for
9: end for

Proposition 4 For a sequence (γt)t∈N such that
inft∈N γt > 0 and supt∈N < 2

λ , the output X(T ) of
Algorithm 1 converges to the solution of (9).

Proof Since Sλ is a proximity operator, this result is

a direct application of the SVT convergence Theorem

(Theorem 3.4 in [4]) where the Lipchitz constant of the

regularizer is equal to λ. �

3.2 Algorithm 2: Unconstrained
Minimization with Collective Nuclear
Norm

Our second algorithm is based on the decomposition
norm formulation of the norm (Proposition 2) that al-
lows one to express the objective as an unconstrained
minimization problem. Plugging the solution of Equa-
tion (6) into Equation (8) leads to:

{Ûk}k ∈ argmin
{Uk∈ℜnk×N}k

V∑
v=1

ℓ
(
UrvU

T
cv

)
+ λ

K∑
k=1

∥Uk∥2F

(12)

The matrices Uk, k = {1, · · · ,K} can be interpreted
as the feature representations of the entities of type k.
Note that if we restrict the number of columns of the
matrices Uk to a fixed number r ≤ N , this objective
function matches exactly the objective function for col-
lective matrix factorization [16]. Hence, by using the
fact that the nuclear norm is low-rank promoting, the
standard algorithm in [16] can be used to solve Equa-
tion (12) provided the selected rank r is larger than

rank(Û), that is, the rank of the optimal solution. Al-
though Equation (12) is a non-convex problem, it can
lead to good performances in practice, similarly to the
matrix case (single relation) to estimate the solution
nuclear-norm penalized problems. In particular, an al-
ternative least square procedure could be implemented
by optimizing one factor Uk given the others. In this
work, we used stochastic gradient descent (SGD) to
scale to a large number of observations.

4 Experiments

4.1 Simulations

We generated datasets using the loopy structure with
3 relations illustrated in Figure 1 by randomly gener-
ating low-rank view-specific matrices Xv (using stan-
dard normal variables as latent factors) with dimen-
sions n1 = 20, n2 = 30 and n3 = 40. Standard noise
with unit variance was added to each observation to
generate Y ∈ X . The regularization was selected by
cross-validating the data imputation error on held-out
values. We randomly selected 50% of observations to
illustrate the ability to recover the true matrix. Root
Mean Square Error (RMSE) was used to compute the

matrix recovery error, i.e.
√∑

v ∥X̂v −X∗
v∥2F , where

X̂v (resp. X∗
v ) represents the estimated (resp. sim-

ulated) matrix . The SVT algorithm was used. It-
erations were stopped when the relative improvement
was lower than 1e-5. Results for various rank values
are shown in Table 1. They confirm that the collective
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Table 1: Comparison of independent matrix factoriza-
tion vs. collective matrix factorization on simulations
on a loopy structure with 3 relations. Errors are com-
puted based on 10 random experiments.

Rank error Indep. error Collective
2 1.21 ± 0.346 0.673 ± 0.120
5 2.95 ± 0.354 2.39 ± 0.342
10 5.81 ± 0.701 5.34 ± 0.611

learning of multiple relations gives lower generaliza-
tion error, compared to independent factorization of
the views.

4.2 Data imputation experiments

To evaluate the performance of the proposed convex
collective factorization, we conduct empirical evalua-
tions on two real data sets: MovieLens and Flickr.
We choose the MovieLens 1 Million Rating data set2

that involves 6,000 users’ ratings for 4,000 movies.
Ratings are integers ranging from 1 to 5, and each
rating is associated with a timestamp. Additionally,
there is demographic information (e.g., age, gender,
occupation, etc.) associated with users, and descrip-
tors (e.g., titles, release dates, genres, etc.) associated
with movies. We restrict the user features to the age,
the gender, and the occupation, and only consider the
genre to describe movies. Ages are partitioned into
7 groups, encoded by a 7-dimensional binary vector.
The gender, user occupation and movie genre are also
represented by binary vectors. There are three rela-
tions for the MovieLens data set: (user, movie), (user,
profile), (movie, genre). For the first relation, the date
2001/01/01 is chosen to split the data into training
and testing data, leading to 904,796 ratings as train-
ing data, and 95,413 as testing data. For the second
and third relations, we randomly select 10% of them
for testing and use the rest as training. Our objec-
tive is to predict ratings, unobserved user features and
unobserved movie genres.

For the Flickr data set3, we crawl data with the social-
network connectors (i.e., Flickr API). In this data set,
there are 2,866 users, 60,339 tags, 32,752 comment
terms and 46,733 items (e.g., images). We study five
relations: user-user interaction C1, user-tag C2, tag-
item C3, user-tagged item C4, and item-item feature
C5. Observations for relations C1, C2, C3, C4 are bi-
nary values where the observed pairs are positive sam-
ples (r=1). For each positive sample, we randomly
generate 50 negative samples (r=0). In C5, we rep-
resent each item (image) by a 1024-dimension Fisher

2http://www.grouplens.org/node/73
3Flickr is a social photo bookmarking site.

vector, each component of which is a real number. For
all of these five relations, we randomly select 10% as
testing data set, and use the rest as training data set.
The performance measurements are the RMSE and
negative log-likelihood.

Singular Value Shrinkage vs. Stochastic Gra-
dient Descent In Table 2, we compared the pro-
posed optimization algorithms (SGD and SVT) with
the standard matrix factorization on three views for
the MovieLens 1M rating data set. Results indicated
similar predictive performances for the two proposed
algorithms, both of which outperformed the individ-
ual matrix factorization on the user-item rating view.
The error seemed to be higher in predicting the user-
feature view. This was mainly due to the fact that the
loss was dominated by the user-item ratings view as
there are much more observations in this view.

Efficiency is important for real-world applications, and
we reported the efficiency of the two algorithms in
Figure 3 (left). Results indicated that the SVT al-
gorithm outperformed SGD by orders of magnitudes
in efficiency, even if SGD was implemented in an op-
timized C code and SVT was implemented in Matlab
without code optimization.

Table 2: RMSE for MovieLens 1M data set split dy-
namically with 90% for training.

View MF SGD SVT
user-item ratings 0.9020 0.8926 0.8962
user-feature 0.2781 0.3206 0.2916
item-feature 0.2955 0.3218 0.2825

Regularized Low Rank Approximations with
Large Rank For the MovieLens 1M data set, we
computed the RMSE of the SGD algorithm for various
values of the rank and the regularization term for the
testing data. Intuitively, the nuclear norm regularized
solution should appear at the upper limit of the rank.
To illustrate this point, we experimented with different
rank r and regularization λ, and reported the results
in Figure 3. We observed that the best performances
were obtained for a regularization λ = 0.1, and the
performances were not degrading when r increased,
indicating that the solution remained at a constant
rank. This confirms the fact that one does not need
to impose the exact low-rank constraint to obtain the
best performance.

Comparisons with Independent Matrix Factor-
ization To illustrate the benefit of jointly factoriz-
ing multiple relations collectively, we compared the
proposed convex collective matrix factorization with

http://www.grouplens.org/node/73
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Figure 3: RMSE on the MovieLens 1M rating data set split temporally with 90% data for training with SGD
and SVT. Left: Convergence of RMSE vs. iterations for SGD and SVT; Right: RMSE for different dimension
of factors representing each entity and regularization.

independent probabilistic matrix factorizations (i.e.,
factorizing each relation independently) [13]. The re-
sults (Table 3(a)) indicated that the performance of
our model was consistently better than the traditional
probabilistic matrix factorization for the tasks of pre-
dicting ratings and item features across all settings
(e.g., proportion of data used to training, static vs.
dynamic testing). Note that we took into account the
temporal information associated with ratings, leading
to a dynamic setting that respects the temporal prop-
erty when dividing the training/testing data.

Analysis of the convergence of the SGD algo-
rithm We discussed earlier, one property of Algo-
rithm 2 based on SGD is that a global minimum can
be obtained by gradually increasing the rank of the so-
lution and continuing to conduct the stochastic gradi-
ent descent algorithm until we obtain a rank-deficient
local minimum. To illustrate this point, we plotted the
objective function against the latent dimension for the
MovieLens data in Figure 4(a). Results demonstrated
that the objective function remained almost the same
after r = 200. The slight decrease of the function for
r ≥ 200 was due to the fact that the SGD algorithm
has not completely converged.

When using collective nuclear norm as regularization,
our results (the four right most columns in Figure 4(b))
demonstrated that the weighted version of the collec-
tive factorization nuclear norm achieved better gen-
eralization performances than that of the unweighted
collective nuclear norm.

Finally, we studied if the proposed SGD-based col-
lective nuclear norm is sensitive w.r.t. the random

initializations of the latent matrices representing the
entity types. We randomly initialized the variables
U1, · · · ,UK for r = 10 and r = 200, and plotted the
statistics of 10 repeated experiments in Figure 4(c).
We observed that with a sufficiently large latent di-
mension r = 200, the objective function enjoyed a
small variance, whereas smaller r caused large variance
of the results. This illustrated the fact that the pre-
dictive performances of regularized collective matrix
factorization became less sensitive to the initialization
when r increased.

5 Related Work

To address the problem of jointly modeling multiple
relations for factorization, several approaches [11, 22,
1, 20] have recently been proposed. Singh and Gor-
don [17] perhaps proposed the most generic view of
this problem by introducing the notation of collective
matrix factorization. In this model, parameter esti-
mation is achieved by maximum a posteriori (MAP).
A Bayesian version of collective matrix factorization
have been proposed [17], where inference is based on
a Hessian-based hybrid Monte-Carlo procedure. Note
that this sampling-based inference can be much slower
than the MAP estimation, considering that collabo-
rative prediction problems are often designed for large
scale problems and thus require a relatively large num-
ber of samples to be accurate. Amongst these exist-
ing works, [10] is perhaps the most similar work with
our but their objective is not convex. Compared to
tensor factorization techniques for interlinked data[6]
for which convex formulations have also been pro-
posed [9, 15, 7], our approach relies strongly on the
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Table 3: RMSE on MovieLens and Flickr. Left (a): randomly selected data (Static) vs. Temporally split data
(Dynamic) for MovieLens. Right (b): performances on the five relations for Flickr data with different λ and
r = 200 trained with SGD for the weighted collective nuclear norm.
% train Model Static Dyna.

90%
CCMF 0.9287 1.0588
PMF 0.9347 1.2159

80%
CCMF 0.9501 2.2722
PMF 0.9540 3.2984

50%
CCMF 1.0320 3.0931
PMF 1.0415 4.2614

view no reg 0.0001 0.001 0.1 10

C1 8.3895 8.3619 5.069 0.7138 0.7071
C2 8.1373 8.1081 4.6362 0.229 0.2473
C3 13.7447 13.7402 12.8806 0.4758 0.3661
C4 9.7138 9.6808 5.1036 0.2246 0.2384
C5 10.6246 10.5901 5.4967 1.0179 1.0033
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Figure 4: Explanatory experimental results for different aspects exhibited in the MovieLens data set. Left (a):
Convergence of likelihood as r growing; Middle (b): Unweighted nuclear norm vs. weighted nuclear norm with
comparable results; Right (c): sensitivity test based on 10 random initializations. The variance for r = 10 is
9272.9 but the variance for r = 200 is only 410.3.

fact that for two given entity types, there is at most
one relation; this assumption does not seem to be too
restrictive in practice.

6 Conclusion

In this paper, we proposed a novel collective nuclear
norm for jointly factorizing multiple interlinked ma-
trices representing relations amongst multiple entity
types. It can leverage information across multiple re-
lations to learn a meaningful representation of each
entity; more importantly, the optimization problem
based on this new collective nuclear norm is a con-
vex optimization problem, and we proposed a new
efficient algorithm based on singular value threshold-
ing or gradient descent to find the solution. We pro-
vided empirical evidence on two real-world predictive
tasks. We demonstrated with empirical results that
the algorithms based on convex optimization can be
much faster than the ones based on SGD, even for
large datasets. Future work include better modeling
capabilities to allow multiple relation between two en-
tity types and non-symmetric self-relations. We are
also considering robust versions of the problem, in-
cluding multiple norms regularization (sparsity com-

ponent, matrix-specific norms), and adapting recent
greedy coordinate descent methods (Frank-Wolfe al-
gorithms) to our case [8].
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