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Abstract

Recently, convex solutions to low-rank matrix
factorization problems have received increasing
attention in machine learning. However, in many
applications the data can display other structures
beyond simply being low-rank. For example, im-
ages and videos present complex spatio-temporal
structures, which are largely ignored by current
low-rank methods. In this paper we explore a
matrix factorization technique suitable for large
datasets that captures additional structure in the
factors by using a projective tensor norm, which
includes classical image regularizers such as to-
tal variation and the nuclear norm as particu-
lar cases. Although the resulting optimization
problem is not convex, we show that under cer-
tain conditions on the factors, any local mini-
mizer for the factors yields a global minimizer
for their product. Examples in biomedical video
segmentation and hyperspectral compressed re-
covery show the advantages of our approach on
high-dimensional datasets.

1. Introduction

In many large datasets the relevant information often lies in
a low-dimensional subspace of the ambient space, leading
to a large interest in representing data with low-rank ap-
proximations. A common formulation for this problem is
as a regularized loss problem of the form

min (Y, X) + AR(X), (1

where Y € R¥*P is the data matrix, X € R**? is the
low-rank approximation, ¢(-) is a loss function that mea-
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sures how well X approximates Y, and R(-) is a regular-
ization function that promotes various desired properties in
X (low-rank, sparsity, group-sparsity, etc.). When ¢ and
R are convex functions of X, and the dimensions of Y are
not too large, the above problem can be solved efficiently
using existing algorithms, which have achieved impressive
results. However, when t is the number of frames in a video
and p is the number of pixels, for example, optimizing over
O(tp) variables can be prohibitive.

To address this, one can exploit the fact that if X is low-
rank, then there exist matrices A € R**" and Z € RP*"
(which we will refer to as the column and row spaces of X,
respectively) such that Y ~ X = AZT and r < min(t, p).
This leads to the following matrix factorization problem, in
which we search for A and Z that minimize

min (Y, AZT) + AR(A, Z), 2)

where R(-,-) is now a regularizer on the factors A and Z.
Notice that by working directly with a factorized formula-
tion such as (2), we can reduce the size of the optimiza-
tion problem from O(tp) to O(r(t + p)). Additionally,
in many applications of low-rank modeling the factors ob-
tained from the factorization often contain information rel-
evant to the problem and can be used as features for further
analysis, such as in classical PCA. Placing regularization
directly on the factors thus allows one to promote addi-
tional structure on the factorized matrices A and Z beyond
simply being a low-rank approximation, e.g. in sparse dic-
tionary learning the matrix Z should be sparse. However,
the price to be paid for these advantages is that the resulting
optimization problems are typically not convex due to the
product of A and Z, which poses significant challenges.

Despite the growing availability of tools for low-rank re-
covery and approximation and the utility of deriving fea-
tures from low-rank representations, many techniques fail
to incorporate additional information about the underlying
row and columns spaces which are often known a priori.
In computer vision, for example, a collection of images of
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an object taken under different illuminations has not only
a low-rank representation (Basri & Jacobs, 2003), but also
significant spatial structure relating to the statistics of the
scene, such as sparseness on a particular wavelet basis or
low total variation (Rudin et al., 1992).

To capture this additional structure in the problem, we ex-
plore a low-rank matrix factorization technique based on
several very interesting formulations which have been pro-
posed to provide convex relaxations of structured matrix
factorization (Bach et al., 2008; Bach, 2013). While our
proposed technique is not convex, we show that a rank-
deficient local minimum gives a global minimum, suggest
an optimization strategy which is highly parallelizable and
can be performed using a potentially highly reduced set of
variables, and illustrate the advantages of our approach for
large scale problems with examples in biomedical video
segmentation and hyperspectral compressed recovery.

2. Background and Preliminaries
2.1. Notation

For q € [1,c], we denote the I, norm of a vector x € R’
as ||z|lq = (Zﬁzl |z5]9)*/4, where z; is the ith entry of .
Also, we denote the ith column of a matrix X € RY*P by
X, its trace as Tr(X), and its Frobenius norm as || X/|| ..
For a function W (X)), we denote its Fenchel dual as

W*(X)=supTr(ZTX) - W(Z). 3)
Z

For a norm || X ||, with some abuse of notation we denote its
dual norm as || X|[* = supjz<1 Tr(Z7 X). The space of
n X n positive semidefinite matrices is denoted as S;". For
a function f, if f is non-convex we use Jf to denote the
general subgradient of f; if f is convex the general sub-
gradient is equivalent to the regular subgradient and will
also be denoted as Jf, with the specific subgradient def-
inition being known from the context (see Rockafellar &
Wets, 2009, Chap. 8).

2.2. Proximal Operators

In our optimization algorithm we will make use of proximal
operators, which are defined as follows.

Definition 1 The proximal operator of a closed convex
function 0(z) is defined as

o1
prox,(y) Eargmlng\\y—m\\g—f—@(x). ()]

2.3. Projective Tensor Norm

To find structured matrix factorizations, we will use the fol-
lowing matrix norm.

Definition 2 Given vector norms || - ||, and || - || ., the Pro-
jective Tensor Norm of a matrix X € R"? is defined as

X = inf Az a Zi z 5
IXle =, i ST 1A )

1
= it o> (Al 1zl ©

A Z:AZT=X 2

It can be shown that || X || p is a valid norm on X; however,
a critical point is that for general norms || - ||, and || - || the
summation in (5) and (6) might need to be over an infinite
number of columns of A and Z (Bach et al., 2008; Ryan,
2002, Sec. 2.1). A particular case where this sum is known
to be bounded is when || - ||o = || - ]2 and || - ||, = || - ||2-
In this case || X|| p reverts to the nuclear norm || X ||, (sum
of singular values of X), which is widely used as a convex
relaxation of matrix rank and can optimally recover low-
rank matrices under certain conditions (Recht et al., 2010).

More generally, the projective tensor norm provides a nat-
ural framework for structured matrix factorizations, where
appropriate norms can be chosen to reflect the desired prop-
erties of the row and column spaces of the matrix. For in-
stance, the projective tensor norm was studied in the con-
text of sparse dictionary learning, where it was referred to
as the Decomposition Norm (Bach et al., 2008). In this
case, one can use combinations of the [; and [, norms to
produce a tradeoff between the number of factorized ele-
ments (number of columns in A and Z) and the sparsity
of the factorized elements (Bach et al., 2008). Finally, re-
cent work has shown that the projective tensor norm can be
considered a special case of a much more general matrix
factorization framework based on gauge functions. This al-
lows additional structure to be placed on the factors A and
Z (for example non-negativity), while still resulting in a
convex regularizer, offering significant potential extensions
for future work (Bach, 2013).

3. Structured Matrix Factorizations

Motivated by the introductory discussion, in this section we
describe the link between traditional convex loss problems
(1), which offer guarantees of global optimality, and fac-
torized formulations (2), which offer additional flexibility
in modeling the data structure and recovery of features that
can be used in subsequent analysis. Following (Bach et al.,
2008), we use the projective tensor norm as a regularizer,
leading to the following structured low-rank matrix factor-
ization problem.

min (Y, X) + XX p. )

Given the definition of the projective tensor norm, this
problem is equivalently minimized by solutions to the non-
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convex problem (see supplement)

min (Y, AZ7) + A; 1AlallZils ®

Since we are interested in capturing certain structures in the
column and row spaces of X, while at the same time cap-
turing low-rank structures in X, in this paper we consider
norms of the form

I lla = vall - lla + 11 - 12 ©
Ml = vl -l 10 e
Here || - ||z and || - ||z are norms that model the desired

properties of the column and row spaces of X, respectively,
and v, and v, balance the tradeoff between those desired
properties and the rank of the solution (recall that when
Vg = v, = 0, || X|| p reduces to the nuclear norm || X ||..).

3.1. Matrix Factorization as Semidefinite Optimization

While (7) is a convex function of the product X = AZ T
it is still non-convex with respect to A and Z jointly. How-

ever, if we define a matrix @ to be the concatenation of A
and Z

T T
A AAY AZ } 7 (10)

we see that AZ7T is a submatrix of the positive semidefinite
matrix QQ7. After defining the function F : SHF—R

F(QQT) =Y, AZ") + MAZT||p, (1)

it is clear that the proposed formulation (7) can be re-
cast as an optimization over a positive semidefinite matrix
X = QQT. At first this seems to be a circular argument,
since while F'(X) is a convex function of X, this says noth-
ing about finding ) (or A and Z). However, recent results
for semidefinite programs in standard form show that one
can minimize F'(X) by solving for ) directly without in-
troducing any additional local minima, provided that the
rank of Q is larger than the rank of the true solution X "¢
(Burer & Monteiro, 2005)". Additionally, if the rank of the
true solution is not known a priori, the following key result
shows that when F'(X) is twice differentiable, it is often
possible to optimize F(QQT) with respect to @ and still
be assured of a global minimum.

Theorem 1 (Bach et al., 2008, Prop. 4) Let F' : Sj{ — R
be a twice differentiable convex function with compact level
sets. If Q is a rank deficient local minimum of f(Q) =
F(QQT), then X = QQT is a global minimum of F(X).

'Note, however, that for general norms || - || and || - || . @ may
not contain a factorization which achieves the infimum in (5)

Unfortunately, while many common loss functions are con-
vex and twice differentiable, for the problems we study
here we cannot directly apply this result due to the fact that
the projective tensor norm is clearly non-differentiable for
general norms || - ||, and || - || .. In what follows we extend
the above result to the non-differentiable case and describe
an algorithm to minimize (8) suitable to large problems.

3.2. Local Minima Achieve Global Minimum

In this subsection, we extend the results from Theorem 1 to
functions F' : S;" — R of the form

F(X)=G(X)+ H(X), (12)

where G : S — R is a twice differentiable convex
function with compact level sets and H : S;} — Ris a
(possibly non-differentiable) proper convex function such
that F' is lower semi-continuous. Before presenting our
main result, define g(Q) = G(QQT), h(Q) = H(QQT),
F(Q) = g(Q) + h(Q) = F(QQT) and note the following.

Lemma 1 If Q is a local minimum of f(Q) = F(QQT),
where F : St — R is a function form in (12), then A €
OH(QQT) such that 0=2VG(QQT)Q + 2AQ.

Proof. If Q) is a local minimum of f(Q), then it is necessary
that 0 € 9f(Q) (Rockafellar & Wets, 2009, Thm. 10.1).

Let V(Q)=QQ". Then 9f(Q) C VV(Q)T9F(QQ") =
VV(Q)T(VG(QQT)+0H(QQT)) (Rockafellar & Wets,
2009, Thm. 10.6). From the symmetry of VG(QQT) and

OH(QQT), we get VV(Q)TVG(QQT) = 2VG(QQT)Q
and VV(Q)T0H(QQT) = 20H(QQT)Q, as claimed. m

Theorem 2 Let F : S — R be a function of the form
in (12). If Q is a rank-deficient local minimum of f(Q) =
F(QQT), then X = QQT is a global minimum of F(X).

Proof. We begin by introducing another variable subject to
an equality constraint

gr(li%G(X) +H(X)= Xnt%nyG(X) +HY)st. X =Y.
(13)

This gives the Lagrangian
LIX,Y,A)=G(X)+ HY) +Tr(AT(X - Y)). (14)
Minimizing the Lagrangian w.r.t. Y we obtain

min H (Y) — Tr(ATY) = —H*(A) (15)

Letk(Q,A) = G(QQT) +Tr(ATQQT) and let X denote
a value of X which minimizes the Lagrangian w.r.t. X for
a fixed value of A. Assuming strong duality, we have

. _ . T _og*
g{né%F(X)—mI%X)I?;%G(X)—FTr(A X)—H*(A). (16)
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Algorithm 1 (Structured Low-Rank Approximation)
Input: Y, A°, Z°, X\, Numlter
Initialize A* = A%, Z1 = Z°
for £ = 1 to Numlter do
\\Calculate gradient of loss function w.r.t. A
\\evaluated at the extrapolated point A
Gl = Val(Y, A (Z4)T)
P=AF -Gk /LK
\\Calculate proximal operator of || - ||,
\\for every column of A
for i = 1 to number of columns in A do
AF = prox, . 1. k (P
o = ProXyz, 1./ 25 ()
\\Repeat similar process for Z
GY = V7 U(Y, AR(ZM)T)
W =2k -G /LY
for 7 = 1 to number of columns in Z do
Z = proxya, ., 0. /2 (W)
end for
\\Update extrapolation based on prior iterates
AFT1 = Extrapolate (A%, AF—1)
ZKt1 = Extrapolatez(Z%, ZF~1)
end for

From Theorem 1, if we fix the value of A, then a rank-
deficient local minimum of k(Q,A) minimizes the La-
grangian w.rt. X for Xy, = QQ7. In particular, if
we fix A such that it satisfies Lemma 1, we then have
2k(Q, A) = 2VG(QQT)Q +2AQ = 0,50 Xy = QQT
is a global minimum of the Lagrangian w.r.t. X for a fixed
A that satisfies Lemma 1. Additionally, since we chose
A to satisfy Lemma 1, then we have A € 0H(QQT) =
XA = QQT € 0H*(A) (due to the easily shown fact that
Xpa € OH*(A) & A € OH(X,)). Combining these re-
sults, we have that (QQ7, A) is a primal-dual saddle point,
so X = QQT is a global minimum of F(X). m

3.3. Minimization Algorithm

Before we begin the discussion of our algorithm, we note
that the particular method we present here assumes that the
gradients of the loss function £(Y, AZT) w.rt. A and w.r.t.
Z (denoted as V 4¢(Y, AZT) and V z4(Y, AZT), respec-
tively) are Lipschitz continuous with Lipschitz constants
Lk and L% (in general the Lipschitz constant of the gra-
dient will depend on the current value of the variables at
that iteration, hence the superscript). Under these assump-
tions on ¢, the bilinear structure of our objective function
(8) gives convex subproblems if we update A or Z indepen-
dently while holding the other fixed, making an alternat-
ing minimization strategy efficient and easy to implement.
Specifically, the updates to our variables are made using
accelerated proximal-linear steps similar to the FISTA al-

gorithm, which entails solving a proximal operator of an
extrapolated gradient step to update each variable (Beck &
Teboulle, 2009; Xu & Yin, 2013). The general structure
of the alternating minimization we use is given in Algo-
rithm 1 (full details can be found in (Xu & Yin, 2013)), but
the key point is that to update either A or Z the primary
computational burden lies in calculating the gradient of the
loss function and then calculating a proximal operator. The
structure of the non-differentiable term in (8) allows the
proximal operator to be separated into columns, greatly re-
ducing the complexity of calculating the proximal operator
and offering the potential for parallelization. Moreover, the
following result provides a simple method to calculate the
proximal operator of the [, norm combined with any norm.

Theorem 3 Let || - || be any vector norm. The proximal op-
erator of 0(x) = Al|z|| + Az||z|2 is the composition of the
proximal operator of the I3 norm and the proximal operator
of || - [|, i.e., prox,(y) = prox,, ., (Prox,.;(v)).

Proof. See supplement m

Combining these results with Theorem 2, we have a poten-
tial strategy to search for structured low-rank matrix fac-
torizations as we only need to find a rank-deficient local
minimum to conclude that we have found a global min-
imum. However, there are a few critical caveats to note
about the optimization problem. First, alternating mini-
mization does not guarantee convergence to a local min-
imum. It has been shown that, subject to a few condi-
tions?, block convex functions will globally converge to a
Nash equilibrium point via the alternating minimization al-
gorithm we use here, and any local minima must also be
a Nash equilibrium point (although unfortunately the con-
verse is not true) (Xu & Yin, 2013). Of practical impor-
tance, this implies that multiple stationary points which are
not local minima can be encountered and the variables can-
not be initialized arbitrarily. For example, (4, Z) = (0,0)
is a Nash equilibrium point of (8).3 Nevertheless, we ob-
serve that empirically we obtain good results in our studied
applications with very trivial initializations.

Second, although it can be shown that the projective ten-
sor norm defined by (5) is a valid norm if the sum is taken
over a potentially infinite number of columns of A and Z,
for general vector norms || - ||, and || - ||, it is not neces-
sarily known a priori if a finite number of columns of A
and Z can achieve the infimum. Here we conjecture that
for norms of the form given in (9) the infimum of (5) can

>The objective function as we have presented it in (8) does
not meet these conditions as the non-differentiable elements are
not separated into summable blocks, but by using the equivalence
between (5) and (6) it can easily be converted to a form that does.

3More details about the difficulties associated with the prob-
lem and some techniques to bound or approximate the projective
tensor norm can be found in (Bach, 2013)
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be achieved or closely approximated by summing over a
number of columns equal to the rank of AZ”' (again recall
the equivalence with the nuclear norm when v, = v, = 0).
We also note good empirical results by setting the number
of columns of A and Z to be larger than the expected rank
of the solution but smaller than full rank, a strategy that
has been shown to be optimally convergent for semidefi-
nite programs in standard form (Burer & Monteiro, 2005).

4. Applications

In this section we demonstrate our matrix factorization
method on two image processing problems: spatiotempo-
ral segmentation of neural calcium imaging data and hy-
perspectral compressed recovery. Such problems are well
modeled by low-rank linear models with square loss func-
tions under the assumption that the spatial component of
the data has low total variation (and is optionally sparse in
the row and/or column space). Specifically, in this section
we consider the following objective

1
mip [V = ®(AZ)[E + 2D Al Z). (a7

I lla = wall - [l + 11 1l2 (18)
-l =wall -l + vare |- o + 11 2, (19)

where ®(-) is a linear operator, and v,, v,, and v, are
non-negative scalars*. Recall that the anisotropic total vari-
ation of x is defined as (Birkholz, 2011)

lzllry =Y fai — ] (20)

i JEN;

where N; denotes the set of pixels in the neighborhood of
pixel i.

4.1. Neural Calcium Imaging Segmentation

Calcium imaging is a rapidly growing microscopy tech-
nique in neuroscience that records fluorescent images from
neurons that have been loaded with either synthetic or ge-
netically encoded fluorescent calcium indicator molecules.
When a neuron fires an electrical action potential (or spike),
calcium enters the cell and binds to the fluorescent cal-
cium indicator molecules, changing the fluorescence prop-
erties of the molecule. By recording movies of the calcium-
induced fluorescent dynamics it is possible to infer the spik-
ing activity from large populations of neurons with single
neuron resolution (Stosiek et al., 2003). If we are given the
fluorescence time series from a single neuron, inferring the
spiking activity from the fluorescence time series is well

It is straightforward to extend the method to include non-
negative constrains on A and Z, but we found this had little effect
on the experimental results. The results presented here are all
without constraints on the sign for simplicity of presentation.

modeled via a Lasso style estimation,

: 1
§=argming [ly — Dslly + Allsl,, @1
s>0

where y € R is the fluorescence time series (normalized
by the baseline fluorescence), § € R? denotes the estimated
spiking activity (each entry of § is monotonically related to
the number of action potentials the neuron has during that
imaging frame), and D € R**" is a matrix that applies a
convolution with a known decaying exponential to model
the change in fluorescence resulting from a neural action
potential (Vogelstein et al., 2010). One of the challenges in
neural calcium imaging is that the data can have a signifi-
cant noise level, making manual segmentation challenging.
Additionally, it is also possible to have two neurons overlap
in the spatial domain if the focal plane of the microscope
is thicker than the size of the distinct neural structures in
the data, making simultaneous spatiotemporal segmenta-
tion necessary. A possible strategy to address these issues
would be to extend (21) to estimate spiking activity for the
whole data volume via the objective

A 1
S=argmin= |Y — DS|%2+A|S|l;, (22
S>0 2

where now each column of ¥ € R**” contains the fluo-
rescent time series for a single pixel and the corresponding
column of § € R™? contains the estimated spiking activity
for that pixel. However, due to the significant noise often
present in the actual data, solving (22) directly typically
gives poor results. To address this issue, Pnevmatikakis
et al. (2013) have suggested adding an additional low-rank
regularization to (22) based on the knowledge that if two
pixels are from the same neural structure they should have
identical spiking activities, giving S a low-rank structure
with the rank of .S corresponding to the number of neural
structures in the data. Specifically, they propose an objec-
tive to promote low-rank and sparse spike estimates,

N 1
§ = argmin o |Y ~ DS|% 4+ A|IS]l, + A2l S|l (23)
S>0

and then estimate the temporal and spatial features by per-
forming a non-negative matrix factorization of S.

It can be shown that problem (17) is equivalent to a stan-
dard Lasso estimation when both the row space and column
space are regularized by the /; norm (Bach et al., 2008),
while combined /1, [5 norms of the form (18) and (19) with
V., = 0 promote solutions that are simultaneously sparse
and low rank. Thus, the projective tensor norm can gener-
alize the two prior methods for calcium image processing
by providing regularizations that are sparse or simultane-
ously sparse and low-rank. Here we further extend these
formulations by noting that if two pixels are neighboring
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Figure 1. Results of experiment with phantom calcium imaging
dataset. Top Left: True regions and regions recovered via k-means
clustering on the spatial components. Top Right: Two example
frames from the dataset, showing the signal with added noise
(left), true signal (middle), and recovered signal (right). Bot-
tom Left: First 9 most significant recovered temporal components
(columns of A). The estimated temporal feature is shown as a
blue line, while the true spike times are shown as red dots. Bot-
tom Right: First 9 most significant spatial features (columns of
Z).

each other it is likely that they are from the same neural
structure and thus have identical spiking activity, implying
low total variation in the spatial domain. We demonstrate
the flexible nature of our formulation (17) by using it to
process calcium image data with regularizations that are ei-
ther sparse, simultaneously sparse and low-rank, or simul-
taneously sparse, low-rank, and with low total variation.
Additionally, by optimizing (17) to simultaneously esti-
mate temporal spiking activity A and neuron shape Z, with
®(AZT) = DAZT, we inherently find spatial and tempo-
ral features in the data (which are largely non-negative even
though we do not explicitly constrain them to be) directly
from our optimization without the need for an additional
matrix factorization step.

Simulation Data. We first tested our algorithm on a simu-
lated phantom using the combined sparse, low-rank, and to-
tal variation regularization. The phantom was constructed
with 19 non-overlapping spatial regions and 5 randomly
timed action potentials and corresponding calcium dynam-
ics per region. Gaussian white noise was added to the mod-
eled calcium signal to produce an SNR of approximately
-16dB (see top panels of Fig. 1). We initialized A to

be an identity matrix and Z = 0.> Despite the high lev-
els of noise and simple initialization, the recovered spatial
factors (columns of Z) corresponded to the actual region
shapes and the recovered temporal factors (columns of A)
showed strong peaks near the true spike times (Fig. 1, bot-
tom panels). Additionally, simple k-means clustering on
the columns of Z recovered the true region labels with high
accuracy (Fig. 1, top left panel), and, although we do not
specifically enforce non-negative entries in A and Z, the
recovered matrices had no negative entries.

In vivo Calcium Image Data. We next tested our algo-
rithm on actual calcium image data taken in vivo from the
primary auditory cortex of a mouse that was transfected
with the genetic calcium indicator GCaMP5 (Akerboom
et al., 2012). The left panel of Figure 2 shows 5 man-
ually labeled regions from the dataset (top row) and the
corresponding spatial features recovered by our algorithm
(bottom 3 rows) under the various regularization condi-
tions. The right panel of Figure 2 displays a frame from
the dataset taken at a time point when the corresponding
region had a significant calcium signal, with the actual data
shown in the top row and the corresponding reconstructed
calcium signal for that time point under the various reg-
ularization conditions shown in the bottom 3 rows. We
note that regions 1 and 2 correspond to the cell body and
a dendritic branch of the same neuron. The manual label-
ing was purposefully split into two regions due to the fact
that dendrites can have significantly different calcium dy-
namics from the cell body and thus it is often appropriate
to treat calcium signals from dendrites as separate features
from the cell body (Spruston, 2008).

The data shown in Figure 2 are particularly challenging to
segment as the two large cell bodies (regions 1 and 3) are
largely overlapping in space, necessitating a spatiotempo-
ral segmentation. In addition to the overlapping cell bodies
there are various small dendritic processes radiating per-
pendicular to (regions 4 and 5) and across (region 2) the
focal plane that lie in close proximity to each other and
have significant calcium transients. Additionally, at one
point during the dataset the animal moves, generating a
large artifact in the data. Nevertheless, optimizing (17) un-
der the various regularization conditions, we observe that,
as expected, the spatial features recovered by sparse regu-
larization alone are highly noisy (Fig. 2, row 2). Adding
low-rank regularization improves the recovered spatial fea-
tures, but the features are still highly pixelated and contain
numerous pixels outside of the desired regions (Fig. 2, row
3). Finally, by incorporating the total variation regulariza-
tion our method produces coherent spatial features which
are highly similar to the desired manual labelings (Fig. 2,

SFor this application the first update of our alternating mini-
mization was applied to Z, instead of A as shown in Algorithm 1.
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Figure 2. Results from the in vivo calcium imaging dataset. Left: Demonstration of spatial features for 5 example regions. (Top Row)
Manually segmented regions. (Bottom 3 Rows) Corresponding spatial feature recovered by our method with various regularizations.
Note that regions 1 and 2 are different parts of the same neurons - see discussion in the text . Right: Example frames from the dataset
corresponding to time points where the example regions display a significant calcium signal. (Top Row) Actual Data. (Bottom 3 Rows)

Estimated signal for the example frame with various regularizations.

rows 1 and 4), noting again that these features are found
directly from the alternating minimization of (17) without
the need to solve a secondary matrix factorization. For the
two cases with low-rank regularization, A was initialized
to be 100 uniformly sampled columns from an identity ma-
trix (out of a possible 559), demonstrating the potential to
reduce the problem size and achieve good results despite a
very trivial initialization.

We conclude by noting that while adding total variation
regularization improves performance for a segmentation
task, it also can cause a dilative effect when reconstructing
the estimated calcium signal (for example, distorting the
size of the thin dendritic processes in the left two columns
of the example frames in Figure 2). As a result, in a de-
noising task it might instead be desirable to only impose
sparse and low-rank regularization. The fact that we can
easily and efficiently adapt our model to account for many
different features of the data depending on the desired task
highlights the flexible nature and unifying framework of
our proposed formulation (17).

4.2. Hyperspectral Compressed Recovery

In hyperspectral imaging (HSI), the data volume often dis-
plays a low-rank structure due to significant correlations
in the spectra of neighboring pixels (Zhang et al., 2013).
This fact, combined with the large data sizes typically en-
countered in HSI applications, has led to a large interest in
developing compressed sampling and recovery techniques
to compactly collect and reconstruct HSI datasets. In addi-

tion, the spatial domain of an HSI dataset typically can be
modeled under the assumption that it displays properties
common to natural scenes, which led Golbabaee & Van-
dergheynst (2012) to propose a combined nuclear norm and
total variation regularization (NucTV) of the form

t
i HT Ly = 2 < e
HgnllXH*Jr/\ZH(X) [7v st [[Y =@(X)[|7 < e (24)

i=1

Here X € R"? is the estimated HSI reconstruction with
t spectral bands and p pixels, X* denotes the ith row of X
(or the ith spectral band), Y € R**™ contains the observed
samples (compressed at a subsampling ratio of m/p), and
®(-) denotes the compressed sampling operator. To solve
(24), Golbabaee & Vandergheynst (2012) implemented a
proximal gradient method, which required solving a total
variation proximal operator for every spectral slice of the
data volume in addition to solving the proximal operator
of the nuclear norm (singular value thresholding) at every
iteration of the algorithm (Combettes & Pesquet, 2011).
For the large data volumes typically encountered in HSI,
this can require significant computation per iteration. Here
we demonstrate the use of our matrix factorization method
to perform hyperspectral compressed recovery by optimiz-
ing (17), where ®(-) is a compressive sampling function
that applies a random-phase spatial convolution at each
wavelength (Romberg, 2009; Golbabaee & Vandergheynst,
2012), A contains estimated spectral features, and Z con-
tains estimated spatial abundance features.® Compressed

SFor HSI experiments, we set v/, = v, = 0 in (18) and (19).
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Figure 3. Hyperspectral compressed results. Example reconstructions from a single spectral band (¢ = 50) under different subsampling
ratios and sampling noise levels. Compare with Golbabaee & Vandergheynst (2012, Fig. 2).

recovery experiments were performed on the dataset from
Golbabaee & Vandergheynst (2012)7 at various subsam-
pling ratios and with different levels of sampling noise.
We limited the number of columns of A and Z to 15 (the
dataset is 256 x 256 pixels and 180 spectral bands), initial-
ized one randomly selected pixel per column of Z to one
and all others to zero, and initialized A as A = 0.

Figure 3 shows examples of the recovered images at one
wavelength (spectral band ¢+ = 50) for various subsampling
ratios and sampling noise levels and Table 1 shows the re-
construction recovery rates || X¢pue —AZ7|| o/ 1 X truel -
We note that even though we optimized over a highly re-
duced set of variables ([256 x 256 x 15+ 180 x 15]/[256 x
256 x 180] ~ 8.4%) with very trivial initializations, we
were able to achieve reconstruction error rates equivalent
to or better than those in Golbabaee & Vandergheynst
(2012)%. Additionally, by solving the reconstruction in a
factorized form, our method offers the potential to per-
form blind hyperspectral unmixing directly from the com-
pressed samples without ever needing to reconstruct the full
dataset, an application extension we leave for future work.

"The data used are a subset of the publicly available AVARIS
Moffet Field dataset. We made an effort to match the specific
spatial area and spectral bands of the data for our experiments
to that used in (Golbabaee & Vandergheynst, 2012) but note that
slightly different data may have been used in our study.

8The entries for NucTV in Table 1 were adapted from (Gol-
babaee & Vandergheynst, 2012, Fig. 1)

Table 1. Hyperspectral imaging compressed recovery error rates.

Our Method NucTV
Sample Sampling SNR (dB) Sampling SNR (dB)
Ratio 00 40 20 00 40 20
4:1 0.0209 0.0206 0.0565 | 0.01 0.02 0.06
8:1 0.0223 0.0226 0.0589 | 0.03 0.04 0.08
16:1 0.0268 0.0271 0.0663 | 0.09 0.09 0.13
32:1 0.0393 0.0453 0.0743 | 0.21 021 0.24
64:1 0.0657 0.0669 0.1010
128:1 | 0.1140 0.1186 0.1400

5. Conclusions

We have proposed a highly flexible approach to projec-
tive tensor norm matrix factorization, which allows spe-
cific structure to be promoted directly on the factors. While
our proposed formulation is not jointly convex in all of the
variables, we have shown that under certain criteria a local
minimum of the factorization is sufficient to find a global
minimum of the product, offering the potential to solve the
factorization using a highly reduced set of variables.
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