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Abstract
The analysis of correlated point process data has
wide applications, ranging from biomedical re-
search to network analysis. In this work, we
model such data as generated by a latent col-
lection of continuous-time binary semi-Markov
processes, corresponding to external events ap-
pearing and disappearing. A continuous-time
modeling framework is more appropriate for
multichannel point process data than a binning
approach requiring time discretization, and we
show connections between our model and recent
ideas from the discrete-time literature. We de-
scribe an efficient MCMC algorithm for posterior
inference, and apply our ideas to both synthetic
data and a real-world biometrics application.

1. Introduction
The study and development of complex dynamical systems
has led to the availability of increasingly large datasets,
recording events evolving asynchronously and at multiple
time-scales. Modeling such data by discretizing time at the
resolution of the fastest events is inefficient and inelegant,
especially when the relevant time-scales themselves must
be inferred. It is much more natural to work directly in
continuous-time, and there has been a growth of such ap-
plications in the statistics and machine learning communi-
ties (e.g., (Nodelman et al., 2002; Scott & Smyth, 2003;
Golightly & Wilkinson, 2011; Saeedi & Bouchard-Côté,
2011; Teh et al., 2011)). Nevertheless, the scope of this
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prior research is limited and much work remains to ap-
ply continuous-time models to high-dimensional problems
with interesting structure in the latent states and dynamics
of the latent process.

The specific application motivating the methodology of this
paper is the analysis of biometric galvanic skin response
(GSR) data. User arousal (or excitation) events translate to
the generation of specific observed GSR waveforms (Sil-
veira et al., 2013). Here, we consider GSR observations
taken from a number of users exposed simultaneously to
a common video stimulus. The ability to accurately char-
acterize the latent stimulus events generating the observed
biometric excitation reactions has applications in the ar-
eas of recommendation, market research, advertising, etc.
More generally, our ideas are also applicable to point pro-
cess data from other domains, like neuroscience (e.g., (Yu
et al., 2009)), biometrics (e.g., (Barbieri et al., 2005)), net-
work data analysis (e.g., (Ryu & Lowen, 1996)), and ecol-
ogy (e.g., (Ogata & Tanemura, 1985)).

In all these applications, one observes point process data
exhibiting significant variability, or inhomogeneity, over
time. In the context of GSR observations from movie stim-
ulus, an intense action scene may have many GSR arousal
reactions (i.e., arrivals) in a short time, while a quiet dialog
scene may elicit very few arrivals over a potentially long
interval. In other applications, the rate of webpage requests
can vary with external events, while the spiking of a neuron
can vary with stimulus. Without explicit knowledge of the
external events, we look to extract the latent structure from
the observed point process data.

For a single observed point process, an appropriate model-
ing framework is that of Markov-modulated Poisson pro-
cesses (MMPP) (e.g., (Scott & Smyth, 2003)). This is a
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doubly-stochastic Poisson process, where the unknown rate
is modeled as a realization of a continuous-time Markov
jump process (MJP). In our case, we observe a number
of correlated inhomogeneous Poisson processes, which we
couple via a common low-dimensional underlying process.
Specifically, we assume that the arrival rates are described
by a small number of binary switching signals, indicating
the presence or absence of a relevant external event. Ex-
amples for biometric point processes from movie stimu-
lus could include action scenes, dramatic dialog, comedic
events, or a main character appearing. We model this as
a collection of continuous-time binary signals linked by a
factor-loading matrix to the intensities of the observed pro-
cesses. Rather than risking under-fitting with a small num-
ber of factors, we allow the model to choose from a large
number of relevant sources by placing a shrinkage prior on
a source loading matrix. Furthermore, rather than model-
ing the binary sources as memoryless (as in MMPPs), we
allow more flexibility in the dynamics general hazard func-
tions. This mirrors recent work in the discrete-time litera-
ture (e.g., (Fox et al., 2011; Johnson & Willsky, 2013)) to
model state persistence and more flexible distributions over
state durations.

We evaluate the performance of our model and inference
methodology on both synthetic and real-world biometrics
data. For the latter, we apply our methodology to a biomet-
ric galvanic skin response dataset taken from users view-
ing a full feature-length film. We find that the resolved
latent structure correlates with explicit feedback (i.e., user
ratings) in terms of both excitement during specific scenes
in the film and the users’ overall impression of the film.

2. Problem and Model formulation
We wish to model a collection of U sequences of events
over an interval [0, T ]. For “user” u ∈ {1, · · · , U}, we de-
note the set of arrival times as {yu,j}, with yu,j being the
time stamp of the j-th event in stream u. Each sequence
yu,· is an inhomogeneous Poisson process with instanta-
neous rate γu(t). The latter is expressed as a user-specific
base Poisson rate λu modulated by a stimulus-determined
function over time. The rates of these U Poisson processes
share information through K binary latent sources sk(t)
with k ∈ {1, · · · ,K}. Below, we use s·(t) to denote at
time t, the column vector consisting of allK sources sk(t).
Calling the loading matrix W (with wu ∈ RK , a row vec-
tor specific to user u), we have

yu,· ∼ PP(γu(·)), u = 1, · · · , U (1)
γu(t) = λuexp(wus·(t)), t ∈ [0, T ] (2)

Here, λu represents the baseline arrival rate, while the ele-
ments of wu indicate how relevant each of the K sources
is to user u. Our goal is to estimate both these user specific

parameters as well as the latent sources sk(t) from the set
of arrival times {yu,j}.

2.1. Binary semi-Markov Jump processes

In our application, we model each of the K latent sources
as a binary signal, switching on and off depending on
whether the associated external characteristic is active.
While it is simplest to model the latent functions, sk(t),
as Markov jump processes (MJPs), the resulting memory-
less property can be inappropriate, allowing unnecessary
switching between states. Thus, we model these as binary
semi-Markov Jump Processes (bsMJP) (Feller, 1964). Re-
alizations of a bsMJP are right-continuous, piecewise con-
stant binary functions where, unlike an MJP, the rate of
state transitions vary with the time since the last transition.
This is formalized by a hazard function h(0)(ν), giving the
rate of transition from state 0-to-1, ν time units after en-
tering state 0 (h(1)(ν) is similarly defined, and we do not
allow for self-transitions). For an MJP, h(s)(ν) is a con-
stant, resulting in a memoryless property; in contrast, by
making h(s)(ν) take small values for small values of ν, we
can discourage the system from leaving a state it has just
entered. In our applications, we assume h belongs to the
Weibull family, with

h
(s)
k (ν) =

β
(s)
k

µ
(s)
k

(
ν

µ
(s)
k

)β(s)
k −1

(3)

This corresponds to the the interval length between two
state transitions following a Weibull distribution
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k and µ

(s)
k are the shape and scale parameters of the

Weibull distribution for state s. Setting β
(s)
k to 1 recov-

ers the exponential distribution (and our switching process
reduces to an MJP).

The hazard functions govern the dynamics of the bsMJP;
we also need an initial distribution πk over states. Then,
we have

sk(·) ∼ bsMJP(πk, h
(1)
k (·), h(0)

k (·)) (4)

2.2. Number of Latent Sources

In most applications, the number of latent sources is un-
known, and must be inferred. It is desirable to place a
prior on this quantity, and try to infer it from the data. A
more flexible approach is a nonparametric solution: allow
for an infinite number of potential sources, with each user
influenced by a finite, and unknown, subset of them. This
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corresponds to a binary matrix with infinite columns, and
with element (u, k) indicating whether or not the bsMJP k
is relevant to user u. A popular prior on the resulting bi-
nary association matrix is the Indian Buffet Process (IBP)
(Griffiths & Ghahramani, 2006), however, despite its ele-
gance, inference of the IBP is complicated and the result-
ing Markov chain Monte Carlo algorithm mixes poorly as
it explores the combinatorial space of binary matrices. This
raises a need for alternate approaches to flexibly model the
unobserved latent structure.

Here, inspired by Bayesian shrinkage estimation for sparse
regression problems (Polson & Scott, 2012), we control
complexity of the factor loading matrix using a multiplica-
tive gamma process (MGP) shrinkage prior (Bhattacharya
& Dunson, 2011). Rather than placing a spike-and-slab
prior on the columns of W , we model each row vector
of the factor loading matrix (wu ∈ RK) as a collection
of Gaussian variables increasingly concentrated around the
origin. Specifically,

wu ∼ N (0,Λ−1), Λ = diag(τ1, τ2, · · · )

τk =

k∏
l=1

ξl, ξl ∼ Ga(α, 1) (5)

By choosing α > 1, the {ξl} are on average larger that
1, encouraging τk to increase with k. This in turn causes
the amplitudes of the wuk to shrink close to (while not ex-
actly equaling) 0. The construction results in stochastically
ordering the latent sources, with early components hav-
ing large variance and corresponding to sources relevant to
most users. As k increases, these weights are shrunk more
and more strongly towards zero, while still allowing a few
to escape this pull (allowing us to model sources specific to
certain users). Thus, we potentially obtain an infinite num-
ber of latent sources {sk(t)}, stochastically ranked by their
contribution to the rate function {γu(t)}. In practice, we
truncate at a sufficiently large K.

2.3. Miscellaneous variables

Finally, we describe prior distributions over the remaining
variables. We model the base Poisson rate λu of each user
as independently drawn from Ga(c, d). We construct con-
jugate hyperpriors for β(s)

k and µ(s)
k after a variable trans-

formation outlined in Section 4.

3. Related Work
Early work analyzing arrival data did not exploit correla-
tion across multiple arrival streams (Daley & Vere-Jones,
1998; Kass & Ventura, 2001; Riehle et al., 1997). The
work in (Smith & Brown, 2003) introduces a single first-
order autoregressive latent state model with a proposed
EM-algorithm to estimate parameter values from multi-

user arrival data. A more complex hidden Markov Model
(HMM) approach using multiple latent states is presented
in (Escola et al., 2011). In contrast to the work in this pa-
per, the time evolving stimulus has a simple structure and
is explicitly known.

Perhaps most similar to the work in this paper is the Gaus-
sian process factor analysis (GPFA) approach of (Yu et al.,
2009). They modeled the intensities as a series of corre-
lated neural spike trains by linearly transforming a small
set of latent Gaussian processes. By contrast, the binary
switching signals in our model captures specific aspects of
the latent structure, and our shrinkage approach allows us
to infer the number of sources. Finally, the simpler struc-
ture of the bsMJP means our model is scalable to longer ob-
servation intervals. Inference in (Yu et al., 2009) required
a variational approximation to the complicated posterior,
while no such approximations are needed here.

Our modeling also relates to previous work on finite state
systems in discrete and continuous time. We generalize
the Markov-modulated Poisson process (MMPP) (Scott &
Smyth, 2003) by allowing correlated Poisson intensities,
and by allowing more flexible (i.e., non-exponential) hold-
ing times. This latter point of semi-Markovianity has been
a topic of recent interest in the discrete time-series mod-
eling community (Fox et al., 2011; Johnson & Willsky,
2013), although it fits more naturally in the continuous-
time setting. While we took a shrinkage approach to cou-
pling the latent sources, our ideas easily extend to genuine,
truncation-free nonparametric models based on the IBP.
Such ideas are related to the infinite factorial HMM (Van
Gael et al., 2009), a discrete-time Markov model with in-
finite, independent latent sources, and provide alternatives
to the Dirichlet process-based infinite state MJP models de-
veloped in the continuous-time literature (Teh et al., 2011;
Saeedi & Bouchard-Côté, 2011).

4. MCMC for bsMJPs
A challenge for more widespread application of
continuous-time models is the problem of posterior
inference. For our model, the central problem reduces to
sampling from the posterior over bsMJP paths given the
Poisson arrival times, {yu,j}. We are aware of two general
approaches to MCMC sampling for such models: the par-
ticle MCMC approach of (Andrieu et al., 2010; Golightly
& Wilkinson, 2011) and a thinning-based approach of
(Rao & Teh, 2012; 2013). Here, we adapt the latter to our
problem.

Observe that a sample path sk of the bsMJP is en-
tirely determined by the set of transition times φk =
{φk,1, · · · , φk,nk

}, and the states evaluated at these times
{sk(t), t ∈ φk} (for the binary sMJP, the latter are redun-
dant given the initial state). Also, recall that ν time-units



Modeling Correlated Arrival Events with Latent Semi-Markov Processes

after entering state 0, the rate of transitioning from state
0 to 1 is given by h(0)

k (ν) (respectively, h(1)
k (ν) for state

1). Typically self-transitions are not allowed, and have rate
equal to zero.

We now define an equivalent continuous-time system but
with self-transitions, occurring with constant rates Ω

(0)
k and

Ω
(1)
k for states 0 and 1. These self-transitions will serve as

auxiliary variables facilitating the easy resampling of new
state values. Our approach simplifies (Rao & Teh, 2012;
2013), where a multiplicative bound on the transition rates
resulted in self-transition rates depending on the current
holding time.

For state s, candidate transition times (whether self-
transitions or not) are now drawn from a hazard func-
tion H(s)

k (ν) = h
(s)
k (ν) + Ω

(s)
k . We sample these candi-

date events sequentially. Thus, assume l time units have
passed since the last state transition (when we entered state
s). Then, we sample the next candidate event-time from
H

(s)
k (·), conditioning on it being larger than l. Assuming

this is l + ∆, we advance time by ∆, and assign an actual

transition out of state s with probability h
(s)
k (l+∆)

H
(s)
k (l+∆)

(other-

wise this event is treated as a self-transition). After updat-
ing l, we repeat this process until the current time exceeds
T . Algorithm 1 in the appendix gives details of this genera-
tive process. It is easy to show that discarding the self-state
transitions corresponds to a draw from the original bsMJP.

We use the construction above to define a Markov operator
over bsMJP paths, with the desired posterior as its station-
ary distribution. Denote the set of self-transitions as φ̃k,
with the set of actual transitions given by φk. From our
construction of the previous paragraph, it follows that given
the current bsMJP trajectory sk, the set φ̃k is condition-
ally an inhomogeneous Poisson with piecewise-constant
rate Ω

(sk(t))
k (t). Thus, when the system is in state s, the

Poisson rate is Ω
(s)
k , and we can easily reconstruct φ̃k.

Denote all the candidate times as Φk = φk ∪ φ̃k. Hav-
ing introduced φ̃k, we sample a new path, now restricting
ourselves to paths that change state at some subset of Φk
(rather than searching over all paths with all possible tran-
sition times). Consequently, sampling a new path condi-
tioned on Φk amounts to reassigning labels “transition” or
“self-transition” to each of the elements of Φk. Our prob-
lem now reduces to sampling a trajectory of discrete-time
model, and can be carried out efficiently using dynamic
programming algorithms such as forward filtering back-
ward sampling (FFBS) (Früwirth-Schnatter, 1994). Note
that this step accounts for the Poisson observations. In par-
ticular, given two successive candidate transition times, t1
and t2 in Φk, the likelihood the system remains in state
s over this interval equals the probability of the subset of

Poisson observations {yu,j} falling in [t1, t2) under state s.
This follows a Poisson distribution and is easy to calculate.

Overall, sampling proceeds by alternately sampling a set
of thinned events φ̃k given the current trajectory, and then
a new trajectory given Φk = φk ∪ φ̃k. We leave the details
of this for the appendix.

5. Model inference
We now describe the overall Markov Chain Monte
Carlo (MCMC) algorithm. We wish to in-
fer the posterior distribution over the variables
{{wu}, {sk(·)}, {λu}, {ξk}, {β(s)

k }, {µ
(s)
k }}. Our al-

gorithm is a Gibbs sampler, sampling each variable
conditioned on the remaining variables. For ease of nota-
tion, we use p(·| ∼) to denote the posterior distribution of
one variable conditioning on all other variables.

Inference of Latent Sources (sk(·)): We cycle through
all K sources, resampling each bsMJP path sk conditioned
on all other variables. To do so, we use the algorithm of
the previous section: for each source, conditionally intro-
duce the Poisson distributed thinned events φ̃k, and then
conditionally resample the new trajectory using the FFBS
algorithm.

Inference of Factor Loadings (wu): The Gaussian prior
on wu and the nonlinear likelihood in Equation (2) result
in a nonstandard posterior distribution. While a simple
Metropolis-Hastings (MH) approach is to perturb the cur-
rent value wu, proposing a new value from a normal vari-
able drawn with mean centered at wu, we instead use the
following proposal distribution tailored to our problem.

Noting that p(wu| ∼) is log-concave, we use Newton’s
method to find the MAP ŵu with gradient and Hessian

g(wu) =

Nu∑
j=1

s·(yu,j)−
T∫

0

exp(wus·(t))λus·(t)dt−ΛwT
u

H(wu) = −
T∫

0

exp(wus·(t))λus·(t)s·(t)
T dt− Λ

respectively. Here, Nu is the number of arrivals observed
for user u. Because latent sources, sk(t), are simple binary
functions, the integrals above reduce to finite summations
and are easily computable. Thus, at each iteration of the
sampler, we propose w∗u ∼ N (ŵu, qH

−1(ŵu)), where q
is a tuning parameter. The new proposal w∗u is accepted
with probability

min{1, P r(w
∗
u| ∼)N (w

(old)
u ; ŵu, qH

−1(ŵu))

Pr(w
(old)
u | ∼)N (w∗u; ŵu, qH−1(ŵu))

}

We set q to 5 in our experiments, and the high acceptance
rates suggest this is an efficient approach.

Hyperparameter inference (β(s)
k , µ(s)

k , ξk):
By applying the following transformation: β′ = β, µ′ =
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µ−β , we obtain a new representation of the Weibull distri-
bution with p.d.f. and c.d.f. :

f(ν;β′, µ′) = β′µ′νβ
′−1exp(−µ′νβ

′
) (6)

F (ν;β′, µ′) = 1− exp(−µ′νβ
′
) (7)

Using these representations, a gamma prior on µ′ is the
conjugate, and with hyperparameters (e, f), we can di-
rectly sample µ′ from the posterior,

p(µ
′(s)
k | ∼) ∝ Ga(µ

′(s)
k ; e+

∑
i

I(φk,i = s), f+
∑

i:sk(φk,i)=s

∆
β
′(s)
k

k,i+1)

Here ∆k,i+1 = φk,i+1 − φk,i.

The components of the MGP shrinkage prior, {ξk}, can be
directly sampled from the conditional posterior:

p(ξk| ∼) ∝ Ga(α+
U(K − k + 1)

2
, 1+

1

2

U∑
u=1

K∑
l=k

w2
l

l∏
m=1,m 6=k

ξm)

We place a uniform prior for β′(s)k on a set of discretized
grid points and sample from the candidates according to
their posterior mass. Other variables, including {λu}, are
straightfoward to sample.

6. Experiments
We consider two synthetic datasets of arrival data to study
our model and sampler, before considering a real-world
biometric application. For the latter, we assess the model’s
ability to capture and explain observed explicit user feed-
back (i.e., user ratings). As a baseline, we used the ker-
nel methods analyzed in (Zhang & Kou, 2010) to estimate
the inhomogeneous Poisson rates, and thus the underlying
model parameters (e.g., instantaneous rate, factor loadings,
etc.). We found that with a carefully chosen kernel width,
the kernel shape does not matter much, and for simplicity,
we used a uniform kernel (giving a time-discretized bin-
ning method). An oracle choice of the best bin size was
used after testing multiple sizes.

6.1. Synthetic Experiments

For our first dataset, we generated K = 3 bsMJP paths
over an interval of length T with initial state distribution
πk = [0.5, 0.5]

T and Weibull hazard rates. Weibull shape
β

(s)
k and scale parameters µ(s)

k were uniformly drawn from
[1, 5] and [50, 100], while each row of the loading matrix
W was independently generated from a standard normal,
N (0K , IK), where 0K is a K-dimensional vector of ze-
ros, and IK is the K × K identity matrix. The columns
of W were reordered, so that the energy contained in w·k
decreased monotonically. Our observations consisted of
U = 12 sequences of event arrivals, each with a base Pois-
son rate λu drawn from a truncated Gaussian distribution

Table 1. Effective sample size (ESS) and autocorrelation function
(ACF) of the base rate (λu), number of transitions of source sk(t)
(nk), and the factor loadings (wuk)

PARAMETERS λu nk wuk

ESS/ITERATION 0.046 0.278 0.161
ESS/SECOND 0.076 0.467 0.266
ACF (LAG 5) 0.609 0.101 0.225
ACF (LAG 10) 0.415 0.049 0.100
ACF (LAG 50) -0.047 -0.016 -0.039

centered at λ0 with small variance (� λ0). As explained
below, we varied both the average base rate, λ0, and the
observation time length, T . For inference, the fixed hy-
perparameters of the sampler were set as: α = 3, c =
d = e = f = 10−3, and πk = [0.5, 0.5]

T . We ran
5000 MCMC iterations of our MCMC sampler, discard-
ing the first 2000 as burn-in, with posterior samples col-
lected every 5 iterations. The running time of a typical trial
(with T = 1000 and about 120 event arrivals for each user)
was about 3000 seconds with unoptimized Matlab code on
a computer with 2.2GHz CPU and 8GB RAM. To eval-
uate the mixing behavior of the sampler, we use R-coda
(Plummer et al., 2006) to compute the effective sample size
(ESS), as well as Markov chain autocorrelation functions
(ACF) of various model parameters. Table 1 shows these
statistics, with the ACF shown for the parameters λ1, w11

and n1, the number of transitions of the first latent source.
These numbers are typical of MCMC samplers, and show
the sampler mixes well 1.

Instantaneous Rate Estimation: One of the main advan-
tages to the proposed model is the ability to exploit cor-
relations across streams of observed arrival data. This is
especially important when the base arrival rate of each user
is quite low. In this experiment, we examine the ability to
accurately recover {γu(t)}, the instantaneous arrival rate of
each user, choosing the mean of base rates λ0 from values
in {0.01, 0.02, 0.05, 0.10, 0.20}. We keep the observation
time length constant at T = 2000.

We measured the estimation error of the instantaneous rate
by discretizing the interval [0, T ] using N = 1000 evenly
spaced grid points. We compute the posterior mean esti-
mation error at each grid point, normalizing with respect to
that point’s true rate, and record the average normalized er-
ror for 15 repeats. Rate inference is performed using both
the proposed model, and the binning approach of (Zhang
& Kou, 2010) using bandwidth values of 1, 3, 10 times the
inverse of mean arrival rate. The results are shown in Fig-
ure 1.

For very low base arrival rates (i.e., λ0 = 0.01) all methods
perform similarly. As λ0 increases, our model performs

1Code available at http://people.duke.edu/
˜wl89/

http://people.duke.edu/~wl89/
http://people.duke.edu/~wl89/
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Figure 1. Normalized estimation error of instantaneous Poisson
rate for proposed method and binning methods
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Figure 2. Estimation error of latent sources and factor loadings
with different observation lengths and base rates

significantly better than the competing binning method.
For a mean base rate of λ0 = 0.05, we find that the er-
ror rate is less than half the error rate of the best choice of
binning bandwidth.

Factor Loading Matrix Inference: As Figure 1 sug-
gests, at low arrival rates there is not enough infor-
mation to recover the instantaneous Poisson rates (and
thus the state of the latent sources). This is shown
in the left plot of Figure 2: for base rates λ0 =
{0.01, 0.02, 0.10}, as T increases (taking values in
Tcand = {200, 500, 1000, 2000, 5000}), the error in the la-
tent sources (estimated over a grid as in the previous sec-
tion) increases slightly: this is because the ‘number of vari-
ables’ in a bsMJP path increases with T .

In such situations, it is still of interest of estimate param-
eters like the factor loading matrix W : even if we cannot
reconstruct exactly what a user had in mind at any previous
time, we would still like to characterize their behaviour to
make predictions in the future. The right plot shows that
the estimation error ofW decreases monotically as the ob-
servation interval increases, implying that these parameters
can be recovered even if the posterior distribution over la-
tent sources never concentrates. Here, for each posterior
sample, Ŵ , the estimation error with respect to the true

factor loadings,W , is computed as ||Ŵ−W ||2||W ||2
.

Deviation from Markovianity: Setting the Weibull shape
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Figure 3. Left: inferred sources using bsMJP and bMJP models.
For each subplot, the first row shows the truth, the second the in-
ferred source using bsMJP, and the third, that using bMJP. Right:
posterior distribution of a shape parameter inferred using bsMJP

parameter β to 1 recovers the exponential distribution,
reducing the latent sources to memoryless binary MJPs
(bMJPs). To show the flexibility afforded by this param-
eter, we consider latent sources that are square waves,
switching between ‘1’ and ‘0’ at a fixed frequency. Figure
3 compares inferences over a latent source using a bMJP
and a bsMJP prior. We see that the state intervals inferred
by bMJP are more irregular, showing unnecessary switch-
ing between states. For the bsMJP, we placed a uniform
prior on [1, 5] on the shape parameter, allowing the model
to estimate the state persistence. Figure 3 shows the poste-
rior over this parameter places significant mass away from
1, forcing more regular state holding times.

Latent Factor Number Estimation: In real world appli-
cations, the number of latent sources is usually unknown a
priori. Our MGP shrinkage prior from Section 2 allows us
to infer the number of dominant sources. Again, we vary
the observation length from Tcand = {500, 2000, 5000},
set the base arrival rate λ0 = 0.10, and set the true number
of latent sources asK = 3. When doing inference, we trun-
cate the number of sources, picking a large enough number
K+ = 10 to avoid under-fitting. Though the sampler is not
sensitive to α, a setting α → 1 leads to a higher chance of
sampling precision sequences which are not monotonically
increasing. As mentioned before, α is set as 3 in our ex-
periments. For each posterior sample, we identify the rel-
evant sources by thresholding the associated weight-vector
w·k, picking the smallest collection of weights containing
90 percent of total energy ofW . Figure 4 demonstrates the
behavior of the posterior distribution with respect to the
inferred number of latent sources. We find that as an in-
creasing number of observations are available, the posterior
mass quickly concentrates around the true value K = 3.

6.2. Skin Conductance Biometrics

Finally, we apply our model to a dataset from a real-world
biometrics application. This dataset was collected with
10 volunteers (users) watching a feature-length film while
wearing Galvanic Skin Response (GSR) sensors (the Af-
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Figure 4. Posterior distribution of number of latent sources
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Figure 5. Extracted arousal events from one user. Top: event ar-
rivals; middle: jointly estimated rate. Bottom: rate inferred from
single user’s trace

fectiva Q-Sensor, (Affectiva, 2012)) measuring skin con-
ductance. Using a current state-of-the-art decomposition
approach from (Silveira et al., 2013), we extract user
arousal responses from the observed skin conductance sig-
nals to obtain arrival data for each user across the two-hour,
eighteen minute film. As shown in Figure 5, a typical user
has about 150 event arrivals during the recording, similar
to the λ0 = 0.02 scenario in the synthetic experiments.

Below, we analyze users’ arousal level based on their GSR
signals. We also analyze the similarity between users
and explore dominant latent events in the movie using our
model. We validate our analyses using two types of ex-
plicit feedback obtained from this experiment. First, all the
users were asked to recall 10 scenes from the film and rate
their arousal intensity from 1 to 10 for each scene (“1” be-
ing “tedious” and “10” representing “exciting/tense”). Sec-
ond, the general rating of the movie from 1 to 5 was also
collected, indicating the user’s overall opinion of the film
({“Poor”, “Fair”,“Good”,“Very Good”,“Excellent”}).

We estimate the rate function, factor loading matrix, and la-
tent sources using MCMC posterior samples. As discussed
in Section 4, a non-informative prior Ga(10−3, 10−3) is put
on λu and µ(s)

k , and uniform prior on [1, 5] is put on β(s)
k .

The maximum number of latent sources is set as K+ = 10.

Hyperprior α = 3, results in factor loading matrices W
where on average about K = 3 columns contain 95% of
total energy. Producing 10000 samples took about 12000
seconds.

Instantaneous Rate Inference: To qualitatively show the
benefit of sharing information across users, we ran our
model using both multiple traces (U = 10) and a single
trace (U = 1) (both with a maximum of K = 10 latent
sources). The middle and bottom plots of Figure 5 show
posterior mean of the estimated rate function (along with
an uncertainty interval equal to one posterior standard de-
viation) for the shared and separate cases. We see that using
multiple trace information gives estimates of the rate func-
tion that are piecewise stable, unlike the single trace case
where the estimated rate function tends to follow the em-
pirical Poisson rate. The inferred hazard function tends to
be more parsimonious in terms of state-changes as well, as
it is contrained to explain more data. Such information is
useful to tease apart responses to common stimulus from
user-specific responses, and we look at this in more detail
at the end of this section.

To quantitatively measure our rate estimation, we corre-
lated our estimated rate values with the explicit arousal
feedback for the 10 scenes. We transformed the recalled
arousal intensity (1-10) into binary labels by comparing
each to the average arousal intensity of each user (such that
each user has 5 scenes with a “0” class label and five scenes
with a “1” class label). Using these binary labels as ground
truth, we compare the instantaneous rate from the posterior
mode estimate of our proposed method against that derived
from the binning approach and a Markovian version of our
methodology using bMJP. For all approaches, we evaluate
the inferred rate function at time points corresponding to
the 10 recalled scenes for all users and then inferred the bi-
nary labels at those time points by thresholding. Varying
the threshold, we plot the ROC curves in the left plot of
Figure 6.

As shown in the figure, the instantaneous rate inferred by
the proposed model conforms to the user explicit feedback
better than the rate estimated via the binning approach and
the simplified model with bMJP. Specifically, our proposed
algorithm is able to correctly classify almost 40% of the
user explicit scene ratings with no false alarms, while the
binning approach only classifies 10% of the scenes with no
false alarms.

Factor Loading Matrix Inference: Each user has their
own factor loading vector which can be used to calculate
the distance between pairs of users. Thus, we compute the
pairwise Euclidean distance between users using the pos-
terior mode estimate of the factor loading matrix. We then
test how well this user-similarity metric predicts the user
ratings. Using all 45 possible pairs of users, we plot two
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sets of ROC curves: in the first, we compare pairs of users
with the same rating (e.g., both users rate the film at “4”)
versus users that differ by a single rating point (e.g., “3”
and “4”); in the second, we compare pairs of users with the
same rating versus users that differ by two ratings points
(e.g., “3” and “5”). As illustrated in the right plot of Figure
6, the proposed method does well with predicting user rat-
ing similarity, with the ability to classify over 55% of the
users with the same rating from the set of users two ratings
apart, with no false alarms.
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Figure 6. ROC curves predicting (left) user arousal intensity,
(right) user rating similarity from loading vectors wu

Latent Source Inference: Finally, we analyze the dom-
inant latent sources underlying the observed arousal re-
sponses returned by our inferences. The left plot of Figure
7 shows the posterior distribution over the possible number
of dominant sources, defined as the minimum number of
columns of the factor loading matrix containing 90 percent
of total energy. The posterior mass concentrates around 4
and 5, and we plot the 5 dominant latent sources in the right
plot of Figure 7. The first source is an offset of the baseline
Poisson rate. We found the following 4 sources had fairly
clear interpretations. For the second source, the elements
in the corresponding column of the factor loading matrix
are all positive, indicating this factor enhances arousal in-
tensity. Specifically, this is activated at around 20 minutes
for scenes about a plane crash, around 55 minutes and 65
minutes for key turning points of the plot, and around 115
minutes and 125 minutes for a climax and a surprising de-
nouement respectively. Taking the third source as another
example, both positive and negative factor loadings exist
among all users, indicating this factor enhances arousal in-
tensity for some of users but suppresses it for others. This is
activated for the scene when the main actor first meets the
main actress, and for the occurrence of their last dialogue.
Such information can be used along with user information
to better understand users, the stimulus, and the interaction
between the two.

7. Discussion
There are a number of variations and extensions to our
modeling choices worth exploring. While we placed a mul-
tiplicative gamma shrinkage prior on the factor loading ma-
trix, an alternative is to construct similar priors using the
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Figure 7. Posterior over number of dominant sources with a sam-
ple of sources (black represents 1 and red dash-dot lines delineate
scenes the users were asked to recall)

framework of Lévy processes (Applebaum, 2004; Polson
& Scott, 2012). Similarly, we can allow added structure
to the loading matrix W (e.g., clustering its rows, to infer
clusters of users), or allowW to vary with time (modeling
the evolution of a users tastes). Another important exten-
sion incorporates user-covariates like age, sex, or profes-
sion. Ultimately, the goal is not just to understand users and
stimuli, but to use models like ours to adaptively modify
the stimulus by monitoring user response. This is central
to applications ranging from human prosthetics and brain-
computer interface to recommendation and targeted adver-
tising.
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