Supplementary Material: Scalable Bayesian Low-Rank
Decomposition of Incomplete Multiway Tensors

In our MGP based CP decomposition, the tensor element x;, with ¢ = [i1, iz, - ,ik] its K-dimensional index
vector, can be concisely represented as:
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Theorem 1. With a. > 1, the sequence 25:1 A HkK:1 ugf?n converges in {3 as R — oo.

Proof: To prove Theorem 1, we will make use of the following Lemma.

Lemma 1. A sequence of random variables {X,},>1 converges to a random variable X (E(X?) < o0) in lo
FE(Xpsk — Xn)? — 0 as n, k — .

Based on the Lemma 1, to prove Theorem 1, we need to show that Z:fiRH E(A, Hk 1 uEfZ) =0.

Note that, Vr, in our MGP-CP construction A, and {u
Therefore we have

K| are independent of each other, and E(),.) = 0.
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where E(\,)? = E(E(\,)?|r)) = E(pts) = 2
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Under the assumption that the vectors u( ) have bounded variances, E(u; (k 2)2 will be bounded by ( < oo.
Substituting these in Equation 1, we have
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Taking the limit R — oo
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Thus the sequence Zf‘:l p Hszl uffi converges in £ as R — oo, which completes the proof of Theorem 1.



Although the MGP construction is originally unbounded [1], a consequence of Theorem 1 is that even when
a finite truncation level R is used, the approximation error due truncation R decreases exponentially fast
with increasing R, as given by the following:

Theorem 2. Denote the residual by Mi]fi%‘ik_
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1-— ‘ " where E(E((ME,, , )27)) < % Hszl Ck as shown in the proof of Theorem 1.
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Thus we have P{(M[, . )?>e} < m T, G-
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