Filtering with Abstract Particles

A. Pruning a hierarchical
decomposition

To provide further intuition for how our method be-
haves, we have included the hierarchical decomposition
for one of the test examples from our experiments:

o
2
2
N
=

IRERERS
Thiiiiad
-
:%

S
ot
3

EAE

=]
A

(&

[

&
%

BEEERN

[

=
o
=3
=

EREEREE
e

o
¥}
)

r

=
(=]

14440001
R

S
=3

N

5 —w-

S
o
5
<

T
s

=

t
t+
TTTT
S hte
T

~

C

o <

Input: 7 7 7

\
=
~
-+
=
~
~
~

This is the hierarchical decomposition used to infer the
missing characters for the phrase ...?222n%w?th???....
The decomposition doesn’t waste resources represent-
ing the first 3 unknown characters, and maintains
plausible hypotheses for the hidden characters such as
...with a..., ...now thee..., and ...now this.... Each blue
decimal number indicates a region in the decomposi-
tion together with the local probability mass assigned
to that region.

B. Pruning a hierarchical
decomposition

In our inference algorithm for choosing a good hier-
archical decomposition B, we had two major steps:
refining the decomposition, and pruning it back down
to a given size k. In this appendix, we will provide
a dynamic programming algorithm for computing an
optimal pruning B of A, assuming that Fit(a,Cp(a))
depends only on a. Let py, be the approximating dis-
tribution corresponding to A, and py, be the approx-
imating distribution corresponding to B. Our goal is
to minimize KL (p* || pg,); we will make the assump-
tion that A and 64 are chosen well enough that py,

is already close to p*, and thus that KL (ng H ng)

is a good surrogate for KL (p* || pg, ). We will also ig-
nore normalization constants and instead consider the
divergence KL ( fou H fo B) between the unnormalized

distributions fg , and ng. Formally, we will solve the
following problem:

Given a hierarchical decomposition A, and assuming
that Fit(a,Cp(a)) depends only on a, find the subset

B C A of vertices of size k such that KL (feA ’ f93>

is minimized.

For a hierarchical decomposition A and a subset B of
A, let ap(a) denote the smallest b € B such that a C b.
By equation , we have

’ feB) = ZKLaO (feA
acA
= > KL (fo

a€A

= 3 Kuo(allas(a)), (21)

a€A

KL (fo,

F

‘ faan)) (20)

def

where K.(a|b) = fou (x)

ZJCEC fé‘a ($) IOg <f9b (:1:)

is here that we make use of the assumption that
Fit(ap(a),Cp(ap(a))) depends only on a; otherwise,
Ko (a||lag(a)) would depend on the particular value

of Cp(ag(a)).

In the remainder of this appendix, we will write
out a succession of recursive formulas for computing
KL (fon
until we eventually have a recursion for optimizing
KL (ng ’ ng> over all subsets B C A of size k.

. It

’ ng), expanding the state space each time

Computing KL&A H ng) for fixed B. To make
the expresion in (21)) more amenable to dynamic pro-
gramming, we will write it out recursively. For a C p,
define D(a,p) to be the contribution of the descen-
dants of a (including a) to KL (ng H ng) assuming

that apg(a) = p. More formally, we define D(a,p) re-
cursively as

Dla,p) :{ Koo (alla) + Toecyw Db:a) + € B
Koo (allp) + Xpecp P:p) : a g B
(22)

(Note that Ko (al|a) is equal to 0; we have left it in the
recursion to expose the symmetry in the two cases.)

With this definition, one can verify that D(X,X)

expands out to (21) and hence is equal to
KL (ng ’ f93>. (Recall that X is the entire state

space and is always an element of A.)

Optimizing over B. Equation gives us a re-
H f93> when B is fixed.

However, the only dependence on B is in deciding be-
tween the two cases in the recursion, so it is easy to ex-

cursive formula for KL ( fon



Filtering with Abstract Particles

tend the recursion to simultaneously choose B. In par-
ticular, define the three-variable function D(a,p,m)
to be the minimum value of D(a,p) if there are m ele-
ments in B that are contained in a (including, possibly,
a itself). We then have the recursion

D(a,p,m) (23)
Kao (a”a) + Zmr?iryln_l |:Zb€CA(a) D(b, a, mb)i| 5

= min
Koo (allp) + _min [Syec o) D(bp )]
The first case corresponds to including a in B, in which
case we have m — 1 remaining elements of B to dis-
tribute among the descendants of a. The second case
corresponds to excluding a from B, in which case we
have m elements of B to distribute. Now D(X, X, k)
is the minimum value of D(X, X) across all subsets B
of size k, which is the quantity we are after.

Computing the minimum tractably. We are al-
most done, but we need an efficient way to compute
the minimum over all m; that sum to m. To do this,
number the children of a as by, bo, ..., and define the
four-variable function D(a,p, m,j), which, intuitively,
tracks the minimum value of D(a,p) if there are m
elements in B left to be distributed among children

bj,bjt1,... and their subtrees. More formally, define
D(a,p,m, j) (24)

min {D(a,a,m — 1,0), D(a,p,m,0)} : j=-1

min {D(b;,p,m’, —1)
0<m/<m ! 1 0<j<|Ca(a)l
+D(a7p7m_m/’j+1)}

Koo (allp) : j=|[Ca(a)l-

The three cases can be thought of as follows:

e D(a,p,m,—1) decides whether or not to include
ain B

e D(a,p,m,j) decides how many elements of B to
include among the descendants of b;

e D(a,p,m,|Ca(a)|) computes the local contribu-
tion of a to KL (ng ’ ng).

Overall, then, D(X, X, k, —1) is equal to the minimum
value of KL (ng ‘ ng) over all B C A with |B| = k.

Runtime. Suppose that the decomposition A has
depth d. Then there are O(|A|d) triples (p,a,j), so
the size of the state space is O(|A|dk). Furthermore,
the first case of the recursion can be computed in O(1)
time, the second case in O(k) time, and the final case
in O(1) time (on average across all a). Therefore, the
runtime is O(|A|dk?).



