
Gradient-based Hyperparameter Optimization through Reversible Learning:
Appendix

Dougal Maclaurin† MACLAURIN@PHYSICS.HARVARD.EDU

Harvard University, Cambridge, Massachusetts

David Duvenaud† DDUVENAUD@SEAS.HARVARD.EDU

Harvard University, Cambridge, Massachusetts

Ryan P. Adams RPA@SEAS.HARVARD.EDU

Harvard University, Cambridge, Massachusetts

Forward vs. reverse-mode differentiation
By the chain rule, the gradient of a set of nested functions
is given by the product of the individual derivatives of each
function:

∂f4(f3(f2(f1(x))))

∂x
=

∂f4
∂f3

· ∂f3
∂f2

· ∂f2
∂f1

· ∂f1
∂x

If each function has multivariate inputs and outputs, the
gradients are Jacobian matrices.

Forward and reverse mode differentiation differ only by the
order in which they evaluate this product. Forward-mode
differentiation works by multiplying gradients in the same
order as the functions are evaluated:

∂f4(f3(f2(f1(x))))

∂x
=

∂f4
∂f3

·
(
∂f3
∂f2

·
(
∂f2
∂f1

· ∂f1
∂x

))
Reverse-mode multiplies the gradients in the opposite or-
der, starting from the final result:

∂f4(f3(f2(f1(x))))

∂x
=

((
∂f4
∂f3

· ∂f3
∂f2

)
· ∂f2
∂f1

)
· ∂f1
∂x

In an optimization setting, the final result of the nested
functions, f4, is a scalar, while the input x and intermedi-
ate values, f1 − f3, can be vectors. In this scenario the ad-
vantage of reverse-mode differentiation is very clear. Let’s
imagine that the dimensionality of all the intermediate vec-
tors is D. In reverse mode, we start from the (scalar) output,
and multiply by the next D×D Jacobian at each step. The
value we accumulate is just a D-dimensional vector. In for-
ward mode, however, we must accumulate an entire D×D
matrix at each step. But do we have still have to compute
and instantiate the D×D Jacobian matrices themselves ei-
ther way? In general, yes. But in the (common) case that

the vector-to-vector functions are either elementwise op-
erations or (reshaped) matrix multiplications, the Jacobian
matrices can actually be very sparse, and multiplication by
the Jacobian can be performed efficiently without instanti-
ation (Pearlmutter & Siskind, 2008).

The main drawback of reverse-mode differentiation is that
intermediate values must be maintained in memory during
the forward pass. In sections 2.1 and 2.3, we show how
to drastically reduce the memory requirements of reverse-
mode differentiation when differentiating through the en-
tire learning procedure.

References
Pearlmutter, Barak A. and Siskind, Jeffrey Mark. Reverse-

mode AD in a functional framework: Lambda the ulti-
mate backpropagator. ACM Transactions on Program-
ming Languages and Systems (TOPLAS), 30(2):7, 2008.


