
1 Proof of main theorem

The main result of this section is

Theorem 1. There exists an absolute constant C > 0 such that for every δ ∈ (0, 1), every integer 1 ≤ m ≤ n4

and every matrix U ∈ Rn×d with orthonormal columns, if B ≥ 1
δC(log n)4 · d2 ·m1/2, S ∈ RB×n is a random

CountSketch matrix, and G ∈ Rm×B and G̃ ∈ Rm×n are matrices of i.i.d. unit variance Gaussians, then the
total variation distance between the joint distribution GSU and G̃U is less than δ.

Remark 2. Note that we restrict the range of values of m in Theorem 1 to [1 : n4]. This is because if
m > n4, the theorem requires B � 1

δn
2, at which point the CountSketch matrix S becomes an isometry

of Rn with high probability and the theorem follows immediately. At the same time restricting m to be
bounded by a small polynomial of n simplifies the proof of Theorem 1 notationally.

Recall that a CountSketch matrix S ∈ RB×n is a matrix all of whose columns have exactly one nonzero
in a random location, and the value of the nonzero element is independently chosen to be −1 or +1. All
random choices are made independently. Throughout this section we denote the number of rows in the
CountSketch matrix by B. Note that the matrix S is a random variable. Let G denote an m × B matrix
of independent Gaussians. For an n × d matrix U with orthonormal columns let q : Rd → R+ denote the
p.d.f. of the random variable G1SU , where G1 is the first row of G (all rows have the same distribution and
are independent). We note that G1SU is a mixture of Gaussians. Indeed, for any fixed S the distribution
of G1SU is normal with covariance matrix (G1SU)T (G1SU) = UTSTSU . We denote the distribution of
G1SU given S by

qS(x) :=
1√

(2π)d detM
e−

1
2x

TM−1x.

Throughout this section we use the notation M := UTSTSU . Note that since S is a random variable, M is
as well. With this notation in place we have for any x ∈ Rd

q(x) = ES [qS(x)] . (1)

Let p : Rd → R+ denote the pdf of the isotropic Gaussian distribution, i.e. for all x ∈ Rd

p(x) =
1√

(2π)d
e−

1
2x

T x. (2)

Before giving a proof of Theorem 1, which is somewhat involved, we give a simple proof of a weaker
version of the theorem, where the number of buckets B of our CountSketch matrix is required to be ≈ 1

δd
2m

as opposed to ≈ 1
δd

2
√
m:

Theorem 3. There exists an absolute constant C > 0 such that for every δ ∈ (0, 1), every integer m ≥ 1 and
every matrix U ∈ Rn×d with orthonormal columns if B ≥ 1

δ2Cd
2 ·m, S ∈ RB×n is a random CountSketch

matrix, and G ∈ Rm×B and G̃ ∈ Rm×n are matrices of i.i.d. unit variance Gaussians, then the total variation
distance between the joint distribution GSU and G̃U is less than δ.

We will use the following measures of distance between two distribution in the proof of our main theorem
(Theorem 1) as well as the proof of Theorem 3.

Definition 4 (Kullback-Leibler divergence). The Kullback-Leibler (KL) divergence between two random

variables P,Q with probability density functions p(x), q(x) ∈ Rd is given by DKL(P ||Q) =
∫
Rd p(x) ln p(x)

q(x)dx

Definition 5 (Total variation distance). The total variation distance between two random variables P,Q
with probability density functions p(x), q(x) ∈ Rd is given by DTV (P,Q) = 1

2

∫
Rd |p(x)− q(x)|dx.

Theorem 6 (Pinsker’s inequality). For any two random variables P,Q with probability density functions

p(x), q(x) ∈ Rd one has DTV (P,Q) ≤
√

1
2DKL(P ||Q).
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The proof of Theorem 3 uses the following simple claim.

Claim 7 (KL divergence between multivariate Gaussians). Let X ∼ N(0, Id) and Y ∼ N(0,Σ). Then
DKL(X||Y ) = 1

2Tr(Σ−1 − I) + 1
2 ln det Σ.

Proof. One has

DKL(X||Y ) = EX∼N(0,Id)[−
1

2
XTX +

1

2
XTΣ−1X +

1

2
ln det Σ]

= EX∼N(0,Id)[
1

2
XT (Σ−1 − I)X +

1

2
ln det Σ]

=
1

2
EX∼N(0,Id)[Tr((Σ−1 − I)XXT )] +

1

2
ln det Σ

=
1

2
Tr(Σ−1 − I) +

1

2
ln det Σ,

where we used the fact that for a vector X of independent Gaussians of unit variance one has EX [XTAX] =
Tr(A) for any symmetric A (by rotational invariance of the Gaussian distribution).

We can now give
Proof of Theorem 3: One has by Lemma 21, (1) (see below; this is a standard property of the CountSketch
matrix) that for any U ∈ Rn×d with orthonormal columns, and B ≥ 1, if S is a random CountSketch
matrix and M = UTSTSU , then ES [||M − I||2F ] = O(d2/B). By Markov’s inequality PrS [||I −M ||F >
(2/δ) · O(d2/B)] < δ/2. Let E denote the event that ||I −M ||F ≤ (2/δ) · O(d2/B). We condition on E in
what follows. Since B ≥ 1

δ3Cd
2m for a sufficiently large absolute constant C > 1, we have, conditioned on

E , that
||I −M ||2F ≤ (2/δ) ·O(d2/B) = (2/δ) · δ3/(Cm) ≤ 2δ2/(Cm). (3)

Note that in particular we have ||I −M || ≤ ||I −M ||F < 1/2 conditioned on E as long as C > 1 is larger
than an absolute constant.

By Claim 7 we have DKL(X||Y ) = 1
2Tr(I − Σ−1) + 1

2 ln det Σ. We now use Taylor expansions of matrix
inverse and log det provided by Claim 9 and Claim 10 (see below) to obtain

DKL(X||Y ) =
1

2
Tr(M−1 − I) +

1

2
ln detM

=
1

2
Tr

∑
k≥1

(I −M)k

+
1

2

∑
k≥1

(
−Tr((I −M)k)/k

)

=
1

2
Tr

∑
k≥2

(I −M)k

+
1

2

∑
k≥2

(
−Tr((I −M)k)/k

)
= O(Tr((I −M)2)) (since ||I −M ||2 ≤ ||I −M ||F < 1/2)

= O(||I −M ||2F )

= O(2δ2/(Cm)) (by (3))

≤ (δ/4)2/m (4)

as long as C > 1 is larger than an absolute constant. This shows that for every S ∈ E one has DKL(p||qS) ≤
(δ/4)2/m, and thus DKL(p||q̃|E ]) ≤ (δ/4)2/m, where we let q̃(x) := ES [qS(x)|E ].

We now observe that the vectors (GiSU)mi=1 and (G̃iU)mi=1 are vectors of independent samples from
distributions q(x) and p(x) respectively. We denote the corresponding product distributions by qm and pm.
Since the good event E constructed above occurs with probability at least 1− δ/2, it suffices to consider the
distributions q̃(x) and p(x), as

DTV (qm, pm) ≤ Pr[Ē ] +DTV (qm, pm|E) = Pr[Ē ] +DTV (q̃m, pm), (5)
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where DTV (qm, pm|E) = DTV (q̃m, pm) stands for the total variation distance between the distribution of
(G̃iU)mi=1 and the distribution of (GiSU)mi=1 conditioned on S ∈ E . We can now use the estimate from (4)
to get

DTV (q̃m, pm) ≤
√

1

2
DKL(pm||q̃m) (by Pinsker’s inequality)

=

√
m

2
DKL(p||q̃) (by additivity of KL divergence over product spaces)

≤
√
m

2
· (δ/4)2/m (by (4))

≤ δ/4.

(6)

The main source of hardness in proving the stronger result provided by Theorem 1 comes from the fact
that unlike the setting of Theorem 3, where most elements in the mixture are close to isotropic Gaussians
in KL divergence, in the setting of Theorem 1 most elements of the mixture are too far from isotropic
Gaussians to establish our result directly (this can be seen by verifying that the bounds of Theorem 3 on
the KL divergence of qS to p are essentially tight). Thus, the main technical challenge in proving Theorem 1
consists of analyzing the effect of averaging over random CountSketch matrices that is involved in the
definition of q(x) in (1). The core technical result behind the proof of Theorem 1 is Lemma 8, stated below.
Ideally, we would like a lemma that states that the ratio of the pdfs q(x)/p(x) is very close to 1 for ‘typical’
values of x (for appropriate definition of a set of ’typical’ x). Unfortunately, it is not clear how to achieve
this result for the distribution q(x) defined in (1). The problem is that some choices of CountSketch matrices
S may lead to degenerate Gaussian distributions that are hard to analyze. For example, when S is not a
subspace embedding, the matrix M may even be rank-deficient, and the inverse M−1 is then ill-defined. To
avoid these issues, we work with an alternative definition. Specifically, instead of averaging the distributions

1√
(2π)d detM

e−
1
2x

TM−1x over all CountSketch matrices, we define a high probability event E in the space of

matrices S (see Lemma 8 for the definition) and reason about the modified distribution q̃(x) defined as

q̃(x) = ES

[
1√

(2π)d detM
e−

1
2x

TM−1x

∣∣∣∣∣ E
]
. (7)

For technical reasons it turns out to be useful to define yet another distribution

q′(x) = ES

[
1√

(2π)d detM
e−

1
2x

TM−1x · I[x ∈ T (S,U)]

∣∣∣∣∣ E
]

+ ξ · p(x), (8)

where ξ = ES [PrX∼qS [X 6∈ T (S,U)]| E ] ≤ n−20 and for each S ∈ E and U with orthonormal columns the
set T (S,U) (see Definition 12) is an appropriately defined set of x ∈ Rd that are ‘typical’ for S and U . We
first note that q′ is indeed the p.d.f. of a distribution. First, it is clear that q′(x) ≥ 0 for all x. Second, we
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have ∫
Rd

q′(x)dx =

∫
Rd

ES

[
1√

(2π)d detM
e−

1
2x

TM−1x · I[x ∈ T (S,U)]

∣∣∣∣∣ E
]

+ ξ ·
∫
Rd

p(x)dx

= 1−
∫
Rd

ES

[
1√

(2π)d detM
e−

1
2x

TM−1x · I[x 6∈ T (S,U)]

∣∣∣∣∣ E
]

+ ξ

= 1−ES

[∫
Rd

1√
(2π)d detM

e−
1
2x

TM−1x · I[x 6∈ T (S,U)]dx

∣∣∣∣∣ E
]

+ ξ

= 1−ES

[∫
Rd\T (S,U)

1√
(2π)d detM

e−
1
2x

TM−1xdx

∣∣∣∣∣ E
]

+ ξ

= 1−ES [PrX∼qS [X 6∈ T (S,U)]| E ] + ξ

= 1, (by definition of ξ)

as required.
As we show below, the total variation distance between q′ and q̃ is a small n−10, so working with q′

suffices. The main argument of our proof shows that the distribution q′(x) is close to p(x) for ‘typical’
x ∈ Rd. Then since q′ is close to q̃ and the event E occurs with high probability, this suffices for a proof of
Theorem 1. Formally, the core technical result behind the proof of Theorem 1 is

Lemma 8. There exists an absolute constant C > 0 such that for every δ ∈ (0, 1) and every matrix U ∈ Rn×d
with orthonormal columns if B ≥ 1

δC(log n)4d2 there exists a set E of CountSketch matrices and a subset
T ∗ ⊆ Rd that satisfies PrX∼p[X 6∈ T ∗] ≤ n−10 and PrX∼q̃[X 6∈ T ∗] ≤ n−10 such that if S ∈ RB×n is a
random CountSketch matrix, then (1) PrS [E ] ≥ 1− δ/3, and (2) for all x ∈ T ∗ one has∣∣∣∣q′(x)

p(x)
− 1

∣∣∣∣ ≤ O((d2 log4 n)/B) +O(n−10).

We now prove Theorem 1 assuming Lemma 8 and Claim 15. After this, we then prove Lemma 8 and
Claim 15. We now give
Proof of Theorem 1: The proof relies on the observation that the vectors (GiSU)mi=1 and (G̃iU)mi=1 are
vectors of independent samples from distributions q(x) and p(x) respectively. We denote the corresponding
product distributions by qm and pm. Since the good event E constructed in Lemma 8 occurs with probability
at least 1− δ/3, it suffices to consider the distributions q̃(x) and p(x), as

DTV (qm, pm) ≤ Pr[Ē ] +DTV (q̃m, pm|E), (9)

where DTV (q̃m, pm|E) stands for the total variation distance between the distribution of (G̃iU)mi=1 and the
distribution of (GiSU)mi=1 conditioned on S ∈ E . Further, we have by the triangle inequality

DTV (q̃m, pm|E) ≤ DTV ((q′)m, pm|E) +DTV (q̃m, (q′)m|E) ≤ DTV ((q′)m, pm|E) +m · n−10, (10)

since DTV (q̃m, (q′)m|E) ≤ mDTV (q̃, q′|E) ≤ mn−10, where DTV (q̃, q′|E) ≤ n−10 by Claim 15 below.
We first prove, using Lemma 8, that the KL divergence between p(x) and q′(x) restricted to the set T ∗

(whose existence is guaranteed by Lemma 8) is bounded by O(((d log n)2/B)2). Specifically, let

p∗(x) :=

{
p(x)/PrX∼p[T ∗] if x ∈ T ∗

0 o.w.
(11)

and

q′∗(x) :=

{
q′(x)/PrX∼q′ [T ∗] if x ∈ T ∗

0 o.w.
(12)
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Since T ∗ occurs with probability at least 1 − 1/n10 under both q̃(x) and p(x) by Lemma 19, it suffices to
bound the total variation distance between the product of m independent copies of q′∗(x) and m independent
copies of p∗(x). Specifically,

DTV ((q′)m, pm|E) ≤ DTV ((q′∗)
m, pm∗ |(T ∗)m) +mPr[q′(Rd \ T ∗)] +mPr[p(Rd \ T ∗)]

≤ DTV ((q′∗)
m, pm∗ ) + 2mn−10, (by Lemma 19)

(13)

where we used the fact that q′∗ and p∗ are supported on T ∗. Note that both distributions are still product
distributions. By Pinkser’s inequality and the product structure we thus get

DTV ((q′∗)
m, pm∗ ) ≤

√
1

2
DKL((q′∗)

m||pm∗ ) (by Pinsker’s inequality)

=

√
m

2
DKL(q′∗||p∗) (by additivity of KL divergence over product spaces)

(14)

In what follows we bound DKL(q′∗||p∗). By Lemma 8 we have for every x ∈ T ∗ that

|q′(x)/p(x)− 1| ≤ O((d2 log4 n)/B) +O(n−10), (15)

so

|q′∗(x)/p∗(x)− 1| =
∣∣∣∣(q′(x)/p(x)) · PrX∼q′ [T ∗]

PrX∼p[T ∗]
− 1

∣∣∣∣ =
PrX∼q′ [T ∗]
PrX∼p[T ∗]

·
∣∣∣∣(q′(x)/p(x))− PrX∼p[T ∗]

PrX∼q′ [T ∗]

∣∣∣∣
≤ PrX∼q′ [T ∗]

PrX∼p[T ∗]
·
(
|q′(x)/p(x)− 1|+

∣∣∣∣1− PrX∼p[T ∗]
PrX∼q′ [T ∗]

∣∣∣∣)
= (1 +O(n−10)) ·

(
|q′(x)/p(x)− 1|+O(n−10)

)
= O((d2 log4 n)/B) +O(n−10). (by (15))

Since B ≥ 1
δCd

2 log4 n for a sufficiently large constant C > 0 by assumption of the theorem, we get that

O((d2 log4 n)/B) +O(n−10) < O(1/C) +O(n−10) < 1/2.

We thus get, using the bound |1/(1 + x)− 1| ≤ 2|x| for |x| ≤ 1/2,

|p∗(x)/q′∗(x)− 1| =
∣∣∣∣ 1

q′∗(x)/p∗(x)
− 1

∣∣∣∣ =

∣∣∣∣ 1

1 + (q′∗(x)/p∗(x)− 1)
− 1

∣∣∣∣
= O (|q′∗(x)/p∗(x)− 1|)
= O((d2 log4 n)/B) +O(n−10)

(16)

We now use the fact that | ln(1 + x) − x| ≤ 2x2 for all x ∈ (−1/10, 1/10) to upper bound DKL(q′∗||p∗).
Specifically, we have

DKL(q′∗||p∗) = EX∼q′∗ [ln(q′∗(X)/p∗(X))] ≤ −EX∼q′∗ [ln(p∗(X)/q′∗(X))]

≤ −EX∼q′∗ [(p∗(x)/q′∗(x)− 1)− (p∗(x)/q′∗(x)− 1)2]

≤ −EX∼q′∗ [p∗(x)/q′∗(x)− 1] + EX∼q′∗ [(p∗(x)/q′∗(x)− 1)2]

= −(1− 1) + EX∼q′∗ [(p∗(x)/q′∗(x)− 1)2]

= EX∼q′∗ [(p∗(x)/q′∗(x)− 1)2]

= O(((d2 log4 n)/B)2 + n−10) (by (16))

(17)

Since B ≥ 1
δC(log n)4d2 · m1/2 for a sufficiently large constant C > 0 by assumption of the theorem,

substituting the bound of (17) into (14), we get

DTV ((q′∗)
m, pm∗ ) ≤

√
m

2
DKL(q′∗||p∗) ≤

√
m

2
·O(((d2 log4 n)/B)2 + n−10) ≤

√
m

2
· δ2/(8m) ≤ δ/2.
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Putting this together with (13), (10) and (9) using the assumption that m ≤ n4 gives the result.
The rest of the section is devoted to proving Lemma 8, i.e. bounding

q′(x)/p(x) = ES

[
exp

(
1

2
xTx− 1

2
xTM−1x− 1

2
log detM

)
· I[x ∈ T (S,U)]

∣∣∣∣ E]+ ξ, (18)

where ξ = ES [PrX∼qS [X 6∈ T (S,U)]| E ] ≤ n−20, for ‘typical’ x sampled from the Gaussian distribution (i.e.
x ∈ T ∗ – see formal definition below).

Organization. The rest of this section is organized as follows. We start by defining the set E of ‘nice’
CountSketch matrices in section 1.1, and proving that a random CountSketch matrix is likely to be ‘nice’.
We will in fact define a parameterized set E(γ) in terms of a parameter γ. In section 1.2 we define, for
each matrix U (which can be thought of as fixed throughout our analysis) with orthonormal columns and
CountSketch matrix S, a set T (S,U) of x ∈ Rd that are ‘typical’ for S and U . The ratio of pdfs in (18) can
be approximated well by a Taylor expansion for such ‘typical’ x ∈ T (S,U). These Taylor expansions are
developed in section 1.3 and form the basis of our proof. Unfortunately, these Taylor expansions are valid
only for x ∈ T (S,U), i.e. for x that are ‘typical’ with respect to a given S. To complete the proof, we need
to construct a universal ‘typical’ set T ∗(U, γ) of x ∈ Rd, again parameterized in terms of a parameter γ,
that will allow for approximation via Taylor expansions for all x ∈ T ∗(U, γ) and S ∈ E(γ). We construct
such a set T ∗(U, γ) in section 1.4. Finally, the proof of Lemma 8 is given in section 1.5.

1.1 Typical set E of CountSketch matrices and its properties

Our analysis of (18) starts by Taylor expanding M−1 and detM around the identity matrix. We now state
the Taylor expansions, and the define a (family of) high probability events E(γ) (equivalently, sets of ‘typical’
CountSketch matrices) such that the Taylor expansions are valid for matrices M ∈ E(γ) for all sufficiently
small γ.1 The Taylor expansions that we use are given by

Claim 9. For any matrix M with ||I −M || < 1/2 one has M−1 = (I − (I −M))−1 =
∑
k≥0(I −M)k.

Claim 10. For any matrix M with ||I−M || < 1/2 one has log detM = log det(I−(I−M)) =
∑
k≥1−Tr((I−

M)k)/k.

For a parameter γ ∈ (0, 1) that we will later set to 1/poly(log n), define event E(γ) as

E(γ) :=
{
||I −M ||2F ≤ γ2 and |Tr(I −M)| ≤ γ

}
. (19)

The events E(γ) occur with high probability even for fairly small γ as long as B is sufficiently large:

Claim 11. For any matrix U ∈ Rn×d with orthonormal columns, any B×n CountSketch matrix S we have
Pr[E(γ)] ≥ 1− 3(d/γ)2/B.

Proof. By Lemma 21 below, we have ES [||I −M ||2F ] ≤ 2d2/B. Applying Markov’s inequality to ||I −M ||2F ,
we get

Pr[||I −M ||2F ≥ γ2] ≤ Pr[||I −M ||2F ≥ γ2(B/(2d2)) ·E[||I −M ||2F ]] ≤ 2(d/γ)2/B

as required.
We also have by Lemma 21 (fifth bound) that ES [(Tr(I −M))2] ≤ d2/B. Applying Markov’s inequality

to (Tr(I −M))2, we get

Pr[|Tr(I−M)| ≥ γ] = Pr[(Tr(I−M))2 ≥ γ2] ≤ Pr[(Tr(I−M))2 ≥ γ2(B/(d2))·E[(Tr(I−M))2]] ≤ (d/γ)2/B.

A union bound over the two events gives the result.

1Note that we use the notation S ∈ E(γ) and M ∈ E(γ) interchangeably. This is fine since M = UTSTSU and the matrix
U is fixed.
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1.2 Typical sets T (S, U) and their properties

In order to construct a single typical set T ∗, we will need the following simple definitions of sets T (S,U)
of x ∈ Rd that are ‘typical’ for a given CountSketch matrix (as opposed to the set T ∗ whose existence is
guaranteed by Lemma 8, which contains x that are ‘typical’ for all matrices S ∈ E simultaneously). We
will use

Definition 12 (Typical x). For any orthonormal matrix U ∈ Rn×d and CountSketch matrix S we define

T (S,U) :=

{
x ∈ Rd : |xT (I −M)x| ≤ 1

100
and |xT (I −M)2x| ≤ 1

100

}
,

The following claim will be useful in what follows. Its (simple) proof is given in the appendix:

Claim 13. For any matrix U ∈ Rn×d with orthonormal columns and any CountSketch matrix S ∈ RB×n
one has ||I −M ||2F ≤ 4n3.

The following claim is crucial to our analysis. A detailed proof is given in the appendix.

Claim 14. For any matrix U ∈ Rn×d with orthonormal columns, every γ ≤ 1/ log2 n, every CountSketch
matrix S ∈ E(γ) one has (1) PrX∼N(0,Id)[X 6∈ T (S,U)] < n−40 and (2) for any CountSketch matrix
S′ ∈ E(γ), M ′ = UTS′TS′U one has PrX∼N(0,M ′)[X 6∈ T (S,U)] < n−40 for sufficiently large n.

Using the claim above we get

Claim 15. The total variation distance between q̃ (defined in (7)) and q′ (defined in (8)) is at most n−10.
Further, ξ ≤ n−40.

Proof. We have

DTV (q̃, q′) ≤ 2ξ ≤ 2

∫
Rd

ES

[
1√

(2π)d detM
e−

1
2x

TM−1x · I[x 6∈ T (S,U)]

∣∣∣∣∣ E(γ)

]
dx

= 2ES

[∫
Rd

1√
(2π)d detM

e−
1
2x

TM−1x · I[x 6∈ T (S,U)]dx

∣∣∣∣∣ E(γ)

]
= 2ES

[
PrX∼N(0,M)[x 6∈ T (S,U)]

∣∣ E(γ)
]

≤ 2n−40 ≤ n−10 (by Claim 14)

as required.

1.3 Basic Taylor expansions

In this section we define the basic Taylor expansions of q̃(x)/p(x) that form the foundation of our analysis.
Our analysis of (18) proceeds by first Taylor expanding M−1 and detM around the identity matrix using
Claims 9 and 10, which is valid since for any S ∈ E(γ) for γ < 1/2 one has ||I −M ||2 ≤ ||I −M ||F ≤ 1/2.
This gives

q̃(x)/p(x) = ES

exp

1

2
xTx− 1

2

∑
k≥0

xT (I −M)kx

+
1

2

∑
k≥1

Tr((I −M)k)/k

∣∣∣∣∣∣ E


= ES

exp

−1

2
xT (I −M)x+

1

2
Tr(I −M)− 1

2

∑
k≥2

(
xT (I −M)kx− Tr((I −M)k)/k

)∣∣∣∣∣∣ E


= ES

[
exp

(
−1

2
xT (I −M)x+

1

2
Tr(I −M)−R(x)

)∣∣∣∣ E] ,
(20)
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where R(x) := 1
2

∑
k≥2

(
xT (I −M)kx− Tr((I −M)k)/k

)
.

The rationale behind the definition of E(γ) is that for all S ∈ E(γ) the residual R(x) above is (essentially)
dominated by the quadratic terms, i.e. ||I−M ||2F and xT (I−M)2x (for ‘typical’ values of x – see Lemma 18
below), i.e. we can truncate the Taylor expansion to the first and second terms and control the error. This
is made formal by the following three lemmas.

Lemma 16. For every γ ∈ (0, 1), conditioned on E(γ) we have Tr((I −M)k) ≤ γk−2 · ||I −M ||2F for all
k ≥ 2.

Proof. |Tr((I −M)k)| ≤ ||I −M ||k−2
2 · Tr((I −M)2) ≤ ||I −M ||k−2

F · ||I −M ||2F ≤ γk as required, since
||A||2 ≤ ||A||F and Tr(ATA) = ||A||2F for all A ∈ Rd×d.

Lemma 17. For any matrix U ∈ Rn×d with orthonormal columns, any γ ∈ (0, 1/2), for any x ∈ Rd one
has, for any CountSketch matrix S ∈ E(γ), xT (I −M)kx ≤ γk−2xT (I −M)2x for any k ≥ 2.

Proof. We have, for any x ∈ Rd and any S ∈ E(γ) |xT (I − M)kx| ≤ ||I − M ||k−2
2 · xT (I − M)2x ≤

γk−2 · xT (I −M)2x, as ||I −M ||2 ≤ ||I −M ||F .

Lemma 18. For any γ ∈ (0, 1/2), any matrix U ∈ Rn×d with orthonormal columns, any CountSketch matrix
S ∈ E(γ) and any x ∈ T (S,U) one has

|R(x)| ≤
∑
k≥2

|xT (I −M)kx|+ |Tr((I −M)k)|/k ≤ C||I −M ||2F + CxT (I −M)2x,

where C > 0 is an absolute constant.

Proof. We have by combining Lemma 16 and Lemma 17∑
k≥2

|xT (I −M)kx|+ |Tr((I −M)k)|/k ≤
∑
k≥2

[γk−2xT (I −M)2x+ γk−2 · ||I −M ||2F /k]

≤ C(xT (I −M)2x+ ||I −M ||2F )

for an absolute constant C ′ > 0, as γ < 1/2 by assumption of the lemma.

1.4 Constructing the universal set T ∗(U, γ) of typical x

The main result of this section is the following lemma:

Lemma 19. For every matrix U ∈ Rn×d with orthonormal columns, for every γ ∈ (0, 1/ log2 n) and any
δ > 0 if

T ∗(U, γ) :=
{
x ∈ Rd s.t. ||x||∞ ≤ C

√
log n and

|(Ux)a| ≤ O(
√

log n)||Ua||2 for all a ∈ [n] and

ES [I[x 6∈ T (S,U)]| E(γ)] < 1/n25.
}
,

then (a) PrX∼N(0,Id)[X ∈ T ∗(U, γ)] ≥ 1− n−10 and (b) PrX∼q̃[X ∈ T ∗(U, γ)] ≥ 1− n−10.

Note that the lemma guarantees the existence of a universal set T ∗ ⊆ Rd that captures most of the
probability mass of both the normal distribution N(0, Id) and the mixture q̃.
Proof of Lemma 19:

Let
T ∗1 := {x ∈ Rd : ES [I[x 6∈ T (S,U)]| E(γ)] < 1/n25}.

T ∗2 := {x ∈ Rd : ||x||∞ ≤ C
√

log n}.
T ∗3 := {x ∈ Rd : |(Ux)a| ≤ C

√
log n||Ua||2 for all a ∈ [n]}.

We prove that T ∗i , i = 1, 2, 3 occur with high probability under both distributions. As we show below,
the result then follows by a union bound.
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Showing that T ∗1 occurs with high probability. We first show that T ∗1 occurs with high probability
under the isotropic Gaussian distribution X ∼ N(0, Id), and then show that it also occurs with high proba-
bility under the mixture of Gaussians distribution q̃. In both cases the proof proceeds by applying Claim 14
followed by Markov’s inequality.

Step 1: bounding PrX∼N(0,Id)[T ∗1 ]. We have by Claim 14, (1) that PrX∼N(0,Id)[I[X 6∈ T (S,U)]] < n−40,
and hence

ES

[
EX∼N(0,Id) [I[X 6∈ T (S,U)]]

∣∣ E(γ)
]
< 1/n40,

implying that EX∼N(0,Id) [ES [I[X 6∈ T (S,U)]]| E(γ)] < 1/n40. We thus get by Markov’s inequality that
PrX∼N(0,Id)[T ∗1 ] ≥ 1− n−15.

Step 2: bounding PrX∼q̃[T ∗1 ]. We have by Claim 14, (2) that for any U ∈ Rn×d with orthonormal
columns, any pair of matrices S, S′ ∈ E(γ), if M ′ = UTSTSU , then PrX∼N(0,M ′)[X 6∈ T (S,U)] < n−40. We
thus have

EX∼q̃[ES [I[X 6∈ T (S,U)]|E(γ)]] = ES′
[
EX∼qS′ [ES [I[X 6∈ T (S,U)]]|E(γ)]

∣∣ E(γ)
]

= ES

[
ES′ [EX∼qS′ [I[X 6∈ T (S,U)]]|E(γ)]

∣∣ E(γ)
]

= ES [PrX∼q̃[I[X 6∈ T (S,U)]]| E(γ)]

≤ n−40.

By Markov’s inequality applied to the expression in the first line we thus have

PrX∼q̃[ES [I[X 6∈ T (S,U)]|E(γ)] > n−25] < n−15.

Showing that T ∗2 occurs with high probability. The fact that

PrX∼N(0,Id)

[
||X||∞ ≤ C

√
log n

]
≥ 1− n−40

follows by standard properties of Gaussian random variables. Thus, it remains to show that T ∗2 occurs with
high probability under X ∼ q̃. For any U ∈ Rn×d and S ∈ E(γ) we now prove that for M = UTSTSU

PrX∼N(0,M)

[
||X||∞ ≤ C

√
log n

]
≥ 1− n−40 (21)

It is convenient to let X = M1/2Y , where Y ∼ N(0, Id) is a vector of independent Gaussians of unit variance.
Then we need to bound

PrX∼N(0,M)

[
||X||∞ ≥ C

√
log n

]
= PrY∼N(0,Id)

[
||M1/2Y ||∞ ≥ C

√
log n

]

9



By 2-stability of the Gaussian distribution we have that for each i = 1, . . . , d the random variable (M1/2Y )i
is Gaussian with variance at most ||M1/2||2F , which we bound by

||M1/2||F = ||(I + (M − I))1/2||F =

∣∣∣∣∣
∣∣∣∣∣
∞∑
t=0

(
1/2

t

)
(I −M)t

∣∣∣∣∣
∣∣∣∣∣
F

≤
∞∑
t=0

∣∣∣∣(1/2

t

)∣∣∣∣ · ∣∣∣∣(I −M)t
∣∣∣∣
F

≤
∞∑
t=0

∣∣∣∣(1/2

t

)∣∣∣∣ · ||I −M ||tF
≤
∞∑
t=0

||I −M ||tF

≤
∞∑
t=0

(1/2)t

≤ 2

Thus, for each i ∈ [n] the random variable (M1/2Y )i is Gaussian with variance at most 4, and (21) follows
by standard properties of Gaussian random variables as long as C > 0 is a sufficiently large constant.

Showing that T ∗3 occurs with high probability. The fact that

PrX∼N(0,Id)

[
|(UX)a| ≤ C

√
log n · ||Ua||2 for all a ∈ [n]

]
≥ 1− n−40

follows by standard properties of Gaussian random variables and a union bound over all a ∈ [n].
Thus, it remains to show that T ∗3 occurs with high probability under X ∼ q̃. For any U ∈ Rn×d and

S ∈ E(γ) we now prove that for M = UTSTSU

PrX∼N(0,M)

[
|(UX)a| ≤ C

√
log n||Ua||2 for all a ∈ [n]

]
≥ 1− n−40

It is convenient to let X = M1/2Y , where Y ∼ N(0, Id) is a vector of independent Gaussians of unit variance.
Then we need to bound, for each a ∈ [n]

PrX∼N(0,M)

[
|(UX)a| ≥ C

√
log n||Ua||2

]
= PrY∼N(0,Id)

[
|(UM1/2Y )a| ≥ C

√
log n||Ua||2

]
By 2-stability of the Gaussian distribution we have that for each a = 1, . . . , n the random variable UaM

1/2Y
is Gaussian with variance at most ||UaM1/2||22 ≤ 4||Ua||2F (since γ < 1/ log2 n by assumption of the lemma),
and hence the result follows by standard properties of Gaussian random variables and a union bound.

Finally, we let T ∗ := T ∗1 ∩ T ∗2 ∩ T ∗3 . By a union bound applied to the bounds above we have that T ∗
occurs with probability at least 1− n−10 under both distributions, as required.

1.5 Proof of Lemma 8

We first prove

Lemma 20. There exists an absolute constant C > 0 such that for every γ ∈ (0, 1/ log n), any matrix
U ∈ Rn×d with orthonormal columns and any CountSketch matrix S ∈ E(γ) and x ∈ T (S,U) one has,
letting

L(x) := −1

2
xT (I −M)x+

1

2
Tr(I −M)− 1

8
xT (I −M)x · Tr(I −M)
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and
Q(x) := ((xT (I −M)x)2 + (Tr(I −M))2 + xT (I −M)2x+ ||I −M ||2F ),

that ∣∣∣∣1 + L(x)− exp

(
1

2
xTx− 1

2
xTM−1x− 1

2
log detM

)∣∣∣∣ ≤ C ·Q(x).

The proof is given in section A.
We will need the following two lemmas, whose proofs are provided in section A.2

Lemma 21. For any U ∈ Rn×d with orthonormal columns, and B ≥ 1, if S is a random CountSketch
matrix and M = UTSTSU , then

(1) ES [||M − I||2F ] ≤ 2d2/B

(2) for all x ∈ T ∗ one has ES [xT (I −M)2x] = O(d2(log2 n)/B)

(3) for all x ∈ T ∗ one has ES [(xT (I −M)x)2] = O(d2(log2 n)/B)

(4) for all x ∈ T ∗ one has ES [(xT (I −M)x) · Tr(I −M)] = O(d2(log n)/B)

(5) one has ES [(Tr(I −M))2] = O(d2/B)

and

Lemma 22 (Variance bound). For any matrix U ∈ Rn×d with orthonormal columns if γ ∈ (0, 1/2) and
T ∗(U, γ) ⊆ Rd is as defined in Lemma 19, then for any x ∈ T ∗(U, γ) one has, for

L(x) := −1

2
xT (I −M)x+

1

2
Tr(I −M)− 1

8
xT (I −M)x · Tr(I −M)

and
Q(x) := ((xT (I −M)x)2 + (Tr(I −M))2 + xT (I −M)2x+ ||I −M ||2F ),

that for any constant C

ES

[
(L(x) + C ·Q(x))

2
]

= O(d2(log2 n)/B),

where S is a uniformly random CountSketch matrix and M = UTSTSU .

We will use the following lemma, whose proof is given in section A:

Lemma 23. For any random variable Z and any event E with Pr[E ] ≥ 1/2, if ε := E[(Z − 1)2], then

|E[Z]−E[Z|E ]| ≤ 2(1 + E[Z])Pr[Ē ] + 2
√
εPr[Ē ].

Equipped with the bounds above, we can now prove Lemma 8:
Lemma 8 (Restated) There exists an absolute constant C > 0 such that for every δ ∈ (0, 1) and every matrix
U ∈ Rn×d with orthonormal columns if B ≥ 1

δC(log n)4d2 there exists a set E of CountSketch matrices and
a subset T ∗ ⊆ Rd that satisfies PrX∼p[X 6∈ T ∗] ≤ n−10 and PrX∼q̃[X 6∈ T ∗] ≤ n−10 such that if S ∈ RB×n
is a random CountSketch matrix, then (1) PrS [E ] ≥ 1− δ/3, and (2) for all x ∈ T ∗ one has∣∣∣∣q′(x)

p(x)
− 1

∣∣∣∣ ≤ O((d2 log4 n)/B) +O(n−10).
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Proof. Let T ∗(U, γ) ⊆ Rd be as defined in Lemma 19, and let γ := 1/ log2 n. Let E := E(γ), and note that
Pr[E ] ≥ 1− δ/3 by Claim 11 as long as C is a large enough constant, as required.

We now bound
q′(x)

p(x)
= ES

[
qS(x)

p(x)
· I[x ∈ T (S,U)]

∣∣∣∣ E(γ)

]
+ ξ,

for x ∈ T ∗(U, γ), where ξ = ES [PrX∼qS [X ∈ T (S,U)]] ≤ n−40 by definition and Claim 15, (2). For each
S ∈ E(γ) and x ∈ T (S,U) we have by Lemma 20∣∣∣∣qS(x)

p(x)
− (1 + L(x))

∣∣∣∣ =

∣∣∣∣exp

(
1

2
xTx− 1

2
xTM−1x− 1

2
log detM

)
− (1 + L(x))

∣∣∣∣ ≤ C ·Q(x),

where

L(x) := −1

2
xT (I −M)x+

1

2
Tr(I −M)− 1

8
xT (I −M)x · Tr(I −M)

denotes the ‘linear’ term and

Q(x) := (xT (I −M)x)2 + (Tr(I −M))2 + xT (I −M)2x+ ||I −M ||2F

denotes the ‘quadratic’ term.
Taking expectations, we get

ES [ (L(x)− C ·Q(x)) · I[x ∈ T (S,U)]| E(γ)]

≤ ES

[(
exp

(
1

2
xTx− 1

2
xTM−1x− 1

2
log detM

)
− 1

)
· I[x ∈ T (S,U)]

∣∣∣∣ E(γ)

]
≤ ES [ (L(x) + C ·Q(x)) · I[x ∈ T (S,U)]| E(γ)] .

Thus, it suffices to show that

|ES [ (L(x)± C ·Q(x)) · I[x ∈ T (S,U)]| E(γ)] | = O((Cd log n)2/B) +O(n−10),

which we do now. We only provide the analysis for the case when the sign in front of the constant C is a
plus, as the other part is analogous.

We first show that removing the multiplier I[x ∈ T (S,U)] from the equation above only changes the
expectation slightly. Specifically, note that

|ES [ (L(x) + C ·Q(x)) · I[x ∈ T (S,U)]| E(γ)]−ES [L(x) + C ·Q(x)| E(γ)]|
≤ ES [ |L(x) + C ·Q(x)| · I[x 6∈ T (S,U)]| E(γ)] .

(22)

By Claim 13 we have ||I −M ||2F ≤ 4n3 for all S and U , so every element of the matrix I −M is upper
bounded by 2n2. Similarly, we have ||(I −M)2||F ≤ ||I −M ||2F , and so every element of (I −M)2 is upper
bounded by 4n3. Thus, for any x ∈ T ∗(U, γ) one has

|L(x) + CQ(x)|
≤ (|xT (I −M)x|+ |Tr(I −M)|+ |xT (I −M)x · Tr(I −M)|
+ C((xT (I −M)x)2 + (Tr(I −M))2 + xT (I −M)2x+ ||I −M ||2F ))

= O(log n)(2n2d2 + d · (2n2) + (2n2)2d3 + (2n2d2)2 + (d · 2n2)2 + 4n4d2 + 4n3) ≤ n10

as long as n is sufficiently large, where we used the fact that ||x||∞ ≤ O(
√

log n) for all x ∈ T ∗(U, γ).
Furthermore, by Lemma 19 we have for x ∈ T ∗(U, γ) that

ES [I[x 6∈ T (S,U)]| E(γ)] < 1/n25.
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Substituting these two bounds into (22), we get

ES [ |L(x) + C ·Q(x)| · I[x 6∈ T (S,U)]| E(γ)] ≤ n−10 (23)

so it remains to bound

ES [L(x) + C ·Q(x)| E(γ)] .

We bound the expectation above by relating it to the corresponding unconditional expectation. Let
Z := 1 + (L(x) + C ·Q(x)), and note that

ES [Z] = 1−ES [
1

8
xT (I −M)x · Tr(I −M)] + C ·ES [Q(x)] = 1 +O((C log n)2d2/B) (24)

by Lemma 21. Let ε := ES [(Z−1)2]. We note that by Lemma 22 that ε ≤ O(d2(log2 n)/B), and hence since
E(γ) ≥ 1/2 by Claim 11, by Lemma 23 we have

|E[Z]−E[Z|E(γ)]| ≤ 2(1 + E[Z])Pr[Ē(γ)] + 2
√
εPr[Ē(γ)].

Since Pr[Ē(γ)] ≤ 3(d/γ)2/B by Claim 11 and using the assumption that B ≥ (log2 n)d2, we get

|E[Z]−E[Z|E(γ)]| ≤ O((d/γ)2/B)+2

√
O(d2 log2 n/B) · (d/γ)2/B) = O((

1

γ2
+

1

γ
log n)d2/B) = O((d/γ)2/B),

(25)
where we used the assumption that γ ≤ 1/ log2 n. Combining (25), (24) with (22) and (23), we get∣∣∣∣q′(x)

p(x)
− 1

∣∣∣∣ =

∣∣∣∣ES

[
q(x)

p(x)
· I[x ∈ T (U, S)]

∣∣∣∣ E(γ)

]
+ ξ − 1

∣∣∣∣ ≤ O((d2 log4 n)/B) +O(1/n10).

A Proofs omitted from the main body

A.1 Proof of Claim 14 and Claim 13

We will use

Theorem 24 (Bernstein’s inequality). Let X1, . . . , Xn be independent zero mean random variables such that
|Xi| ≤ L for all i with probability 1, and let X :=

∑n
i=1Xi. Then

Pr[X > t] < exp

(
−

1
2 t

2∑n
i=1 E[X2

i ] + 1
3Lt

)
.

Proof of Claim 14:

Proving (1). The bound follows by standard concentration inequalities, as we now show. Since the normal
distribution is rotationally invariant, we have that

XT (I −M)X =

d∑
i=1

(λi − 1)Y 2
i = Tr(M − I) +

d∑
i=1

(λi − 1)(Y 2
i − 1), (26)

where Y ∼ N(0, Id) and λi are the eigenvalues of M . We now apply Bernstein’s inequality (Theorem 24) to
random variables (λi − 1)(Y 2

i − 1) (note that they are zero mean). We also have E[(λi − 1)2(Y 2
i − 1)2] ≤
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O((λi − 1)2). We later combine it with the fact that |Tr(I −M)| ≤ γ ≤ 1
2 ·

1
100 for all S ∈ E(γ) to obtain

the result. We also have |(λi − 1)Yi| ≤ ||I −M ||FC
√

log n ≤ γ · C
√

log n for all i with probability at least
1− n−40/4 as long as C > 0 is larger than an absolute constant. We thus have by applying Theorem 24 to
random variables clipped at γC

√
log n in magnitude, which we denote by event F , to conclude for all t ≥ 0,

Pr[

d∑
i=1

(λi − 1)(Y 2
i − 1) > t | F ] < 2 exp

(
−

1
2 t

2

O(
∑n
i=1(λi − 1)2) + ( 1

3γC
√

log n)t

)
.

Note the random variables are still independent and zero-mean conditioned on F , and E[(λi−1)2(Y 2
i −1)2] ≤

O((λi−1)2) continues to hold, since the clipping changes the expectation by at most a factor of (1+O(n−40)).
By a union bound we can remove the conditioning on F ,

Pr[

d∑
i=1

(λi − 1)(Y 2
i − 1) > t] < 2 exp

(
−

1
2 t

2

O(
∑n
i=1(λi − 1)2) + ( 1

3γC
√

log n)t

)
+
n−40

4
.

Setting t = 1
100 , and using the fact that

∑
i(λi − 1)2 = ||I −M ||2F ≤ γ2, we get

Pr[

d∑
i=1

(λi − 1)(Y 2
i − 1) >

1

2
· 1

100
] < 2 exp

(
−

1
2 ( 1

2 ·
1

100 )2

O(γ2) + ( 1
3 · (

1
2 ·

1
100 )γC

√
log n)

)
+
n−40

4

= exp(−Ω(1/(γ
√

log n))) +
n−40

4

<
n−40

2
,

since γ ≤ 1/ log2 n by assumption, for a sufficiently large n. Combining this with (26), we get, using the fact
that |Tr(I −M)| ≤ γ < 1

2 ·
1

100 for S ∈ E(γ) that

Pr[XT (I −M)X >
1

100
] ≤ Pr[|

d∑
i=1

(λi − 1)(Y 2
i − 1)| > 1

2

1

100
] < n−40/2,

as required.
We also have

XT (I −M)2X =

d∑
i=1

(λi − 1)2Y 2
i ≤ ||I −M ||2F ·max

i∈[d]
|Yi|2 ≤ O(log n) · ||I −M ||2F = O(log nγ2) ≤ 1

100

with probability at least 1 − n−40/2 by standard properties of Gaussian random variables. Putting the
two estimates together and taking a union bound over the failure events now shows that PrX∼N(0,Id)[X 6∈
T (S,U)] < n−40, as required.

Proving (2). Recall that T (S,U) =
{
x ∈ Rd : |xT (I −M)x| ≤ 1

100 and xT (I −M)2x ≤ 1
100

}
. For any S′

we have that X ∼ N(0,M ′), where M ′ = (S′U)TS′U , so X = M ′1/2Y , where Y = N(0, Id). We thus have

XT (I −M)X = (M ′1/2Y )T (I −M)(M ′1/2Y ) = Y TM ′1/2(I −M)M ′1/2Y.

We now show that

PrY∼N(0,Id)

[∣∣∣Y TM ′1/2(I −M)M ′1/2Y
∣∣∣ > 1

100

]
< 1/n20 (27)
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Let Q := M ′1/2(I −M)M ′1/2, and let 1− λ̃i, i = 1, . . . , d denote the eigenvalues of Q. We have

Y TM ′1/2(I −M)M ′1/2Y =

d∑
i=1

(1− λ̃i)Z2
i ,

where Z ∼ N(0, Id). Note that

|
d∑
i=1

(1− λ̃i)| = |Tr(Q)| = |Tr(M ′1/2(I −M)M ′1/2)|

= |Tr(M ′(I −M))| = |Tr((I − (I −M ′))(I −M))|
≤ |Tr(I −M)|+ |Tr ((I −M ′) (I −M)) |
= γ + |Tr ((I −M ′) (I −M)) | (since |Tr(I −M)| ≤ γ for all S ∈ E(γ))

≤ γ + ||I −M ′||F · ||M − I||F (by von Neumann and Cauchy-Schwarz inequalities)

≤ γ + γ2

(28)

We thus have

Y TM ′1/2(I −M)M ′1/2Y =

d∑
i=1

(1− λ̃i)Z2
i

=

d∑
i=1

(1− λ̃i) +

d∑
i=1

(1− λ̃i)(Z2
i − 1)

(29)

We now use a calculation analogous to the above for (1) to show that |
∑d
i=1(1− λ̃i)(Z2

i − 1)| ≤ 1
2 ·

1
100

with probability at least 1− n−40/4. Indeed, we first verify that the variance is bounded by

O(

d∑
i=1

(1− λ̃i)2) = O(||Q||2F )

= O(||M ′1/2(I −M)M ′1/2||2F )

≤ O(||M ′||22)||I −M ||2F (by sub-multiplicativity)

≤ O((||I||2 + ||M ′ − I||F )2)||I −M ||2F
≤ O(||I −M ||2F )

= O(γ2). (30)

We also have

|(1− λ̃i)Yi| ≤ ||Q||FC
√

log n

≤ ||M ′||2||I −M ||FC
√

log n (by sub-multiplicativity)

≤ (||I||2 + ||M ′ − I||F )||I −M ||FC
√

log n

≤ 2||I −M ||FC
√

log n

≤ 2γ · C
√

log n,

for all i with probability at least 1− 1/n40/5 as long as C > 0 is larger than an absolute constant. We thus
have by Theorem 24 (applied to clipped variables and then unclipping by a union bound as in (1)) for all
t ≥ 0 that

Pr[|Y TM ′1/2(I −M)M ′1/2Y −
d∑
i=1

(1− λ̃i)| > t] < exp

(
−

1
2 t

2

O(
∑n
i=1(1− λ̃i)2) + ( 1

32γC
√

log n)t

)
+ n−40/5.
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Setting t = 1
2

1
100 , and using the upper bound O(

∑
i(1− λ̃i)2) = O(γ2) obtained in (30), we get

Pr[|Y TM ′1/2(I −M)M ′1/2Y −
d∑
i=1

(1− λ̃i)| >
1

2
· 1

100
] < exp

(
−

1
2 ( 1

2 ·
1

100 )2

Cγ2 + ( 1
3 ·

1
2

1
100γC

√
log n)

)
+ n−40/5

= exp(−Ω(1/(γ
√

log n))) + n−40/5 < n−40/4

since γ ≤ 1/ log2 n by assumption, for a sufficiently large n. Since |
∑d
i=1(1− λ̃i)| ≤ γ+2γ2 ≤ 1

2 ·
1

100 by (28),
we get by triangle inequality that

PrX∼N(0,M ′)[|XT (I −M)X| > 1

100
] ≤ n−40/4.

Similarly to (1) above, we have, when X ∼ N(0,M ′), X = M ′1/2Y, Y ∼ N(0, Id),

XT (I −M)2X = Y TM ′1/2(I −M)2M ′1/2Y =

d∑
i=1

τ̃iZ
2
i

≤ Tr(M ′1/2(I −M)2M1/2) ·max
i∈[d]

Z2
i

≤ O(log n) · Tr(M ′1/2(I −M)2M ′1/2)

with probability at least 1− n−40/2 over the choice of X, as maxi∈[d] Z
2
i ≤ C log n with high probability if

C is a sufficiently large constant by standard properties of Gaussian random variables. Since Tr(M ′1/2(I −
M)2M ′1/2) = Tr(M ′(I −M)2) ≤ 2||I −M ||2F (as γ < 1/ log2 n < 1/3 by assumption of the lemma), we get

XT (I −M)2X ≤ O(log n) · Tr(M ′1/2(I −M)2M ′1/2) ≤ O(log n) · γ2 ≤ 1

100
(since γ < 1/ log2 n)

with probability at least 1 − n−40/4. A union bound over the failure events yields PrX∼N(0,M ′)[X 6∈
T (S,U)] < n−40, as required.

This completes the proof.
Proof of Lemma 20: By assumption that S ∈ E(γ) we have that ||I −M ||2 ≤ γ, so Taylor expansion is
valid and gives

1

2
xTx− 1

2
xTM−1x− 1

2
log detM = −1

2
xT (I −M)x+

1

2
Tr(I −M) +R(x),

where for all x ∈ T (S,U) one has R(x) ≤
∑
k≥2 x

T (I −M)2x+ Tr(I −M)k.

We have by Lemma 18 that R(x) ≤ C(xT (I −M)2x + ||I −M ||2F ) for an absolute constant C > 0, for
all x ∈ T (S,U) and S ∈ E(γ). We thus have

e−
1
2x

T (I−M)x+ 1
2 Tr(I−M)−C(xT (I−M)2x+||I−M ||2F )

≤ e− 1
2x

T x+ 1
2 Tr(I−M)− 1

2x
TM−1x− 1

2 log detM

≤ e− 1
2x

T (I−M)x+ 1
2 Tr(I−M)+C(xT (I−M)2x+||I−M ||2F )

(31)

for all such M and x.
We now Taylor expand e−

1
2x

T (I−M)x+ 1
2 Tr(I−M)+A(xT (I−M)2x+||I−M ||2F ), where A is any constant (positive

or negative), getting

e−
1
2x

T (I−M)x+ 1
2 Tr(I−M)+A(xT (I−M)2x+||I−M ||2F )

=
∑
k≥1

(
−1

2
xT (I −M)x+

1

2
Tr(I −M) +A(xT (I −M)2x+ ||I −M ||2F )

)k
/k!.

(32)
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For k = 2 we have∣∣∣∣∣
(
−1

2
xT (I −M)x+

1

2
Tr(I −M) + xT (I −M)2x+ ||I −M ||2F

)2

/2 +
1

8
xT (I −M)x · Tr(I −M)

∣∣∣∣∣
≤ C

(
(xT (I −M)x)2 + (Tr(I −M))2 + xT (I −M)2x+ ||I −M ||2F

)
,

(33)

where we used the fact |xT (I −M)x| ≤ 1
100 for x ∈ T (S,U) and |Tr(I −M)| ≤ γ < 1

100 for S ∈ E(γ).
For all k ≥ 3 we use the bound

|
(
−1

2
xT (I −M)x+

1

2
Tr(I −M) + xT (I −M)2x+ ||I −M ||2F

)k
|

≤
(
|xT (I −M)x|+ 1

2
|Tr(I −M)|+ xT (I −M)2x+ ||I −M ||2F

)k
≤
(
|xT (I −M)x|+ 1

2
|Tr(I −M)|+ xT (I −M)2x+ ||I −M ||2F

)3

≤ C((xT (I −M)x)2 + (Tr(I −M))2 + xT (I −M)2x+ ||I −M ||2F ),

(34)

where we used the bound |xT (I −M)x| + 1
2 |Tr(I −M)| + xT (I −M)2x + ||I −M ||2F ≤ 1 to go from the

second line to the third, and the last line follows from the observation that every term in the expansion of(
|xT (I −M)x|+ 1

2 |Tr(I −M)|+ xT (I −M)2x+ ||I −M ||2F
)3

contains either at least a square of one of the
first two terms or at least one of the last two.

Substituting these bounds into (32), we get

e−
1
2x

T (I−M)x+ 1
2 Tr(I−M)+A(xT (I−M)2x+||I−M ||2F )

=
∑
k≥1

(
−1

2
xT (I −M)x+

1

2
Tr(I −M) +A(xT (I −M)2x+ ||I −M ||2F )

)k
/k!

≤ −1

2
xT (I −M)x+

1

2
Tr(I −M)− 1

8
xT (I −M)x · Tr(I −M)

+ C((xT (I −M)x)2 + xT (I −M)2x+ Tr(I −M)2 + ||I −M ||2F ) (for a constant C > 0 that may depend on A)

+
∑
k≥3

(A+ 1)k((xT (I −M)x)2 + Tr(I −M)2 + xT (I −M)2x+ ||I −M ||2F )/k!

≤ −1

2
xT (I −M)x+

1

2
Tr(I −M) + C ′′(xT (I −M)2x+ (Tr(I −M))2 + xT (I −M)x2 + ||I −M ||2F )

for an absolute constant C ′′ > 0. The provides the upper bound in the claimed result. The lower bound is
provided by a similar calculation, which we omit.
Proof of Lemma 23: Since E[(Z − 1)2] ≤ ε by assumption of the lemma, for any event E one has
E[(Z − 1)2 · IĒ ] ≤ ε, where IĒ is the indicator of Ē , the complement of E . This also means that

E[(Z − 1)2|Ē ] ≤ ε/Pr[Ē ].

On the other hand, by Jensen’s inequality

E[|Z − 1||Ē ] ≤
(
E[(Z − 1)2|Ē ]

)1/2
,

and putting these two bounds together we get

E[|Z − 1| · I[Ē ]] = E[|Z − 1||Ē ] ·Pr[Ē ] ≤ Pr[Ē ] ·
(
E[(Z − 1)2|Ē ]

)1/2 ≤ Pr[Ē ] ·
(
ε/Pr[Ē ]

)1/2
=
√
ε ·Pr[Ē ].
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This means that

|E[Z]−E[Z|E ]| ≤
∣∣∣∣E[Z]− 1

Pr[E ]
E[Z · IE ]

∣∣∣∣
≤
∣∣∣∣E[Z]− 1

Pr[E ]
E[Z] +

1

Pr[E ]
E[Z · IĒ ]

∣∣∣∣
≤ E[Z]

(
1

1−Pr[Ē ]
− 1

)
+

∣∣∣∣ 1

Pr[E ]
E[Z · IĒ ]

∣∣∣∣
≤ E[Z] · 2Pr[Ē ] + 2E[Z · IĒ ] (since

1

1− x
− 1 ≤ 2x for x ∈ (0, 1/2))

≤ E[Z] · 2Pr[Ē ] + 2(Pr[Ē ] + E[|Z − 1| · IĒ ])

≤ 2(1 + E[Z])Pr[Ē ] + 2
√
εPr[Ē ].

A.2 Proofs of moment bounds (Lemma 21 and Lemma 22)

Proof of Lemma 21 and Lemma 22: We start by noting that for every i, j ∈ [1 : d] the matrix
M = UTSTSU satisfies

Mij =

B∑
r=1

n∑
a=1

n∑
b=1

Sr,aUa,iSr,bUb,j

=

n∑
a=1

Ua,iUa,j

(
B∑
r=1

S2
r,a

)
+

B∑
r=1

n∑
a=1

n∑
b=1,b 6=a

Sr,aUa,iSr,bUb,j

= δi,j +

B∑
r=1

n∑
a,b=1,
a6=b

Sr,aUa,iSr,bUb,j ,

where δi,j equals 1 if i = j and equals 0 otherwise. We thus have, for every i, j ∈ [1 : d], that

(M − I)ij =

B∑
r=1

n∑
a,b=1,
a 6=b

Sr,aUa,iSr,bUb,j ,

which in particular means that

Tr(I −M) = −
∑
i

(M − I)ii = −
∑
i

B∑
r=1

n∑
a,b=1,
a 6=b

Sr,aUa,iSr,bUb,i,

= −
B∑
r=1

n∑
a,b=1,
a 6=b

Sr,aSr,b · UaUTb ,

(35)

(note that it immediately follows that ES [Tr(I −M)] = 0, as ES [Sr,aSr,b] = 0 for a 6= b) and

xT (I −M)x = −
∑
ij

(M − I)ijxixj = −
∑
i,j

B∑
r=1

n∑
a,b=1,
a 6=b

Sr,aUa,iSr,bUb,jxixj

= −
B∑
r=1

n∑
a,b=1,
a6=b

Sr,aSr,b(Ux)a(Ux)b

(36)
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(note that it immediately follows that ES [xT (I −M)x] = 0 for all x, as ES [Sr,aSr,b] = 0 for a 6= b).
We also have

(M − I)2
ij =

B∑
r=1

n∑
a,b=1,
a 6=b

B∑
r′=1

n∑
c,d=1,
c6=d

Sr,aUa,iSr,bUb,jSr′,cUc,iSr′,dUd,j

and hence

||I −M ||2F =
∑
ij

(M − I)2
ij =

∑
ij

B∑
r=1

n∑
a,b=1,
a6=b

B∑
r′=1

n∑
c,d=1,
c 6=d

Sr,aUa,iSr,bUb,jSr′,cUc,iSr′,dUd,j

=

B∑
r=1

n∑
a,b=1,
a6=b

B∑
r′=1

n∑
c,d=1,
c 6=d

Sr,aSr,bSr′,cSr′,d(
∑
i

Ua,iUc,i)(
∑
j

Ub,jUd,j)

=

B∑
r=1

n∑
a,b=1,
a6=b

B∑
r′=1

n∑
c,d=1,
c 6=d

Sr,aSr,bSr′,cSr′,d · UaUTc · UbUTd

=

B∑
r1=1

n∑
a1,b1=1,
a1 6=b1

B∑
r2=1

n∑
a2,b2=1,
a2 6=b2

Sr1,a1Sr1,b1Sr2,a2Sr2,b2 · Ua1UTa2 · Ub1U
T
b2

(37)

We also need

xT (I −M)2x = ||(I −M)x||22 =

d∑
i=1

 d∑
j=1

(I −M)ijxj

2

=

d∑
i=1

d∑
j=1

d∑
j̄=1

xjxj̄ ·
B∑
r=1

B∑
r̄=1

n∑
a,b=1,
a6=b

n∑
ā,b̄=1,
ā6=b̄

Sr,aUa,iSr,bUb,j · Sr̄,āUā,iSr̄,b̄Ub̄,j̄

=

B∑
r=1

B∑
r̄=1

n∑
a,b=1,
a6=b

n∑
ā,b̄=1,
ā 6=b̄

Sr,aSr,bSr̄,āSr̄,b̄ · (
d∑
i=1

Ua,iUā,i)(

d∑
j=1

Ub,jxj)(
∑
j̄

Ub̄,j̄xj̄)

=

B∑
r=1

B∑
r̄=1

n∑
a,b=1,
a6=b

n∑
ā,b̄=1,
ā6=b̄

Sr,aSr,bSr̄,āSr̄,b̄ · UaUTā · (Ux)b(Ux)b̄

=

B∑
r1=1

B∑
r2=1

n∑
a1,b1=1,
a1 6=b1

n∑
a2,b2=1,
a2 6=b2

Sr1,a1Sr1,b1Sr2,a2Sr2,b2 · Ua1UTa2 · (Ux)b1(Ux)b2

(38)

Bounding ES [||I−M ||2F ],ES [(xT (I−M)x)2],ES [xT (I−M)2x],ES [(xT (I−M)x)Tr(I−M)],ES [Tr(I−M)2]
We first note that for for any r1, r2 and a1 6= b1, a2 6= b2 the quantity

ES [Sr1,a1Sr1,b1Sr2,a2Sr2,b2 ]

is only nonzero when r1 = r2 and {a1, b1, a2, b2} contains two distinct elements, each with multiplicity 2 (let
I∗({aq, bq}2q=1) denote the indicator of the latter condition). In that case one has ES [Sr1,a1Sr1,b1Sr2,a2Sr2,b2 ] =
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1/B2. Note that the expression above appears in all of ES [(xT (I −M)x)2],ES [xT (I −M)2x],ES [(xT (I −
M)x)Tr(I −M)],ES [(Tr(I −M))2]. Specifically, all of these expressions can be written as

B∑
r1=1

B∑
r2=1

n∑
a1,b1=1,
a1 6=b1

n∑
a2,b2=1,
a2 6=b2

ES [Sr1,a1Sr1,b1Sr2,a2Sr2,b2 ]

· (Ua1UTa2)A(Ub1U
T
b2)B · ((Ux)a1(Ux)a2)C((Ux)b1(Ux)b2)D · ((Ux)a1(Ux)b1)E(Ua1U

T
b1)F · ((Ux)a2(Ux)b2)G(Ua2U

T
b2)H ,

where A,B,C,D,E, F,G,H ∈ {0, 1} and A+B + C +D + E + F +G+H = 2. We thus have

|
B∑

r1=1

B∑
r2=1

n∑
a1,b1=1,
a1 6=b1

n∑
a2,b2=1,
a2 6=b2

ES [Sr1,a1Sr1,b1Sr2,a2Sr2,b2 ]·

· (Ua1UTa2)A(Ub1U
T
b2)B · ((Ux)a1(Ux)a2)C((Ux)b1(Ux)b2)D · ((Ux)a1(Ux)b1)E(Ua1U

T
b1)F · ((Ux)a2(Ux)b2)G(Ua2U

T
b2)H ]|

≤ 1

B

n∑
a1,b1=1,
a1 6=b1

n∑
a2,b2=1,
a2 6=b2

I∗({aq, bq}2q=1)|Ua1UTa2 |
A|Ub1UTb2 |

B · |(Ux)a1(Ux)a2 |C |(Ux)b1(Ux)b2 |D·

· |(Ux)a1(Ux)b1 |E |Ua1UTb1 |
F · |(Ux)a2(Ux)b2 |G|Ua2UTb2 |

H .

We have |UaUTb | ≤ ||Ua||2 · ||Ub||2 by Cauchy-Schwarz, and |(Ux)a| ≤ ||Ua||2 · O(
√

log n) since x ∈ T ∗ by
assumption of the lemma, so

1

B

n∑
a1,b1=1,
a1 6=b1

n∑
a2,b2=1,
a2 6=b2

I∗({aq, bq}2q=1)|Ua1UTa2 |
A|Ub1UTb2 |

B · |(Ux)a1(Ux)a2 |C |(Ux)b1(Ux)b2 |D · |(Ux)a1(Ux)b1 |E |Ua2UTb2 |
F

≤ (O(log n))C+D+E+G 1

B

n∑
a1,b1=1,
a1 6=b1

n∑
a2,b2=1,
a2 6=b2

I∗({aq, bq}2q=1)(||Ua1 ||2||Ua2 ||2)A · (||Ub1 ||2||Ub2 ||2)B · (||Ua1 ||2||Ua2 ||2)C

· (||Ub1 ||2||Ub2 ||2)D · (||Ua1 ||2||U ||b1 ||2)E(||Ua1 ||2||Ub1 ||2)F · (||Ua2 ||2||U ||b2 ||2)G(||Ua2 ||2||Ub2 ||2)H .

Since we are only summing over {a1, a2, b1, b2} that contain two distinct elements, we have

(O(log n))C+D+E+G 1

B

n∑
a1,b1=1,
a1 6=b1

n∑
a2,b2=1,
a2 6=b2

I∗({aq, bq}2q=1)(||Ua1 ||2||Ua2 ||2)A · (||Ub1 ||2||Ub2 ||2)B · (||Ua1 ||2||Ua2 ||2)C

· (||Ub1 ||2||Ub2 ||2)D · (||Ua1 ||2||U ||b1 ||2)E(||Ua1 ||2||Ub1 ||2)F · (||Ua2 ||2||U ||b2 ||2)G(||Ua2 ||2||Ub2 ||2)H

≤ (O(log n))C+D+E+G 1

B

n∑
a1,b1=1

||Ua1 ||22||Ua2 ||22

≤ (O(log n))C+D+E+G 1

B
(

n∑
a1=1

||Ua1 ||22)2

≤ (O(log n))C+D+E+G d
2

B
,

where we used the fact that
∑
a ||Ua|22 = d. Noting that C + D + E + G = 0 for ES [||I − M ||2F ] and

C +D + E +G = 1 for ES [xT (I −M)xTr(I −M)] completes the proof.
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Bounding ES [(xT (I−M)x)2Tr(I−M)],ES [xT (I−M)2x·Tr(I−M)],ES [||I−M ||2F ·Tr(I−M)],ES [(xT (I−
M)x)2 ·xT (I−M)x],ES [xT (I−M)2x·xT (I−M)x],ES [||I−M ||2F ·xT (I−M)x] All of the above expressions
can be written as

B∑
r1=1

B∑
r2=1

B∑
r3=1

n∑
a1,b1=1,
a1 6=b1

n∑
a2,b2=1,
a2 6=b2

n∑
a3,b3=1,
a3 6=b3

ES [Sr1,a1Sr1,b1Sr2,a2Sr2,b2Sr3,a3Sr3,b3 ]

· (Ua1UTa2)A(Ub1U
T
b2)B · ((Ux)a1(Ux)a2)C((Ux)b1(Ux)b2)D · ((Ux)a1(Ux)b1)E(Ua1U

T
b1)F · ((Ux)a2(Ux)b2)G(Ua2U

T
b2)H

· ((Ux)a3(Ux)b3)I(Ua3U
T
b3)J

where A,B,C . . . are in {0, 1} and A+B + C +D + E + F +G+H + I + J = 3.
We first note that for for any r1, r2, r3 and a1 6= b1, a2 6= b2, a3 6= b3 the quantity

ES [Sr1,a1Sr1,b1Sr2,a2Sr2,b2Sr3,a3Sr3,b3 ]

is only nonzero when r1 = r2 = r3 and {a1, b1, a2, b2, a3, b3} contains three distinct elements, each with
multiplicity 2. Let I∗({aq, bq}3q=1) denote the indicator of the latter condition. In that case one has
ES [Sr1,a1Sr1,b1Sr2,a2Sr2,b2Sr3,a3Sr3,b3 ] = 1/B3. Note we cannot have a1 = a2 = a3 and b1 = b2 = b3
since the expectation is 0 in that case.

Similarly to the above, it thus suffices to bound

1

B2

n∑
a1,b1=1,
a1 6=b1

n∑
a2,b2=1,
a2 6=b2

n∑
a3,b3=1,
a3 6=b3

I∗({aq, bq}3q=1)

· |(Ua1UTa2)A(Ub1U
T
b2)B · ((Ux)a1(Ux)a2)C((Ux)b1(Ux)b2)D · ((Ux)a1(Ux)b1)E(Ua1U

T
b1)F · ((Ux)a2(Ux)b2)G(Ua2U

T
b2)H

· ((Ux)a3(Ux)b3)I(Ua3U
T
b3)J |

≤ (O(log n))C+D+E+G+I 1

B2

n∑
a1,b1=1,
a1 6=b1

n∑
a2,b2=1,
a2 6=b2

n∑
a3,b3=1,
a3 6=b3

I∗({aq, bq}3q=1)·

· (||Ua1 ||2||Ua2 ||2)A(||Ub1 ||2||Ub2 ||2)B · (||Ua1 ||2||Ua2 ||2)C(||Ub1 ||2||Ub2 ||2)D · (||Ua1 ||2||Ub1 ||2)E(||Ua1 ||2||Ub1 ||2)F

· (||Ua2 ||2||Ub2 ||2)G(||Ua2 ||2||Ub2 ||2)H · (||Ua3 ||2||Ub3 ||2)I(||Ua3 ||2||Ub3 ||2)J

where we used Cauchy-Schwarz and the assumption that x ∈ T ∗ (and hence x is not correlated with any of
the rows of U too much), as above.

Since we are only summing over {a1, a2, a3, b1, b2, b3} that contain three distinct elements, the expression
above is upper bounded by

(O(log n))C+D+E+G+I 1

B2

n∑
a,c,b

||Ua||22||Ub||22||Uc||22

≤ (O(log n))C+D+E+G+I d
3

B2

≤ (O(log n))2 d
2

B
,

where we used the fact that
∑
a ||Ua|22 = d and that in all cases, C +D + E +G+ I ≤ 2.
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Bounding ES [((xT (I −M)x)2 +xT (I −M)2x+ ||I −M ||2F + (Tr(I −M))2)2] All of the pairwise products
arising in the expansion of the above expressions can be written as

B∑
r1=1

B∑
r2=1

B∑
r3=1

n∑
a1,b1=1,
a1 6=b1

n∑
a2,b2=1,
a2 6=b2

n∑
a3,b3=1,
a3 6=b3

n∑
a4,b4=1,
a4 6=b4

ES [Sr1,a1Sr1,b1Sr2,a2Sr2,b2Sr3,a3Sr3,b3Sr4,a4Sr4,b4 ]

· (Ua1UTa2)A(Ub1U
T
b2)B · ((Ux)a1(Ux)a2)C((Ux)b1(Ux)b2)D · ((Ux)a1(Ux)b1)E(Ua1U

T
b1)F · ((Ux)a2(Ux)b2)G(Ua2U

T
b2)H

· (Ua3UTa4)A
′
(Ub3U

T
b4)B

′
· ((Ux)a3(Ux)a4)C

′
((Ux)b3(Ux)b4)D

′
· ((Ux)a3(Ux)b3)E

′
(Ua3U

T
b3)F

′
· ((Ux)a4(Ux)b4)G

′
(Ua4U

T
b4)H

′
,

where A,B,C,D,E, F,G,H,A′, B′, C ′, D′, E′, F ′, G′, H ′ ∈ {0, 1} and add up to 4.
We now need to consider two cases.

Case 1: the number of distinct elements in {a1, b1, a2, b2, a3, b3, a4, b4} is four, each occurring with multi-
plicity 2 (let I∗({aq, bq}4q=1) denote the indicator of the latter condition) Then

ES [Sr1,a1Sr1,b1Sr2,a2Sr2,b2Sr3,a3Sr3,b3Sr4,a4Sr4,b4 ]

contributes 1/B4. In this case the number of distinct elements in {r1, r2, r3, r4} cannot be larger than 2.
It thus suffices to bound

1

B2

n∑
a1,b1=1,
a1 6=b1

n∑
a2,b2=1,
a2 6=b2

n∑
a3,b3=1,
a3 6=b3

n∑
a4,b4=1,
a4 6=b4

I∗({aq, bq}4q=1)·

· |(Ua1UTa2)A(Ub1U
T
b2)B · ((Ux)a1(Ux)a2)C((Ux)b1(Ux)b2)D · ((Ux)a1(Ux)b1)E(Ua1U

T
b1)F · ((Ux)a2(Ux)b2)G(Ua2U

T
b2)H

· (Ua3UTa4)A
′
(Ub3U

T
b4)B

′
· ((Ux)a3(Ux)a4)C

′
((Ux)b3(Ux)b4)D

′
· ((Ux)a3(Ux)b3)E

′
(Ua3U

T
b3)F

′
· ((Ux)a4(Ux)b4)G

′
(Ua4U

T
b4)H

′
|

≤ (O(log n))2 1

B2

n∑
a1,b1=1,
a1 6=b1

n∑
a2,b2=1,
a2 6=b2

n∑
a3,b3=1,
a3 6=b3

I∗({aq, bq}4q=1)·

· (||Ua1 ||2||Ua2 ||2)A(||Ub1 ||2||Ub2 ||2)B · (||U ||a1 ||Ua2 ||)C(||Ub1 ||2||Ub2 ||2)D · (||Ua1 ||2||Ub1 ||2)E(||Ua1 ||2||Ub1 ||2)F

· (||Ua2 ||||Ub2 ||)G(||Ua2 ||2||Ub2 ||2)H

· (||Ua3 ||2||Ua4 ||2)A
′
(||Ub3 ||2||Ub4 ||2)B

′
· (||Ua3 ||2||Ua4 ||2)C

′
(||Ub3 ||2||Ub4 ||2)D

′
· (||Ua3 ||2||Ub3 ||2)E

′
(||Ua3 ||2||Ub3 ||2)F

′

· (||Ua4 ||2||Ub4 ||2)G
′
(||Ua4 ||2||Ub4 ||2)H

′

where we used Cauchy-Schwarz and the assumption that x ∈ T ∗ (and hence x is not correlated with any of
the rows of U too much), as above.

Since we are only summing over {a1, a2, a3, a4, b1, b2, b3, b4} that contain three distinct elements, each of
multiplicity two, the expression above is upper bounded by

(O(log n))2 1

B2

n∑
a,b,c,d

||Ua||22||Ub||22||Uc||22||Ud||22

≤ (O(log n))2 d
4

B2

≤ (O(log n))2 d
2

B
,

where we used the fact that
∑
a ||Ua|22 = d.
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Case 2: the number of distinct elements in {a1, b1, a2, b2, a3, b3, a4, b4} is two, each occurring with multi-
plicity 4 (let I∗({aq, bq}4q=1) denote the indicator of the latter condition) Then

ES [Sr1,a1Sr1,b1Sr2,a2Sr2,b2Sr3,a3Sr3,b3Sr4,a4Sr4,b4 ]

contributes 1/B2. In this case the number of distinct elements in {r1, r2, r3, r4} has to be one, since each
column of S has a single non-zero entry and necessarily a1 = a2 = a3 = a4 and b1 = b2 = b3 = b4.

It thus suffices to bound

1

B

n∑
a1,b1=1,
a1 6=b1

n∑
a2,b2=1,
a2 6=b2

n∑
a3,b3=1,
a3 6=b3

n∑
a4,b4=1,
a4 6=b4

I∗({aq, bq}4q=1)·

· |(Ua1UTa2)A(Ub1U
T
b2)B · ((Ux)a1(Ux)a2)C((Ux)b1(Ux)b2)D · ((Ux)a1(Ux)b1)E(Ua1U

T
b1)F · ((Ux)a2(Ux)b2)G(Ua2U

T
b2)H

· (Ua3UTa4)A
′
(Ub3U

T
b4)B

′
· ((Ux)a3(Ux)a4)C

′
((Ux)b3(Ux)b4)D

′
· ((Ux)a3(Ux)b3)E

′
(Ua3U

T
b3)F

′
· ((Ux)a4(Ux)b4)G

′
(Ua4U

T
b4)H

′
|

≤ (O(log n))2 1

B

n∑
a1,b1=1,
a1 6=b1

n∑
a2,b2=1,
a2 6=b2

n∑
a3,b3=1,
a3 6=b3

n∑
a4,b4=1,
a4 6=b4

I∗({aq, bq}4q=1)·

· (||Ua1 ||2||Ua2 ||2)A(||Ub1 ||2||Ub2 ||2)B · (||U ||a1 ||Ua2 ||)C(||Ub1 ||2||Ub2 ||2)D · (||Ua1 ||2||Ub1 ||2)E(||Ua1 ||2||Ub1 ||2)F

· (||Ua2 ||||Ub2 ||)G(||Ua2 ||2||Ub2 ||2)H

· (||Ua3 ||2||Ua4 ||2)A
′
(||Ub3 ||2||Ub4 ||2)B

′
· (||Ua3 ||2||Ua4 ||2)C

′
(||Ub3 ||2||Ub4 ||2)D

′
· (||Ua3 ||2||Ub3 ||2)E

′
(||Ua3 ||2||Ub3 ||2)F

′

· (||Ua4 ||2||Ub4 ||2)G
′
(||Ua4 ||2||Ub4 ||2)H

′

where we used Cauchy-Schwarz and the assumption that x ∈ T ∗ (and hence x is not correlated with any of
the rows of U too much), as above.

Since we are only summing over {a1, a2, a3, a4, b1, b2, b3, b4} that contain two distinct elements, each of
multiplicity four, the expression above is upper bounded by

(O(log n))2 1

B

n∑
a,b

||Ua||42||Ub||42

= (O(log n))2 1

B

n∑
a,b

||Ua||22||Ub||22 (since ||Ua||2 ≤ 1 for all a)

≤ (O(log n))2 d
2

B
,

where we used the fact that
∑
a ||Ua|22 = d.
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