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Abstract

We describe a method for parameter estimation in bipartite probabilistic graphical models
for joint prediction of clinical conditions from the electronic medical record. The method
does not rely on the availability of gold-standard labels, but rather uses noisy labels, called
anchors, for learning. We provide a likelihood-based objective and a moments-based initial-
ization that are effective at learning the model parameters. The learned model is evaluated
in a task of assigning a heldout clinical condition to patients based on retrospective analy-
sis of the records, and outperforms baselines which do not account for the noisiness in the
labels or do not model the conditions jointly.

1. Introduction

Clinical decision support systems aim to relay clinically relevant information while the pa-
tient is being treated. The relevant information can vary and can include recommendations
of standardized pathways of care (Panella et al., 2003), evidence-based guidelines, and warn-
ings about allergies and other contraindicated medications. The most effective systems are
those that can understand the patient’s electronic medical record as it is being populated.
By harnessing information entered as part of the clinician’s regular workflow, these systems
do not add additional work or cognitive burden and integrate seamlessly into clinical care.

While the field of machine learning has shown tremendous success learning to recognize
patterns from large collections of labeled examples, one issue that arises repeatedly when
applying machine learning to medical applications is the difficulty and cost of obtaining
accurate labels for training. In this work, we focus on the so-called “anchored” setting,
where gold-standard labels are difficult to obtain, but noisy versions of these labels can be
easily extracted from clinical text using simple rules (Halpern et al., 2014; Agarwal et al.,
2016). These rules (called anchors) are then used as surrogate labels in standard machine
learning pipelines, with appropriate adjustments to account for noise (Natarajan et al.,

c©2016.



Clinical Conditions
abdominal pain acute alcohol acute allergic reaction acute
asthma-copd acute back pain acute cellulitis acute
cva acute epistaxis acute fall acute
gi bleed acute headache acute hematuria acute
intracranial hemorrhage acute kidney stone acute vehicle collision acute
pneumonia acute severe sepsis acute sexual assault acute
suicidal ideation acute syncope acute uti acute
liver history hiv history

Table 1: The full list of clinical conditions included in the model. Acute conditions relate to the
patient’s current condition. History refers to the patient’s history.

2013; Elkan and Noto, 2008). Anchors need to be specified manually by experts, but are
much easier than labeling large numbers of patients with manual chart abstraction.

Previous work with anchors (Halpern et al., 2016) showed that they can be used to
build a large number of individual classifiers to identify a range of clinical conditions, but
did not address the joint modeling of these conditions. Without a joint model, it is difficult
to calibrate the individual classifiers against each other to properly respond to queries such
as: “what are the most likely clinical conditions for this patient?” or “what else might the
patient have?”

In this work, we present a method of training joint probabilistic models with anchors,
and show an improvement of the joint model over individual classifiers in a clinical condition
tagging task, specifically in answering the question “what else might the patient have?”

2. Modeling clinical conditions

We model 23 clinical conditions relevant to the emergency department. These are a subset
of the conditions modeled in Halpern et al. (2016), chosen to have anchors which include
both ICD9 billing codes and another form of observation (either free text or medication).
The anchors are available at https://github.com/clinicalml/clinical-anchors. To
simulate the anchor setting while still having labels for evaluation, we use the ICD9 codes
to represent “ground truth” for the purposes of this study and other observations such as
medications or free-text for anchors and features. While ICD9 codes are generally unreliable
for establishing gold-standard clinical conditions (e.g., Cipparone et al., 2015; Tieder et al.,
2011; Birman-Deych et al., 2005; Aronsky et al., 2005), we consider them reliable enough to
assess relative performance of different methods which are trained using anchors. Table 1
gives the full list of clinical conditions that were modeled.

3. Cohort

The study was performed in a 55,000-visit/year level 1 trauma center and tertiary academic
teaching hospital. All consecutive emergency department (ED) patients between 2008 and
2013 were included. Records were de-identified (Neamatullah et al., 2008) and personal
health information was removed before beginning the analysis. Each record represents a
single patient visit, leading to a total of 273,174 records of emergency department patient
visits. The study was approved by the hospital’s institutional review board.

https://github.com/clinicalml/clinical-anchors


Field Representation
Age Binned to nearest decade
Sex M / F
Chief Complaint Free text
Triage Assessment Free text
MD comments Free text
Medication history GSN codes
Dispensed medications GSN codes
Billing codes ICD9 codes

Table 2: Features extracted. Billing codes were extracted to perform the evaluation, but were not
used to create the patient feature vector.

3.1 Cohort Selection

We focus on patients with at least two of the modeled clinical conditions so that it is possible
to identify one condition and ask “what else might the patient have?” After filtering for
patients with at least two of the modeled conditions, we were left with 16,268 patients.
Of these patients, 11,000 were designated for training and 5,000 for testing. The final 268
patients were not used.

3.2 Data extraction and feature selection

For each visit, we extracted data from the fields listed in Table 2 to build a binary bag-
of-words representation for every patient. Full details of the free-text processing pipeline
including negation and bigram detection can be found in Appendix A. For each condition, we
create an anchor token which appears if any of the condition’s anchors appears in the record.
Terms that appear in more than 50% of the patient records are removed as stopwords, and
the most common 1000 terms are kept. Any anchors that were filtered out in this step are
added back in, yielding a final feature vector with 1003 binary indicators.

4. Methods

We model conditions and observations as a bipartite Bayesian network. In the following
sections, we will describe the structure of the model and methods for learning its parameters.
Throughout, we will follow the convention that random variables are denoted by uppercase
letters (e.g., Yi) and their values indicated by lowercase variables (yi ∈ {0, 1}).

4.1 Anchor assumption

We assume the anchors are corrupted versions of the true labels and that the corruption
process obeys a conditional independence constraint: The state of the anchor depends only
on the true label. Specifically, conditioned on the true label, it is independent of all other
observations. Halpern et al. (2014) additionally required a positive-only assumption (the
corruption process does not produce false positive cases), which we do not require here.
Instead we will require that that the class-conditional noise rates of the corruption process
are known.
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Figure 1: The joint probabilistic model used for clinical tagging is a bipartite graph involving con-
ditions and observations, like QMR-DT (Shwe et al., 1991) with one or more anchor (red
outline) for each condition (only one anchor per condition is shown in the illustration).
Other observations (black outline) can have multiple parents.

4.2 Model structure

We use a graphical model patterned after the historical QMR-DT network for diagno-
sis (Shwe et al., 1991) (see Figure 1). The Bayesian network consists entirely of bi-
nary random variables, which are partitioned into conditions (Y1, ..., Ym) and observations
(X1, ..., Xn). The model is bipartite with directed edges from conditions to observations.

The conditions are assumed to be marginally independent with individual prior proba-
bilities, denoted as πi:

P (Y = {y1, ..., ym}) =

m∏
i=1

πyii (1− πi)1−yi . (1)

The conditional probabilities of the observations (given the state of the conditions), are
parametrized with a “noisy-or” distribution (Equation 2) (Shwe et al., 1991; Pearl, 1988):

P (Xj = 0|Y = {y1, ..., ym}) = (1− lj)
m∏
i=1

fyii,j , (2)

where the parameters fi,j are referred to as failure probabilities and lj is the leak probability.
The network can be viewed as a generative model. For each new patient, each condition

Yi independently turns on with probability πi. Each condition which is on tries to turn
on each of its children, Xj , but fails with probability fi,j . An additional “noise” parent is
always on and fails to turn on its children with probability (1− lj).

Rather than naively treat the anchors (which are unreliable labels) as telling us which
conditions are present, we treat the conditions as latent variables and treat the anchors as
observations. The anchor assumption places a structural constraint on the graphical model.
Specifically, each anchor Ai may only have one parent which is Yi.

Treating the conditions as latent variables makes learning the parameters of the model
computationally difficult. When the variables are all observed, maximum likelihood esti-
mation of the parameters is a concave optimization problem that can be solved efficiently.
However, when the conditions are unobserved, the problem is no longer concave and op-
timization procedures get stuck in local minima, even when the anchor assumption holds
true. In the following two sections, we describe a likelihood-based objective and an effective
initialization that allow us to learn models with good predictive capabilities.



4.3 Semi-supervised objective

Exact inference in the QMR-DT model is known to be NP-hard, even if there is an an-
chor for every condition. The typical approach maximizing likelihood in the presence of
latent variables, Expectation Maximization (EM) (Dempster et al., 1977), is computation-
ally challenging because at each step one has to use an approximate inference algorithm
such as Markov chain Monte Carlo to approximate the necessary expectations.

Instead, we follow Mnih and Gregor (2014) in formulating a variational lower bound on
the likelihood function using a recognition model. We start with the standard Evidence
Lower BOund (ELBO), which holds true for any distribution, q(Y |X):

L(θ, q) ≡ Ey∼q [logP (X, y; θ)− log q(y|X)] ≤ logP (X). (3)

In mean field variational inference, q is chosen to be a fully factorized distribution. In
this work, we restrict q to be the output of a parametrized model, with parameters φ. The
parametrized distribution q(y|X;φ) is referred to as a recognition model and its function
is to perform approximate inference in the network. The bound is tightest as q(Y |X)
approaches P (Y |X; θ), that is, as it approximates inference in the generative model. As
learning proceeds, the recognition model learns to compile inference.

In our work we use a simple recognition model that performs logistic regression to
approximate the posterior of each condition independently:

q(y|x;φ) =
∏
i

(
yiσ(φi · x) + (1− yi)(1− σ(φi · x))

)
, (4)

where σ is the sigmoid function, σ(x) = 1
1+e−x and x is padded with a 1 to allow for

a bias term. In contrast with mean-field inference, where q is optimized for every data
point separately, here we train a single model, allowing us to amortize the cost of inference
over many data points. Methods to take gradients with respect to θ and φ and optimize
with stochastic gradient ascent are described in detail in Mnih and Gregor (2014). Our
hyperparameter settings are described in Appendix B. Using this algorithm enabled us to
learn orders of magnitude faster than EM, with comparable results in terms of likelihood
objective obtained.

However, we found that without adding an additional term to the objective, the anchor
constraints (i.e., each anchor only has a single, specified parent) were not sufficient to make
sure that the latent variables took on their intended meanings. Specifically, we observed that
as the held-out likelihood of the observations improved, the predictive quality of the models
got worse (measured using the heldout tag prediction task of Section 5.1). Upon inspecting
the model, we found that drift occurred: the latent variables took on new meanings and
lost their original grounding.

Inspired by recent work on semi-supervised learning with deep generative models (Kingma
et al., 2014), our solution is to add a supervised term to the objective that encourages the
recognition model to additionally predict the presence or absence of the anchors, ensuring
that the meaning of the latent variable is tightly tied to the anchor. The prediction cannot
use the anchors themselves, so we form a new censored vector, x̃, which is a copy of x but
has the values of the anchors set to a constant 0. We also introduce an additional bias
term φ′0 to allow the prediction of the anchors and the labels to differ from each other. The



supervised term has the form:

R(φ, φ′0) = −`(σ(φ · x̃+ φ′0), a), (5)

where `(·, ·) is log loss and a is the vector of anchors. The final objective is thus:

maximize L(θ, φ) + λR(φ, φ′0), (6)

where λ > 0 is a hyperparameter specifying the trade-off between these two terms in the
objective, and although we wrote Eq. 6 for a single data point, the actual objective we
optimize is the sum of this over all the data points. A more detailed version of the objective
is found in Appendix C.

At test time, we discard the recognition model, qφ, which was used to train the param-
eters of the generative bipartite Bayesian network, but cannot support queries with condi-
tioning on some of the clinical variables, and use the joint probabilistic model, P (X,Y ; θ),
for inference. Inference in the joint model does not have an efficient closed form solution,
but can be approximated with Gibbs sampling.

4.4 Model initialization

In order to initialize the model, we use the anchors to get a rough estimate of the failure
probabilities for each of the observations. If we observed the latent clinical conditions (the
Y variables), we could use a simple moments-based estimator using empirical counts to
estimate the failure probabilities (Equation 7).

f̂i,j =
P̂ (Xj = 0|Yi = 1)

P̂ (Xj = 0|Yi = 0)
. (7)

The estimator f̂i,j is then clipped to lie between [0,1]. The consistency of the method
is not affected by this clipping, since if sufficient data were drawn from the model, the
estimator would naturally lie in that range and clipping would not be necessary. Once all the
failure probabilities are estimated, the leak probabilities can be estimated to account for the
difference between the true observed counts and those predicted by the model (Appendix D).

Since the clinical conditions are generally unobserved, we estimate these conditional
probabilities using empirical counts assuming that the anchors (which are noisy versions of
the labels) are Y , and then perform a denoising step to estimate the conditional probabilities
as though the true labels were observed. Specifically, in Section 4.1 we assumed that the
label corruption process was independent of all other observed variables. This leads to the
following equation:

P (Xj |Ai) = P (Yi = 1|Ai)P (Xj |Yi = 1) + P (Yi = 0|Ai)P (Xj |Yi = 0) (8)

The left-hand side of this equation is a quantity that only involves observed variables
(Xj , Ai) and can be estimated from empirical counts. The right-hand side uses the noise
rates of the corruption process P (Yi|Ai) and the conditional probabilities that we care about,
P (Xj |Yi). If we assume that the noise rates of the corruption process are known, then we
can form four independent linear equations with four unknowns and solve the following
matrix equation:

~P (Xj |Ai) = R~P (Xj |Yi), (9)



Algorithm 1 Parameter estimation algorithm

1: (Precondition) Identify anchors
2: Obtain cleaned moment estimates using anchors (Eq. 10)
3: Initialize θ0 using method of moments (Eq. 7).
4: Initialize φ0 randomly
5: NVIL optimization (Mnih and Gregor, 2014) of Eq. 6.
6: Discard φ and use joint model parametrized by θ.

where ~P (Xj |Ai) is a column vector with four entries, one for each setting of (Xj , Ai) in
{0, 1}2. R is a 4 × 4 matrix encoding the noise rates of the corruption process. Explicit
constructions of these terms are given in Appendix E.

We could simply invert the noise matrixR to solve ~P (Xj |Yi) = R−1 ~P (Xj |Ai), however, it
would not be guaranteed that the solution would give a valid probability (i.e., non-negative
and sum-to-one conditions) for ~P (Xj |Yi). Instead, we explicitly solve the optimization
problem with simplex constraints to minimize a KL-divergence measure between a proposed
distribution ~P (Xj |Yi) and the denoised version of the empirical counts P (Xj |Ai):

~P (Xj |Yi) = arg min
~p∈∆

DKL

(
~P (Xj |Ai)

∣∣∣∣∣∣R~p) (10)

The optimization is convex and we solve it with exponentiated gradient descent (Kivi-
nen and Warmuth, 1995). The cleaned distribution, ~P (Xj |Yi), obtained from solving Equa-
tion 10 is then substituted into the failure probability estimator in Equation 7 to obtain
estimates of the failure and leak probabilities (regarding the leak probabilities, see Ap-
pendix D). This whole procedure can be shown to be a consistent estimator, meaning that
if the model assumptions hold (i.e., of conditional independence), this will converge to the
true probabilities as the amount of data goes to infinity.

4.5 Complete algorithm

The full parameter estimation algorithm is summarized in Algorithm 1.

4.6 Model selection

We do not assume that we have any ground truth labels to do model selection, so we use a
stopping criteria based on heldout anchor prediction. We hold out 1000 patients from the
train set as a validate set to determine the stopping criteria. For each patient in the validate
set, we censor one positive anchor that appears in the record and all of the negative anchors,
and perform inference with the joint model P (X,Y ; θ) to determine which anchor is missing.
Inference for the final anchor is performed with Gibbs sampling to obtain marginals for the
tags, and then the likelihood of each anchor is computed as a function of the marginal
likelihood of its parent tag (details in Appendix F). This model selection criterion mimics
the heldout-tag prediction task described in Section 5.1 used in the evaluation, but uses
anchors instead of the true labels. Other stopping criteria using anchors could be developed
depending on the intended use.



Figure 2: Tagging system within an electronic medical record.

5. Results

5.1 Heldout tag prediction task

We test the ability of our model to perform inference by presenting it with a heldout-tag
prediction task. Each clinical state is assigned a tag. The model is presented with a patient
record and all but one of the tags that apply for that record. The task is to predict the final
tag that applies for this patient. We record the accuracy of each model (i.e., the proportion
of times it chooses the correct tag to fill in), top-5 performance (i.e., proportion of times the
correct tag appears in the top 5 predictions) and the mean-reciprocal rank of the correct
prediction (MRR). Since this task is choosing the best last tag, we do not need to perform
approximate inference. Instead we evaluate the likelihood of each possible final tag and
perform the normalization, which corresponds to exact inference (Appendix G).

In addition to highlighting the joint modeling aspect of the new model, that it is able to
respond to arbitrary inference queries with conditioning, this task is also clinically relevant
in that it can be used to combat a recognized cognitive bias known as “search satisfaction
error” (Groopman and Prichard, 2007). This cognitive bias, a failing of the Occam’s razor
heuristic, is the tendency to overlook additional conditions once a single unifying diagnosis is
found. This is particularly dangerous when a more serious diagnosis is overlooked because
a unifying diagnosis was discovered first. For example, a patient with signs of a severe
infection may be diagnosed with urinary tract infection and treated with antibiotics, while
missing a second diagnosis of pneumonia. The delay in treatment of the pneumonia could
be potentially dangerous to the patient. Another example is a patient with a kidney stone,
whose co-existing urinary tract infection was missed. Although kidney stones generally
resolve on their own, patients who also have a concurrent urinary tract infection require
immediate intervention.

Clinical decision support systems can mitigate this cognitive bias by suggesting addi-
tional diagnosis that may explain a set of symptoms. We simulate this problem by randomly
removing a tag, and trying to recover it using the model. This could correspond to a situa-
tion where the physician has “confirmed” one diagnosis and the model attempts to suggest
a likely second diagnosis that would go along with the first. Since the model performs
inference, this could potentially be very different from the next most likely tag if the model
received no confirmation of the first tag.

This tagging system is currently implemented with the electronic medical record sys-
tem in the emergency department Beth Israel Deaconess Medical Center in Boston, MA.
Physicians are presented with possible tags for each patient (see figure 2). Confirming or
rejecting a tag updates recommendations through inference.



Model Accuracy Top 5 MRR

Noise tolerant classifiers 0.54 0.86 0.67
Naive Labels 0.61 0.85 0.71
Noisy-or init 0.64 0.91 0.76
Noisy-or final 0.68 0.92 0.79

Noisy-or oracle MLE 0.71 0.93 0.81

Table 3: Results for last-tag prediction. Performance measures are Accuracy, Top-5 (correct tag
within the top 5) and MRR (mean reciprocal rank). Noisy-or init uses the model with the
θ0 parameters. Noisy-or final shows the result after likelihood optimization.

5.2 Baselines

We compare against three different baselines. Since our proposed method assumes knowl-
edge of the correct failure and leak parameters for the anchors, we provide that information
to all of the baselines for fairness.

1. Naive labels – treats the anchors as true labels and learns a noisy-or model with
maximum likelihood estimation. In the final model, we “edit” the failure and leak
parameters of the anchors to set them to the correct values.

2. Noise tolerant classifiers – We use the method presented in Natarajan et al. (2013)
to learn noise-tolerant classifiers (explicitly providing the algorithm with the noise
rates). In experiments we found that this method was more effective than the method
of Elkan and Noto (2008), so we present this baseline to compare to the individual
classifiers learned in Halpern et al. (2014). The method of Natarajan et al. (2013)
does not explictly describe how to predict when anchors are observed in the record.
In this case, we simply predict the noise rate of the anchor, which we found to be
more effective than ignoring the special status of the anchor.

3. Oracle MLE – An upper bound on performance which uses the true labels to learn a
a noisy-or model with maximum likelihood estimation. This is impractical in practice,
but gives us a sense of how close to optimal we are performing using our noisy labels.

5.3 Results on heldout tag prediction

Table 3 presents our method compared with the baselines presented in Section 5.2. ‘Noisy-or
init’ refers to the moments-based estimator described in Section 4.4, whereas ‘Noisy-or final’
refers to the results after the semi-supervised learning algorithm described in Section 4.3.

The noisy-or model significantly outperforms the noise-tolerant classifiers and the naive
labeling baselines. Our performance comes close to the optimal maximum likelihood per-
formance, suggesting that even though we don’t use the true labels in training, we are still
able to recover a model which is similar to the one we would learn if we had access to the
true labels. The method of moments initialization is helpful. Using random initialization,
we do not beat the naive labels baseline. Appendix H shows that the likelihood and tagging
objectives are aligned after introducing the semi-supervised objective. Table 4 shows the
highly weighted words learned by our model. All of the noisy-or models learn similar sets



Tag Top weighted terms

abdominal pain pain, Ondansetron, nausea, days
alcohol male, sober, ed, admits, found, denies
asthma albuterol sulfate, sob, Methylprednisolone, cough

fall s/p fall, fall, fell, neg:loc, neg:head
hematuria infection, male, urology, urine, flank pain

HIV+ male, Truvada, cd4, age:40-50, Ritonavir
collision car, neg:loc, age:20-30, hit, neck, driver

Table 4: Highly weighted (low failure probability) words learned by the noisy-or model after like-
lihood optimization. Words marked neg: are within a negation scope. Some shortforms
are present in the text (ed: emergency department, sob: shortness of breath, loc: loss of
consciousness, s/p: status post).

of highly weighted words, the main differences between the models are in the exact settings
of the parameters which affect the inference procedure to choose the correct last tag.

6. Discussion

There are a number of limitations to this study. First, we used the ED ICD-9-CM discharge
diagnoses which may have misclassified patients. Patients may have been suspected of
having one diagnosis in the ED and ultimately may have had an alternative diagnosis.
As such, we can only assess relative performance of the various models, but cannot draw
conclusions about absolute accuracy.

This study occurred at a single institution with a custom built information system.
These results might not generalize to other systems that may not be modified to support
complete electronic capture of clinical data and customized decision support. While we
internally validated the results, external validation is warranted. It will be interesting to
discover whether the same algorithm may be applied to another institution, or whether
reliable machine learning requires first training on local clinical data.

Our held-out tag prediction task is a synthetic task intended to simulate real clinical
scenarios where some, but not all conditions are known about a patient. The evaluation is
performed using retrospective data. Further study would be needed to confirm these results
in real clinical practice.

We depend on estimates of the parameters of the corruption process to perform the
method-of-moments initialization in Section 4.4. This is a potential weakness of the algo-
rithm, though we are careful to consider baselines which can make use of the same infor-
mation. In this work we do not address how those parameters could be obtained and rely
on oracle estimates of these parameters. However, we expect that even by labeling a small
number of examples we could obtain good enough estimates of these parameters to serve
for the initialization.

Diseases are not truly independent of one another, despite our modeling them as such in
this paper. More elaborate method-of-moment estimation techniques can be used together
with anchors to learn the joint distribution of the conditions, even when they are never
observed in the data (Halpern et al., 2015).
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Appendix A. Text processing

We apply negation detection to the free-text section using “negex” rules (Chapman et al.,
2001) with some manual adaptations appropriate for Emergency department notes (Jer-
nite et al., 2013), and replace common bigrams with a single token (e.g. “chest pain” is



replaced by “chest pain”. the patient record). Negated terms are then added as additional
vocabulary words.

The following words are indicators of the beginning of a negation: no, not, denies,

without, non, unable.
The token - is treated as a special negation word whose scope only includes the word

that follows it.
The following tokens stop a negation: . ; [ - newline + but and pt except reports

alert complains has states secondary per did aox3.

Appendix B. Parameter settings for learning with Neural Variational
Inference and Learning (Mnih and Gregor, 2014)

We use the signal-centering and normalization described in the paper as well as input-
dependent baselines. The input dependent baselines use a two-layer neural network with
100 hidden units and tanh activations. Learning rate is set to 0.0001. 10 samples are used
to estimate each gradient. When θ is initialized with method of moments, we have 50
epochs of “burn-in” where θ is held fixed and only φ is optimized. The learning rate of θ
is set to 1/5th of that of φ. π parameters and the failure probabilities of the anchors are
initialized using the estimated noise rates and never optimized. The code is implemented
in Torch and and RMSprop is used for optimization. Failure probabilities in θ are mapped
using a sigmoid function (i.e., fi,j = σ(θi,j)) to allow for continuous optimization over
an unbounded space. We experimented with different values of L2 regularization (weight
decay) in the recognition model, in the range {0,0.1, 0.01, 0.001} and chose the value that
gave the best heldout-anchor performance. Parameters of φ are initialized uniformly at
random between [-0.1, 0.1].

Appendix C. Semi-supervised objective details

In this appendix, we expand the objective which was written in compressed notation in
Section 4.3.

The parameters to be optimized are:

• θ ∈ [0, 1]n×m+n+m: Parameters of the generative model, consisting of n ×m failure
probabilities (fi,j), m prior probabilities (πi), and n leak probabilities (lj).

• φ ∈ Rm×(n+1): Parameters of m independent logistic regression models, one for each
tag.

• φ′0 ∈ Rm: Additional bias terms that are introduced to account for the difference
between the predictions of the recognition model, which predicts the tags, and the
desired semi-supervised objective which predicts the anchors.

For the a single data point, x is the binary feature vector. In practice, we center the
inputs to the q model (the P model cannot support centering since the generative model is
defined for binary variables) and pad with a single 1 to allow for a bias term. x is a centered
and padded copy of x. x̃ is a copy of x, with the values of the anchors set to 0. a is a vector
containing the binary values of the anchors from x.



The likelihood of the generative model is then:

P (x, y; θ) ≡(
m∏
i=1

πyii (1− πi)1−yi

)
n∏
j=1

(
xj

(
1− (1− lj)

∏
i

fyii,j

)
+ (1− xj)(1− lj)

m∏
i=1

fyii,j

)
(11)

The recognition model consists of m independent logistic regression models.

q(y|x;φ) =
m∏
i=1

(yiσ(φi · x) + (1− yi)(1− σ(φi · x))) , (12)

where σ is the sigmoid function, σ(x) = 1
1+e−x .

Let λ > 0 be a hyperparameter specifying the trade-off between the lower bound on the
likelihood and the semi-supervised objective term. The final objective, for a collection of
N patient records, indexed by p, is to maximize:

N∑
p=1

(
Ey∼q(y|x(p))

[
logP (x(p), y; θ)− log q(y|x(p))

]
+

λ

m∑
i=1

[
a

(p)
i log σ(φi · x̃(p) + φ′0i) + (1− a(p)

i ) log(1− σ(φi · x̃(p) + φ′0i))
])
. (13)

Appendix D. Leak probabilities

Leak probabilities are calculated to account for the difference between the actual observed
counts and those predicted by the model. If all of the failure probabilities are known, then
the marginal probability of an observation predicted by the model can be calculated with
the Quickscore equation (Heckerman, 1990).

P (Xj = 0) = (1− lj)
∏
i

(1− πi + πifi,j). (14)

Thus, we can solve:

l̂j = 1− P̂ (Xj = 0)∏
i(1− πi + πif̂i,j)

. (15)

This assumes that we have estimates for πi, but that is no different from assuming that
we have estimates of the noise rates P (Yi|Ai), since πi =

∑
ai
P (ai)P (Yi = 1|ai), where

P (ai) can be estimated from counts.



Appendix E. Explicit matrix version of Equation 9

~P (Xj |Ai) =


P (Xj = 0|Ai = 0)
P (Xj = 0|Ai = 1)
P (Xj = 1|Ai = 0)
P (Xj = 1|Ai = 1)

 (16)

R =


P (Ai = 0|Yi = 0) P (Ai = 0|Yi = 1) 0 0
P (Ai = 1|Yi = 0) P (Ai = 1|Yi = 0) 0

0 0 P (Ai = 0|Yi = 0) P (Ai = 0|Yi = 1)
0 0 P (Ai = 1|Yi = 0) P (Ai = 1|Yi = 0)

 (17)

~P (Xj |Yi) =


P (Xj = 0|Yi = 0)
P (Xj = 0|Yi = 1)
P (Xj = 1|Yi = 0)
P (Xj = 1|Yi = 1)

 . (18)

Appendix F. Held out anchor inference

To perform the held out anchor inference (described in Section 4.6), we use the fact that
conditioned on some feature vector X ′ (in this case, some of the anchors are held out so it
is not the full vector X), we have:

P (Ai|X ′) =
∑

yi∈{0,1}

P (yi|X ′)P (Ai|Yi = yi, X
′)

=
∑

yi∈{0,1}

P (yi|X ′)P (Ai|Yi = yi).

We assume that the corruption rate, P (Ai|Yi), is known, and estimate P (yi|X ′) with Gibbs
sampling.

Appendix G. Held out tag inference

Exact inference is possible in the held out tag prediction task. For a single data point, we
have a feature vector X. Assume without loss of generality that the first k tags known to
be positive, y1 = ... = yk = 1 and the final m − k tags are unknown. Let U refer to the
unknown tags.

Of the unknown tags, we know that by the design of the task, only one is on and the
rest are off. We can condition on the sum of all of the Y variables being k+1, and we know
that U has to be an indicator vector (i.e., one index on and the rest off).

We would like to calculate the likelihood that Ui = 1 (i.e., the ith unknown tag is on).
Let U−i be all of the unknown tags other than Ui. The likelihood is calculated as follows:
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Figure 3: Improvement of the likelihood-based objective (left) and heldout tag (right) as optimiza-
tion progresses for different values of L2 regularization (weight decay) in the recognition
model. The model chosen by the model selection procedure (Section 4.6) is marked with
a large red dot. The first 50 epochs are a burn-in period where only the recognition
model changes.

P (Ui = 1|X,Y1:k = 1,
∑

y = k + 1) = P (Ui = 1, U−1 = 0|X,Y1:k = 1,
∑

y = k + 1)

=
P (X,Ui = 1, U−1 = 0, Y1:k = 1,

∑
y = k + 1)

P (X,Y1:k = 1|
∑
y = k + 1)

=
P (X,Ui = 1, U−1 = 0, Y1:k = 1,

∑
y = k + 1)∑

u∈|U | P (X,Y1:k = 1, u|
∑
y = k + 1)

.

The first equality uses the fact that U is an indicator vector. The second equality is
from the definition of conditioning. The third line marginalizes over unknown values of u
in the denominator. Note that the final line uses only complete likelihoods, so each term
can be calculated efficiently using Equation 11. The sum in the denominator is over the set
of indicator vectors of size m− k, so it can be computed efficiently as well.

Appendix H. Optimization course

In Section 4.3 we discuss how the likelihood objective is not aligned with the held out tag
prediction task. Figure 3 shows that the semi-supervised objective remedies this situa-
tion, displaying how the likelihood objective and heldout tag predictions improve from the
initialization baseline as optimization on the semi-supervised objective is run.
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