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Abstract

Disparate areas of machine learning have benefited from models that can take raw data
with little preprocessing as input and learn rich representations of that raw data in order to
perform well on a given prediction task. We evaluate this approach in healthcare by using
longitudinal measurements of lab tests, one of the more raw signals of a patient’s health
state widely available in clinical data, to predict disease onsets. In particular, we train a
Long Short-Term Memory (LSTM) recurrent neural network and two novel convolutional
neural networks for multi-task prediction of disease onset for 133 conditions based on 18
common lab tests measured over time in a cohort of 298K patients derived from 8 years
of administrative claims data. We compare the neural networks to a logistic regression
with several hand-engineered, clinically relevant features. We find that the representation-
based learning approaches significantly outperform this baseline. We believe that our work
suggests a new avenue for patient risk stratification based solely on lab results.

1. Introduction

The recent success of deep learning in disparate areas of machine learning has driven a
shift towards machine learning models that can learn rich, hierarchical representations of
raw data with little preprocessing and away from models that require manual construction
of features by experts (Graves and Schmidhuber, 2005; Krizhevsky et al., 2012; Mikolov
et al., 2013). In natural language processing, for example, neural networks taking only
character-level input achieve high performance on many tasks including text classification
tasks (Zhang et al., 2015; Kim, 2014), machine translation (Ling et al., 2015) and language
modeling (Kim et al., 2016).

Following these advances, attempts to learn features from raw medical signals have
started to gain attention too. Lasko et al. (2013) studied a method based on sparse auto-
encoders to learn temporal variation features from 30-day uric acid observations to distin-
guish between gout and leukemia. Che et al. (2015) developed a training method which,
when datasets are small, allows prior domain knowledge to regularize the deeper layers of a
feed-forward network for the task of multiple disease classification. Recent studies (Lipton
et al., 2015; Choi et al., 2015) used Long Short-Term Memory (LSTM) recurrent neural
networks (RNNs) for disease phenotyping.

In this paper, we evaluate the representation-based learning approach in healthcare
by using longitudinal measurements of laboratory tests, one of the more raw signals of a
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Figure 1: Overview of our prediction framework.

patient’s health state widely available in clinical data, to predict disease onsets. We show
that several multi-task neural networks, including a LSTM RNN and two novel convolutional
neural networks, can aid in early diagnosis of a wide range of conditions (including conditions
that the patient was not specifically tested for) without having to hand-engineer features
for each condition. The source code of our implementation is available at https://github.
com/clinicalml/deepDiagnosis.

2. Prediction Task

Figure 1 outlines the study’s prediction framework. Our goal is early diagnosis of diseases
for people who do not already have the disease. We required a 3-month gap between the
end of the backward window, denoted t, and the start of the diagnosis window. The purpose
of the 3 month gap was to ensure that the clinical tests taken right before the diagnosis
of a disease would not allow our system to cheat in the prediction of that disease. Each
output label was defined as positive if the diagnosis code for the disease was observed in at
least 2 distinct months between 3 to 3 + 12 months after t. Using 12 months helps alleviate
the noisy label problem. Requiring at least 2 observations of the code also reduced the
noise coming from physicians who report their wrong suspected diagnosis as a diagnosis.
For each disease, we excluded individuals who already have the disease by time t + 3. For
exclusion, we required only 1 diagnosis record instead of 2 in order to remove patients who
are even suspected of having the disease previously. This results in a more difficult, but
more clinically meaningful prediction task.

Formally, we define the task of diagnosis as a supervised multi-task sequence classifi-
cation problem. Each individual has a variable-length history of lab observations (X) and
diagnosis records (Y ). X is continuous valued and Y is binary. We use a sliding window
framework to deal with variable length input. At each time point t for each person, the
model looks at a backward window of B months of all D biomarkers of the input, X1:D

t−B:t,
to predict the output. The output is a binary vector Y of length M indicating for each of
the M diseases whether they are newly diagnosed in the following months t+3 to t+3+12,
where 3 is the gap and 12 is the prediction window.

https://github.com/clinicalml/deepDiagnosis
https://github.com/clinicalml/deepDiagnosis


3. Cohort

Our dataset consisted of lab measurement and diagnosis information for 298,000 individuals.
The lab measurements had the resolution of 1 month and we used a backward window of
36 months for each prediction. These individuals were selected from a larger cohort of 4.1
million insurance subscribers between 2005 and 2013. We only included members who had
at least one lab measurement per year for at least 3 consecutive years.

We used lab tests that comprise a comprehensive metabolic panel plus cholesterol and
bilirubin (18 lab tests in total), which are currently recommended annually and covered by
most insurance companies in the United States. The names and codes of the labs used in
our analysis are included in the Supplementary Materials. Each lab value was normalized
by subtracting its mean and dividing by the standard deviation computed across the entire
dataset. We randomly divided individuals into a 100K training set, a 100K validation set,
and a 98K test set. The validation set was used to select the best epoch/parameters for
models and prediction results are presented on the test set unseen during training and
validation.

The predicted labels corresponded to diagnosis information for these individuals. In our
dataset, each disease diagnosis is recorded as an ICD9-CM (International Classification of
Diseases, Ninth Revision, Clinical Modification) code.

4. Methods

We now describe the baseline model, the two novel convolutional (Le Cun et al., 1990;
LeCun et al., 1998) architectures and the recurrent neural network with long short-term
memory units (Hochreiter and Schmidhuber, 1997) that we evaluate on this prediction task.
The input to the baseline model are hand-engineered features derived from the patient’s lab
measurements, whereas the input to the representation-based models are the raw, sparse
and asynchronously measured lab measurements. We also report the results of an ensemble
of the representation-based models.

4.1 Baseline

We trained a Logistic Regression model on a large set of features derived from the patient’s
lab measurements. These features included the minimum, maximum and latest observation
value for each of the labs as well as binary indicators for increasing and decreasing trends in
the lab values within the backward window. The continuous features were computed on lab
values that were normalized across the cohort (to have zero mean and unit variance). We
used the validate data to choose the type and amount of L1, L2, and Dropout (Srivastava
et al., 2014) regularization, separately for each disease.

4.2 Multi-resolution Convolutional Neural Network (CNN1)

The architecture for our first convolutional neural network is shown in Figure 2. We define
X1:D

t−B:t to be the input to the network at time t for D lab measurements over the past

B months. Let J be the number of filters in each convolution operator. Each filter Kj
i

(j = 1 : J) is of size 1 × L. The output of the convolution part of the network is a vector
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Figure 2: Architecture for Multi-resolution Convolutional Neural Network (CNN1)

C = [C1, C2, C5] which is defined as follows:

Cd,j
1 =f(bj1 +Kj

1 ∗MaxPool(Xd
t−B:t, p

2)) (1)

Cd,j
2 =f(bj2 +Kj

2 ∗MaxPool(Xd
t−B:t, p)) (2)

Cd,j
3 =f(bj3 +Kj

3 ∗X
1:D
t−B:t) (3)

Cd,j
4 =MaxPool(Cd,j

3 , p) (4)

Cd,j
5 =f(bj5 +

J∑
k=1

Kj
5 ∗ C

d,k
4 ) (5)

In the equations above, the nonlinearity f is a rectified linear unit (ReLU) (Nair and
Hinton, 2010) applied element-wise to a vector, and ∗ is the standard convolution operation.
MaxPool(Z, s) corresponds to a non-overlapping max pooling operation with step size k,
defined as MaxPool(Z, s)[i] = max(Zi·s, . . . , Z(i+1)·s−1) for i = 1 : blength(Z)/sc. We set

p = 3 for this paper. The vector Ci is the concatenation of Cd,j
i for all labs d = 1 : D and

filters j = 1 : J . The outputs of the first and second level in the multi-resolution network,
(C1, C2), are results of the convolution operator applied to kernels Kj

1 and Kj
2 at different

resolutions of the input. The third level of resolution includes two layers of convolution
using filters Kj

3 and Kj
5 . After every convolution operation, we use batch normalization

(Ioffe and Szegedy, 2015).
After the multi-resolution convolution is applied, the vector C = [C1, C2, C5] represents

the application of filters to all labs (note that the filters are shared across all the labs). We
then use 2 layers of hidden nodes to allow non-linear combination of filter activations on
different labs:

h1 =f(W T
1 C + bh1) (6)

h2 =f(W T
2 h1 + bh2) (7)
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Figure 3: Architecture for Convolutional Neural Network over Time and Input dimensions
(CNN2)

Wi are the weights for the hidden nodes and bhi
is the bias associated with each layer.

Each of the hidden layers are subject to Dropout regularization (with probability 0.5) during
training, and are followed by batch normalization.

Finally, for each disease m = 1 : M , the model predicts the likelihood of the disease via
logistic regression over h2:

P (Ym = 1|X1:D
t−B:t) = σ(W T

mh2 + bm), (8)

where σ(x) = 1/(1 + e−x) is the sigmoid function. The loss function for each disease is the
negative log likelihood of the true label, weighted by the inverse-label frequency to handle
class imbalance during multi-task batch training. Diseases are trained independently, but
the gradient is backpropagated through the shared part of the network for all diseases.

4.3 Convolutional Neural Network over Time and Input dimensions (CNN2)

The architecture for our second convolutional neural network is shown in Figure 3. In this
model, we first combine the labs via a vertical convolution with kernels that span across all
labs. Having a few such combination layers enables us to project from the lab space into a
new latent space which might better encode information about the labs. We then focus on
temporal encoding of the result in the new space.

Given the input X1:D
t−B:t, the output of the first vertical convolution with L filters K1:L,

each of size (D × 1), and nonlinearity f is V t−B:t
1:L of size (L× 1×B), where

V t−B:t
l = f(bl +K l ∗X1:D

t−B:t) (9)

for l = 1 : L. We then repeat, applying new convolution filters of size L × 1 to V t−B:t
1:L ,

followed again by a nonlinearity f (ReLU in our experiments), giving us two hidden layers
in the vertical direction. Finally, temporal max pooling and convolution is applied to the
last convolution output followed by two fully connected layers, similar to equations (2) and
(6) through (8). Similar to the previous architecture, we optimize the weighted negative
log-likelihood of the disease labels on the training data.
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Figure 4: Architecture for the Long Short-Term Memory Network (LSTM)

4.4 Long Short-Term Memory Network (LSTM)

The architecture for the Recurrent Neural Network with Long Short-Term Memory units
(Hochreiter and Schmidhuber, 1997) is shown in Figure 4. These models encode a memory
state ct̂ at each time step t̂, which is only accessible through a particular gating mechanism.
Given input Xt̂ and the output and memory state of the recurrent network at time t̂ − 1
(ht̂−1), the memory state and output for time steps t̂ : t−B : t are computed as follows:

it̂ =σ(Wx→iXt̂ +Wh→iht̂−1 +Wc→ict̂−1 + b1→i) (10)

ft̂ =σ(Wx→fXt̂ +Wh→fht̂−1 +Wc→fct̂−1 + b1→f ) (11)

zt̂ = tanh(Wx→cXt̂ +Wh→cht̂−1 + b1→c) (12)

ct̂ =ft̂ct̂1 + it̂zt̂ (13)

ot̂ =σ(Wx→oXt̂ +Wh→oht̂−1 +Wc→oct̂ + b1→o) (14)

ht̂ =ot̂ tanh(ct̂) (15)

where W∗ and b∗ are the network’s parameters, shared across all time steps. We use the
output of the last time point, ht, as the patient representation (i.e. C in Eq. (6)). The
rest of the network is the same as described in Eq. (6) through (8) and we minimize the
weighted negative log-likelihood.

4.5 Weighted Batch Training to Deal with Class Imbalance

We observed in our initial experiments that the predictive performance for more common
diseases converges faster than for the uncommon diseases. Since early stopping is so im-
portant for preventing overfitting in neural networks, this leads to the following dilemma:
either we stop early and underfit for the less common diseases, or we continue learning and
overfit for the more common diseases. Decoupling them is not possible because of the shared
patient representation. To alleviate this problem and following Firat et al. (2016), we use
a weighted negative log-likelihood as the loss function. Specifically, we weight the gradient
coming from each disease by the frequency of that disease. Our experiments indicated that
the weighting improves the overall prediction results.



5. Results

We used the validation set of 100K individuals to fine tune the hyperparameters of all our
models. We then evaluated the best models on a test set of size 98K individuals. We
describe the details of the architectures chosen in the Supplementary Materials. We report
the Area Under the ROC curve (AUC) on the test set. We implemented these experiments
in Torch (Collobert et al., 2011). The source code of our implementation is available at
https://github.com/clinicalml/deepDiagnosis.

Table 1 shows the AUC results for the top 25 diseases sorted by the maximum AUC that
any model achieved on the test set. An ensemble of the neural networks performed best
followed by the CNN2 architecture. The neural networks consistently outperformed the
baseline in predicting the new onset of diseases 3 months in advance. In particular, heart
failure, severe kidney diseases and liver problems, diabetes and hormone related conditions,
and prostate cancer are among the diseases most accurately detected early from only 18
common lab measurements tracked over the previous 3 years. Our proposed models improve
the quality of prediction for prostate cancer, elevated prostate specific antigen (note that
the PSA lab is not part of our input), breast cancer, colon cancer, macular degeneration,
and congestive heart failure most strongly. In the Supplementary Materials, we also report
the top features from the baseline model for several of the diseases.

6. Case study: Chronic Kidney Disease Progression

We adapted the multitask architecture to predict the onset of end-stage renal disease
(ESRD) requiring dialysis or a kidney transplant based on labs related to kidney func-
tion as well as diagnoses and prescriptions in a cohort of patients with advanced chronic
kidney disease (CKD).

Predictive models for ESRD in patients with advanced kidney disease could improve the
timeliness of referral to a nephrologist enabling, for example, early counseling and education
for high risk patients before they start dialysis (Green et al., 2012). Clinical guidelines
recommend that patients be referred to a nephrologist at least one year before they might
be anticipated to require dialysis, and late referral may result in more rapid progression to
kidney failure, worse quality of life for patients on dialysis, and missed opportunities for
pre-emptive kidney transplantation (UK-Renal-Assocation, 2014).

See Echouffo-Tcheugui and Kengne (2012) for a review of the literature on risk models
for CKD. More recently, Hagar et al. (2014) undertook a survival analysis for the progression
of CKD using electronic health record data, Perotte et al. (2015) developed a risk model
to predict progression from Stage 3 to Stage 4 CKD, and Fraccaro et al. (2016) evaluated
several risk models for predicting the onset of CKD.

6.1 Data and Experiments Setup

We use the same dataset as in the multi-disease prediction task. We restrict our analysis to
patients with Stage 4 CKD, which we define as patients with at least 2 measurements of the
estimated Glomerular Filtration Rate (eGFR) between 15 and 30 mL/min/1.73m2 observed
at least 90 days apart (KDIGO, 2012). We exclude patients with very sparse lab data by

https://github.com/clinicalml/deepDiagnosis


ICD9 Code and disease description LR LSTM CNN1 CNN2 Ens Pos

585.6 End stage renal disease 0.886 0.917 0.910 0.916 0.920 837
285.21 Anemia in chr kidney dis 0.849 0.866 0.868 0.880 0.879 1598
585.3 Chr kidney dis stage III 0.846 0.851 0.857 0.858 0.864 2685
584.9 Acute kidney failure NOS 0.805 0.820 0.828 0.831 0.835 3039
250.01 DMI wo cmp nt st uncntrl 0.822 0.813 0.819 0.825 0.829 1522
250.02 DMII wo cmp uncntrld 0.814 0.819 0.814 0.821 0.828 3519
593.9 Renal and ureteral dis NOS 0.757 0.794 0.784 0.792 0.798 2111
428.0 CHF NOS 0.739 0.784 0.786 0.783 0.792 3479
V053 Need prphyl vc vrl hepat 0.731 0.762 0.752 0.780 0.777 862
790.93 Elvtd prstate spcf antgn 0.666 0.758 0.761 0.768 0.772 1477
185 Malign neopl prostate 0.627 0.757 0.751 0.761 0.768 761
274.9 Gout NOS 0.746 0.761 0.764 0.757 0.767 1529
362.52 Exudative macular degen 0.687 0.752 0.750 0.757 0.765 538
607.84 Impotence, organic orign 0.663 0.739 0.736 0.748 0.752 1372
511.9 Pleural effusion NOS 0.708 0.736 0.742 0.746 0.749 2701
616.10 Vaginitis NOS 0.692 0.736 0.736 0.746 0.747 440
600.01 BPH w urinary obs/LUTS 0.648 0.737 0.737 0.738 0.747 1681
285.29 Anemia-other chronic dis 0.672 0.713 0.725 0.746 0.739 1075
346.90 Migrne unsp wo ntrc mgrn 0.633 0.736 0.710 0.724 0.732 471
427.31 Atrial fibrillation 0.687 0.725 0.728 0.733 0.736 3766
250.00 DMII wo cmp nt st uncntr 0.708 0.718 0.708 0.719 0.728 3125
425.4 Prim cardiomyopathy NEC 0.683 0.718 0.719 0.722 0.726 1414
728.87 Muscle weakness-general 0.683 0.704 0.718 0.722 0.723 4706
620.2 Ovarian cyst NEC/NOS 0.660 0.720 0.700 0.711 0.719 498
286.9 Coagulat defect NEC/NOS 0.690 0.694 0.709 0.715 0.718 958

Table 1: AUC results on the test set for different models for the top 25 diseases sorted by maximum
AUC achieved by any of the models. Bold indicates that proposed models improve AUC
by at least 0.05 compared to the baseline with hand-engineered features. Abbreviations:
LR = Logistic Regression. CNN1 = Convolutional neural network architecture 1 (Figure
2). CNN2 = Convolution neural network architecture 2 (Figure 3). LSTM = Long Short-
Term Memory Network (Figure 4). Ens = Ensemble of the deep models. Pos = Number
of positive examples in the test set.

requiring at least one measurement of eGFR every 4 months of the training window. NICE
(2014) recommends 2-3 measurements of eGFR a year for patients with Stage 4 CKD.

We formulate the prediction task as taking a year of a patient’s lab, diagnosis, prescrip-
tion and demographic data as input and outputting a guess for whether or not that patient
will start dialysis or undergo a kidney transplantation at any point in a 1-year window
starting 3 months after the end of that year of clinical data. A training example for this
prediction task consists of a matrix X for a patient-year with X[i, j] = the value of the ith
clinical or demographic feature (the average value for each lab, an indicator for each ICD9
code and drug class prescription, an indicator for gender and a continuous value for age)



for the patient in the jth month of the year and an indicator Y with Y = 1 if the patient
starts dialysis or undergoes a kidney transplantation in the 1-year outcome window and 0
otherwise.

We included the labs associated with the most common LOINC codes for all of the labs
used in the predictive models for kidney failure developed by Tangri et al. (2011) and the
labs with high prevalence in the CKD cohort analyzed by Hagar et al. (2014). We also
included drug classes common in the treatment of kidney disease (HealthPartners-Kidney-
Health-Clinic, 2011) and ICD9 codes with high mutual information comparing positive to
negative examples on the training data (withholding the validation and test data). Table 3
shows the final list of clinical features.

For each patient in the cohort, we obtain multiple training examples by constructing an
X for the one-year period starting at the 1st observation of eGFR for that patient, another
X for the one-year period starting at the 2nd observation of eGFR for that patient, and
so on for every observation of eGFR in the patient’s record. We exclude training examples
where a dialysis CPT code appears before the start of the 1-year outcome window.

This process results in 29,937 examples (5,484 patients) with 2,619 positive examples
(781 patients). We randomly divide these patients into 3 roughly equal groups and assign
all the examples for a patient to the training, validation or test dataset.

Figure 5 in the Supplementary Materials shows an example of lab data for a patient
that does not start dialysis or undergo a kidney transplant in the outcome window and for
a patient the starts dialysis in the outcome window.

We compared the performance of the CNN2 architecture adapted to this prediction task
to two logistic regression baselines and a random forest. Additional details are provided in
the Supplementary Materials.

6.2 Results

The 4 models achieved similar performance on this prediction task (see Table 4). The small
sample size and the single binary outcome distinguish this task from the multi-disease setting
and may make it difficult to observe large differences in performance between the models.
A small number of features also seem to account for much of the signal. We observed that
a logistic regression with a large L1 penalty achieves good performance on the task despite
only using eGFR, urea nitrogen, age and gender as features.

7. Conclusion

In this work, we presented a large-scale application of two novel convolutional neural net-
work architectures and a LSTM recurrent neural network for the task of multi-task early
disease onset detection. These representation-based approaches significantly outperform a
logistic regression with several hand-engineered, clinically relevant features. Interestingly,
in our earlier work, we found that despite the large amount of missing data in the setting
considered, preprocessing the data by imputing missing values did not significantly improve
results (Razavian and Sontag, 2015). As medical home and consumer healthcare technolo-
gies rapidly progress, we envision a growing role for automatic risk stratification of patients
based solely on raw physiological and chemical signals.
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8. Supplementary Materials
for Multi-task Prediction of Disease Onsets from Longitudinal Lab Tests

8.1 Cross-validation results

For the convolutional models, we set the number of filters to be 64 for all the convolution
layers with a kernel length of 8 (months) and a step size of 1. Each max-pooling module had
a horizontal length of 3 and vertical length of 1 with a step size of 3 in the horizontal direction
(i.e. no overlap). Each convolution module was followed by a batch normalization module
(Ioffe and Szegedy (2015)) and then a ReLU nonlinearity (Nair and Hinton (2010)). We had
2 fully connected layers (with 100 nodes each, cross validated over [30,50, 100, 500,1000])
after concatenating the outputs of all the convolution layers. Each of the fully connected
layers were followed by a batch normalization layer and a ReLU nonlinearity layer. We also
added one Dropout module (Srivastava et al. (2014)) (0.5 dropout probability) before each
fully connected layer. We tested models with and without batch-normalization and found
that the networks converge much faster with batch-normalization.

We had the following layers after the last ReLu nonlinearity for each of the 171 dis-
eases: a Dropout layer(0.5 dropout probability), a fully connected layer (of size 2 nodes
corresponding to binary outcome), a batch normalization layer and a Log Softmax Layer.
A learning rate of 0.1 was selected from among the values [0.001, 0.01, 0.05, 0.1, 1] using the
validation set average AUC (over all diseases) after 10 epochs. Training was done using
Adadelta(Zeiler (2012)) optimization, which is a variant of stochastic gradient descent with
adaptive step size. We used mini-batches of size 256.

For the LSTM network, we cross-validated over the hidden LSTM units ([100 500 1000]),
and 500 was selected as the best. For the shared part of the network, we used the best
parameters found for the convolution models.

8.2 Model details for CKD Case Study

We compared the following models:

• CNN2. We applied the CNN2 architecture used in the multi-disease prediction task
with 8 filters with kernel dimensions of 8x1. We used the raw clinical and demographic
data as input without additional feature engineering. We chose the learning rate and
the architecture based on cross-validation using random sampling of hyperparameters
(Bergstra and Bengio (2012)).

• L2-regularized, logistic regression. For each lab, we added one feature for the average
lab value across the training window. We included gender and the diagnosis and
prescription data as binary indicators and age as a continuous variable. We chose a
regularization constant based on cross-validation.

• L1-regularized, logistic regression. For each lab, we added features to the regression
for the average lab value for the patient over the last 3 months of the training window,
the past 6 months of the training window and over the entire training window. We also
added binary features for whether or not the lab increased, decreased or fluctuated
over the last 3 months, 6 months and over the entire training window. We included



Table 2: Name and LOINC of labs included as features for multi-task prediction
Lab name LOINC

Creatinine 2160-0
Urea nitrogen 3094-0
Potassium 2823-3
Glucose 2345-7
Alanine aminotransferase 1742-6
Aspartate aminotransferase 1920-8
Protein 2885-2
Albumin 1751-7
Cholesterol 2093-3
Triglyceride 2571-8
Cholesterol.in LDL 13457-7
Calcium 17861-6
Sodium 2951-2
Chloride 2075-0
Carbon dioxide 2028-9
Urea nitrogen/Creatinine 3097-3
Bilirubin 1975-2
Albumin/Globulin 1759-0

gender and the diagnosis and prescription data as binary indicators and age as a
continuous variable. We chose a regularization constant based on cross-validation.

• Random forests. We used the raw clinical and demographic data as input without
additional feature engineering. We chose the number of trees in the forest, the maxi-
mum depth of each tree, the maximum number of features to consider when looking
for the best split, the minimum number of samples required to split a node, and the
minimum number of samples in newly created leaves based on cross-validation using
random sampling of hyperparameters.

8.3 Figures and Tables



Figure 5: Monthly average lab values for two patients. The left pane show the lab data for
a patient who doesn’t initiate dialysis or undergo a kidney transplant. The right
pane shows a patient that starts dialysis in the outcome window. The vertical red
line shows when that patient starts dialysis. The x-axis is the number of months
from the beginning of the training window and the y-axis is the standardized lab
value.



Table 3: Clinical features included in predictive models in the CKD case study

Type Description

Lab 33914-3 eGFR/1.73 sq M [Volume Rate/Area] in Serum or Plasma
Lab 48642-3 eGFR/1.73 sq M among non-blacks [Volume Rate/Area] in Serum or Plasma
Lab 48643-1 eGFR/1.73 sq M among blacks [Volume Rate/Area] in Serum or Plasma
Lab 2160-0 Creatinine [Mass/volume] in Serum or Plasma
Lab 1751-7 Albumin [Mass/volume] in Serum or Plasma
Lab 17861-6 Calcium [Mass/volume] in Serum or Plasma
Lab 2028-9 Carbon dioxide, total [Moles/volume] in Serum or Plasma
Lab 9318-7 Albumin/Creatinine [Mass Ratio] in Urine
Lab 2777-1 Phosphate [Mass/volume] in Serum or Plasma
Lab 3094-0 Urea nitrogen [Mass/volume] in Serum or Plasma
Lab 2075-0 Chloride [Moles/volume] in Serum or Plasma
Lab 4544-3 Hematocrit [Volume Fraction] of Blood by Automated count
Lab 718-7 Hemoglobin [Mass/volume] in Blood
Lab 2823-3 Potassium [Moles/volume] in Serum or Plasma
Drug class BETA-ADRENERGIC BLOCKING AGENTS
Drug class LOOP DIURETICS
Drug class HMG-COA REDUCTASE INHIBITORS
Drug class DIHYDROPYRIDINES
Drug class ANGIOTENSIN-CONVERTING ENZYME INHIBITORS
Drug class ANGIOTENSIN II RECEPTOR ANTAGONISTS
Drug class VITAMIN D
Drug class DIRECT VASODILATORS
Drug class THIAZIDE DIURETICS
Drug class CHOLESTEROL ABSORPTION INHIBITORS
Drug class THIAZIDE-LIKE DIURETICS
Drug class PHOSPHATE-REMOVING AGENTS
Drug class CENTRAL ALPHA-AGONISTS
Drug class HEMATOPOIETIC AGENTS
Drug class ALPHA-ADRENERGIC BLOCKING AGENTS
Diagnosis 403.11 Ben hyp kid w cr kid V
Diagnosis 403.91 Hyp kid NOS w cr kid V
Diagnosis 285.21 Anemia in chr kidney dis
Diagnosis 588.81 Sec hyperparathyrd-renal
Diagnosis V72.81 Preop cardiovsclr exam
Diagnosis 786.50 Chest pain NOS
Diagnosis 600.00 BPH w/o urinary obs/LUTS
Diagnosis 244.9 Hypothyroidism NOS
Diagnosis 599.0 Urin tract infection NOS
Diagnosis 250.02 DMII wo cmp uncntrld
Diagnosis 250.01 DMI wo cmp nt st uncntrl
Diagnosis 530.81 Esophageal reflux
Diagnosis V58.61 Long-term use anticoagul
Diagnosis 780.79 Malaise and fatigue NEC
Diagnosis 562.10 Dvrtclo colon w/o hmrhg



Table 4: Area Under ROC curve for comparing the held out test score
AUC

CNN2 0.774
Random forest 0.774
L1-regularized logistic regression with hand-engineered features 0.768
L2-regularized logistic regression 0.755

Table 5: Top Features from the baseline model for 585.6 End stage renal disease

Feature weight Feature weight

Glucose(2345-7) -decreasing -1.099 Alanine(1742-6) -increasing 0.2263
Chloride(2075-0) -latest value 0.4988 Cholesterol.in(13457-7) -increasing -0.216
Glucose(2345-7) -latest value -0.485 Urea(3094-0) -maximum -0.214
Creatinine(2160-0) -maximum 0.4837 Aspartate(1920-8) -maximum 0.2016
Carbon(2028-9) -increasing 0.4500 Sodium(2951-2) -latest value -0.191
Cholesterol.in(13457-7) -minimum 0.3037 Creatinine(2160-0) -decreasing 0.1918
Cholesterol.in(13457-7) -latest value -0.254 Chloride(2075-0) -maximum -0.177
Glucose(2345-7) -minimum -0.251 Carbon(2028-9) -minimum -0.170
Calcium(17861-6) -decreasing -0.239 Alanine(1742-6) -minimum -0.122
Urea(3094-0) -increasing 0.2344 Protein(2885-2) -increasing 0.1208

Table 6: Top Features from the baseline model for 285.21 Anemia in chr kidney dis

Feature weight Feature weight

Chloride(2075-0) -latest value 0.7909 Calcium(17861-6) -maximum -0.305
Cholesterol.in(13457-7) -minimum 0.7244 Triglyceride(2571-8) -decreasing -0.301
Glucose(2345-7) -decreasing -0.717 Triglyceride(2571-8) -increasing -0.300
Creatinine(2160-0) -maximum 0.5596 Carbon(2028-9) -maximum -0.291
Creatinine(2160-0) -minimum 0.4692 Cholesterol.in(13457-7) -increasing -0.290
Chloride(2075-0) -increasing -0.442 Alanine(1742-6) -minimum -0.284
Potassium(2823-3) -increasing -0.381 Glucose(2345-7) -latest value -0.273
Cholesterol.in(13457-7) -latest value -0.370 Alanine(1742-6) -increasing 0.2531
Aspartate(1920-8) -decreasing 0.3658 Carbon(2028-9) -increasing 0.2383
Glucose(2345-7) -minimum -0.324 Urea(3094-0) -increasing 0.2359



Table 7: Top Features from the baseline model for 585.3 Chr kidney dis stage III

Feature weight Feature weight

Glucose(2345-7) -decreasing -0.749 Triglyceride(2571-8) -maximum 0.2169
Cholesterol.in(13457-7) -minimum 0.6567 Alanine(1742-6) -maximum 0.2060
Chloride(2075-0) -latest value 0.5660 Cholesterol.in(13457-7) -increasing -0.200
Triglyceride(2571-8) -increasing -0.425 Potassium(2823-3) -decreasing 0.1638
Creatinine(2160-0) -maximum 0.4086 Carbon(2028-9) -increasing 0.1509
Cholesterol.in(13457-7) -latest value -0.374 Alanine(1742-6) -minimum -0.143
Chloride(2075-0) -maximum -0.361 Glucose(2345-7) -minimum -0.140
Creatinine(2160-0) -minimum 0.3368 Calcium(17861-6) -increasing 0.1407
Glucose(2345-7) -latest value -0.286 Albumin(1751-7) -minimum 0.1385
Alanine(1742-6) -increasing 0.2667 Potassium(2823-3) -minimum -0.137

Table 8: Top Features from the baseline model for 584.9 Acute kidney failure NOS

Feature weight Feature weight

Glucose(2345-7) -decreasing -0.729 Carbon(2028-9) -increasing 0.1915
Creatinine(2160-0) -minimum 0.3994 Alanine(1742-6) -minimum -0.180
Glucose(2345-7) -latest value -0.388 Alanine(1742-6) -increasing 0.1694
Cholesterol.in(13457-7) -latest value -0.372 Triglyceride(2571-8) -increasing -0.156
Creatinine(2160-0) -maximum 0.3195 Glucose(2345-7) -maximum 0.1402
Chloride(2075-0) -latest value 0.3087 Potassium(2823-3) -minimum -0.136
Creatinine(2160-0) -decreasing 0.2750 Chloride(2075-0) -increasing -0.129
Cholesterol.in(13457-7) -minimum 0.2571 Aspartate(1920-8) -latest value 0.1212
Urea(3094-0) -increasing 0.2374 Potassium(2823-3) -latest value 0.1078
Albumin(1751-7) -maximum 0.2309 Cholesterol.in(13457-7) -increasing -0.105

Table 9: Top Features from the baseline model for 250.01 DMI wo cmp nt st uncntrl
Feature weight Feature weight

Alanine(1742-6) -minimum -0.683 Creatinine(2160-0) -minimum 0.1255
Creatinine(2160-0) -decreasing 0.6438 Bilirubin(1975-2) -maximum 0.1244
Glucose(2345-7) -decreasing -0.235 Aspartate(1920-8) -increasing -0.116
Glucose(2345-7) -minimum -0.227 Cholesterol(2093-3) -latest value 0.1157
Urea(3094-0) -decreasing 0.2204 Alanine(1742-6) -decreasing -0.092
Sodium(2951-2) -increasing 0.1755 Urea(3097-3) -latest value -0.078
Urea(3094-0) -increasing -0.172 Protein(2885-2) -minimum 0.0750
Protein(2885-2) -increasing 0.1526 Protein(2885-2) -decreasing -0.072
Albumin(1751-7) -maximum 0.1274 Alanine(1742-6) -latest value 0.0699
Alanine(1742-6) -maximum -0.126 Cholesterol.in(13457-7) -increasing 0.0661



Table 10: Top Features from the baseline model for 250.02 DMII wo cmp uncntrld
Feature weight Feature weight

Alanine(1742-6) -minimum -0.727 Urea(3094-0) -minimum -0.165
Creatinine(2160-0) -decreasing 0.6069 Aspartate(1920-8) -maximum 0.1647
Cholesterol(2093-3) -latest value 0.3880 Albumin(1751-7) -maximum 0.1594
Sodium(2951-2) -increasing 0.3318 Protein(2885-2) -increasing 0.1521
Alanine(1742-6) -increasing -0.330 Calcium(17861-6) -increasing -0.146
Urea(3094-0) -decreasing 0.2875 Triglyceride(2571-8) -increasing -0.145
Glucose(2345-7) -maximum 0.2016 Albumin(1751-7) -minimum 0.1437
Potassium(2823-3) -latest value -0.184 Cholesterol.in(13457-7) -minimum 0.1392
Glucose(2345-7) -decreasing -0.182 Creatinine(2160-0) -latest value -0.136
Aspartate(1920-8) -decreasing -0.168 Alanine(1742-6) -maximum -0.136

Table 11: Top Features from the baseline model for 593.9 Renal and ureteral dis NOS

Feature weight Feature weight

Glucose(2345-7) -decreasing -0.769 Urea(3094-0) -maximum -0.171
Chloride(2075-0) -latest value 0.5136 Cholesterol.in(13457-7) -increasing -0.150
Cholesterol.in(13457-7) -minimum 0.4754 Calcium(17861-6) -decreasing 0.1446
Cholesterol.in(13457-7) -latest value -0.345 Alanine(1742-6) -decreasing -0.143
Alanine(1742-6) -maximum 0.2568 Sodium(2951-2) -decreasing -0.142
Creatinine(2160-0) -maximum 0.2394 Carbon(2028-9) -minimum -0.137
Creatinine(2160-0) -minimum 0.2163 Cholesterol.in(13457-7) -decreasing -0.133
Creatinine(2160-0) -decreasing 0.2093 Carbon(2028-9) -increasing 0.1204
Calcium(17861-6) -maximum -0.182 Albumin(1751-7) -maximum 0.1146
Glucose(2345-7) -maximum 0.1816 Alanine(1742-6) -minimum -0.113

Table 12: Top Features from the baseline model for 428.0 CHF NOS
Feature weight Feature weight

Glucose(2345-7) -decreasing -0.449 Alanine(1742-6) -increasing 0.1467
Glucose(2345-7) -maximum 0.2493 Chloride(2075-0) -decreasing -0.146
Cholesterol.in(13457-7) -minimum 0.2140 Creatinine(2160-0) -maximum 0.1251
Creatinine(2160-0) -decreasing 0.2126 Alanine(1742-6) -minimum -0.124
Albumin(1751-7) -maximum 0.2045 Creatinine(2160-0) -latest value -0.120
Chloride(2075-0) -latest value 0.1996 Albumin(1751-7) -latest value -0.112
Glucose(2345-7) -latest value -0.195 Aspartate(1920-8) -decreasing 0.1106
Creatinine(2160-0) -minimum 0.1911 Cholesterol(2093-3) -decreasing -0.100
Calcium(17861-6) -decreasing 0.1588 Alanine(1742-6) -decreasing 0.1000
Cholesterol.in(13457-7) -maximum -0.156 Alanine(1742-6) -latest value -0.098



Table 13: Top Features from the baseline model for V05.3 Need prphyl vc vrl hepat
Feature weight Feature weight

Carbon(2028-9) -increasing 0.4567 Sodium(2951-2) -latest value 0.0
Creatinine(2160-0) -maximum 0.4441 Sodium(2951-2) -decreasing 0.0
Glucose(2345-7) -decreasing -0.233 Sodium(2951-2) -increasing 0.0
Aspartate(1920-8) -decreasing 0.1593 Sodium(2951-2) -minimum 0.0
Creatinine(2160-0) -minimum -0.119 Calcium(17861-6) -decreasing 0.0
Urea(3094-0) -minimum -0.109 Calcium(17861-6) -latest value 0.0
Creatinine(2160-0) -increasing -0.058 Calcium(17861-6) -increasing 0.0
Protein(2885-2) -maximum 0.0177 Calcium(17861-6) -minimum 0.0
Alanine(1742-6) -maximum 0.0164 Calcium(17861-6) -maximum 0.0
Chloride(2075-0) -maximum 0.0 Cholesterol.in(13457-7) -latest value 0.0

Table 14: Top Features from the baseline model for 790.93 Elvtd prstate spcf antgn
Feature weight Feature weight

Alanine(1742-6) -maximum 0.2819 Triglyceride(2571-8) -minimum 0.1261
Potassium(2823-3) -minimum 0.2446 Alanine(1742-6) -increasing -0.120
Sodium(2951-2) -latest value 0.2335 Protein(2885-2) -increasing -0.115
Cholesterol.in(13457-7) -minimum 0.2137 Triglyceride(2571-8) -increasing -0.096
Creatinine(2160-0) -decreasing -0.179 Alanine(1742-6) -decreasing 0.0861
Cholesterol(2093-3) -latest value 0.1770 Sodium(2951-2) -increasing 0.0832
Potassium(2823-3) -increasing -0.146 Urea(3097-3) -latest value 0.0789
Glucose(2345-7) -minimum 0.1437 Potassium(2823-3) -decreasing -0.076
Cholesterol(2093-3) -maximum -0.138 Albumin(1751-7) -decreasing -0.073
Cholesterol(2093-3) -increasing 0.1277 Cholesterol(2093-3) -minimum -0.070

Table 15: Top Features from the baseline model for 185. Malign neopl prostate
Feature weight Feature weight

Cholesterol(2093-3) -minimum -0.293 Cholesterol(2093-3) -latest value 0.1599
Aspartate(1920-8) -maximum 0.2527 Sodium(2951-2) -decreasing 0.1498
Alanine(1742-6) -latest value 0.2005 Cholesterol(2093-3) -maximum -0.144
Glucose(2345-7) -decreasing -0.188 Triglyceride(2571-8) -minimum 0.1375
Cholesterol.in(13457-7) -minimum 0.1791 Cholesterol(2093-3) -increasing 0.1334
Aspartate(1920-8) -decreasing -0.174 Alanine(1742-6) -decreasing -0.130
Alanine(1742-6) -increasing -0.173 Potassium(2823-3) -minimum 0.1305
Potassium(2823-3) -decreasing -0.168 Potassium(2823-3) -maximum 0.1143
Alanine(1742-6) -maximum 0.1676 Urea(3094-0) -maximum -0.110
Sodium(2951-2) -increasing 0.1648 Bilirubin(1975-2) -decreasing -0.108



Table 16: Top Features from the baseline model for 274.9 Gout NOS

Feature weight Feature weight

Glucose(2345-7) -decreasing -0.414 Creatinine(2160-0) -decreasing 0.1201
Cholesterol.in(13457-7) -latest value -0.266 Urea(3094-0) -increasing 0.1181
Aspartate(1920-8) -increasing -0.261 Carbon(2028-9) -increasing 0.1005
Cholesterol.in(13457-7) -minimum 0.2584 Aspartate(1920-8) -maximum 0.0980
Creatinine(2160-0) -maximum 0.2092 Protein(2885-2) -decreasing -0.096
Glucose(2345-7) -latest value -0.200 Chloride(2075-0) -latest value 0.0953
Glucose(2345-7) -increasing -0.194 Creatinine(2160-0) -minimum 0.0881
Urea(3094-0) -minimum 0.1545 Creatinine(2160-0) -latest value -0.086
Alanine(1742-6) -maximum 0.1316 Aspartate(1920-8) -latest value -0.078
Protein(2885-2) -latest value 0.1295 Cholesterol(2093-3) -increasing -0.077

Table 17: Top Features from the baseline model for 362.52 Exudative macular degen

Feature weight Feature weight

Creatinine(2160-0) -maximum 0.3761 Glucose(2345-7) -decreasing 0.1683
Creatinine(2160-0) -latest value -0.270 Creatinine(2160-0) -minimum 0.1545
Alanine(1742-6) -latest value -0.254 Cholesterol.in(13457-7) -increasing 0.1477
Urea(3094-0) -increasing -0.241 Albumin(1751-7) -latest value -0.145
Alanine(1742-6) -increasing 0.2399 Potassium(2823-3) -latest value 0.1365
Alanine(1742-6) -minimum 0.2304 Aspartate(1920-8) -increasing -0.120
Glucose(2345-7) -latest value -0.200 Calcium(17861-6) -decreasing 0.1134
Potassium(2823-3) -minimum 0.1818 Glucose(2345-7) -minimum 0.0982
Cholesterol.in(13457-7) -latest value 0.1795 Aspartate(1920-8) -minimum 0.0966
Urea(3094-0) -maximum -0.168 Carbon(2028-9) -increasing -0.090

Table 18: Top Features from the baseline model for 607.84 Impotence, organic orign
Feature weight Feature weight

Cholesterol(2093-3) -minimum -0.296 Urea(3094-0) -increasing -0.140
Alanine(1742-6) -maximum 0.2400 Glucose(2345-7) -latest value 0.1306
Alanine(1742-6) -increasing -0.237 Aspartate(1920-8) -decreasing -0.116
Aspartate(1920-8) -increasing -0.210 Urea(3094-0) -minimum -0.111
Potassium(2823-3) -increasing 0.1967 Protein(2885-2) -maximum 0.1038
Potassium(2823-3) -decreasing 0.1671 Chloride(2075-0) -minimum 0.0963
Creatinine(2160-0) -maximum -0.160 Cholesterol.in(13457-7) -minimum 0.0905
Protein(2885-2) -latest value -0.153 Creatinine(2160-0) -increasing -0.086
Creatinine(2160-0) -decreasing 0.1531 Aspartate(1920-8) -latest value 0.0856
Calcium(17861-6) -latest value -0.141 Alanine(1742-6) -decreasing -0.078



Table 19: Top Features from the baseline model for 511.9 Pleural effusion NOS

Feature weight Feature weight

Alanine(1742-6) -increasing 0.4040 Triglyceride(2571-8) -increasing -0.194
Glucose(2345-7) -decreasing -0.366 Creatinine(2160-0) -maximum 0.1678
Urea(3094-0) -latest value -0.297 Aspartate(1920-8) -increasing -0.166
Chloride(2075-0) -latest value 0.2698 Cholesterol.in(13457-7) -decreasing -0.158
Urea(3094-0) -increasing 0.2680 Glucose(2345-7) -latest value -0.154
Chloride(2075-0) -maximum -0.251 Cholesterol(2093-3) -decreasing -0.154
Aspartate(1920-8) -latest value 0.2400 Creatinine(2160-0) -latest value 0.1370
Cholesterol.in(13457-7) -minimum 0.2396 Cholesterol.in(13457-7) -maximum -0.135
Alanine(1742-6) -minimum -0.223 Albumin(1751-7) -maximum 0.1317
Alanine(1742-6) -maximum -0.200 Triglyceride(2571-8) -maximum -0.129

Table 20: Top Features from the baseline model for 616.10 Vaginitis NOS

Feature weight Feature weight

Alanine(1742-6) -maximum -0.567 Cholesterol(2093-3) -maximum 0.1796
Protein(2885-2) -decreasing -0.386 Creatinine(2160-0) -maximum -0.172
Alanine(1742-6) -increasing 0.3732 Cholesterol.in(13457-7) -minimum -0.151
Creatinine(2160-0) -increasing -0.340 Calcium(17861-6) -decreasing 0.1461
Calcium(17861-6) -maximum 0.2638 Triglyceride(2571-8) -increasing 0.0902
Urea(3094-0) -latest value -0.263 Bilirubin(1975-2) -minimum -0.075
Creatinine(2160-0) -minimum -0.230 Albumin/Globulin(1759-0) -increasing 0.0708
Protein(2885-2) -minimum -0.200 Urea(3094-0) -increasing -0.067
Cholesterol.in(13457-7) -latest value 0.1909 Glucose(2345-7) -decreasing 0.0619
Glucose(2345-7) -minimum -0.190 Potassium(2823-3) -decreasing -0.058

Table 21: Top Features from the baseline model for 600.01 BPH w urinary obs/LUTS

Feature weight Feature weight

Glucose(2345-7) -decreasing -0.358 Sodium(2951-2) -latest value 0.1253
Alanine(1742-6) -increasing -0.324 Chloride(2075-0) -latest value 0.1236
Creatinine(2160-0) -latest value -0.255 Cholesterol.in(13457-7) -decreasing -0.114
Protein(2885-2) -latest value -0.253 Aspartate(1920-8) -increasing -0.100
Sodium(2951-2) -decreasing 0.2298 Creatinine(2160-0) -decreasing 0.0918
Cholesterol.in(13457-7) -minimum 0.1959 Cholesterol.in(13457-7) -latest value -0.091
Aspartate(1920-8) -maximum 0.1736 Chloride(2075-0) -increasing -0.083
Glucose(2345-7) -increasing -0.134 Urea(3094-0) -maximum -0.076
Creatinine(2160-0) -maximum -0.133 Potassium(2823-3) -increasing -0.072
Urea(3094-0) -latest value 0.1271 Chloride(2075-0) -decreasing -0.071



Table 22: Top Features from the baseline model for 285.29 Anemia-other chronic dis

Feature weight Feature weight

Glucose(2345-7) -decreasing -0.492 Triglyceride(2571-8) -increasing -0.205
Creatinine(2160-0) -increasing 0.3508 Urea(3094-0) -maximum -0.189
Protein(2885-2) -latest value 0.3098 Albumin(1751-7) -maximum 0.1885
Aspartate(1920-8) -decreasing 0.3042 Aspartate(1920-8) -maximum -0.183
Carbon(2028-9) -increasing 0.2610 Chloride(2075-0) -latest value 0.1796
Creatinine(2160-0) -maximum 0.2594 Potassium(2823-3) -latest value -0.168
Alanine(1742-6) -increasing 0.2468 Aspartate(1920-8) -latest value 0.1632
Creatinine(2160-0) -minimum 0.2386 Creatinine(2160-0) -decreasing 0.1492
Potassium(2823-3) -minimum 0.2368 Cholesterol.in(13457-7) -decreasing -0.147
Cholesterol.in(13457-7) -increasing -0.216 Cholesterol(2093-3) -latest value -0.134

Table 23: Top Features from the baseline model for 346.90 Migrne unsp wo ntrc mgrn

Feature weight Feature weight

Cholesterol.in(13457-7) -minimum -0.403 Aspartate(1920-8) -maximum -0.105
Cholesterol(2093-3) -increasing 0.3081 Alanine(1742-6) -latest value -0.102
Cholesterol.in(13457-7) -latest value 0.2965 Creatinine(2160-0) -increasing -0.096
Alanine(1742-6) -minimum 0.2748 Protein(2885-2) -decreasing 0.0964
Sodium(2951-2) -decreasing -0.204 Sodium(2951-2) -minimum 0.0925
Cholesterol.in(13457-7) -decreasing 0.1985 Potassium(2823-3) -latest value -0.088
Aspartate(1920-8) -increasing 0.1974 Potassium(2823-3) -decreasing -0.084
Albumin/Globulin(1759-0) -increasing 0.1783 Carbon(2028-9) -maximum 0.0836
Glucose(2345-7) -latest value -0.132 Albumin/Globulin(1759-0) -maximum 0.0587
Protein(2885-2) -maximum 0.1100 Calcium(17861-6) -decreasing 0.0528

Table 24: Top Features from the baseline model for 427.31 Atrial fibrillation

Feature weight Feature weight

Creatinine(2160-0) -maximum 0.2260 Albumin/Globulin(1759-0) -latest value -0.019
Alanine(1742-6) -increasing 0.1981 Creatinine(2160-0) -latest value -0.015
Glucose(2345-7) -maximum 0.1956 Urea(3097-3) -latest value -0.011
Glucose(2345-7) -latest value -0.099 Sodium(2951-2) -decreasing 0.0089
Urea(3094-0) -maximum -0.089 Creatinine(2160-0) -minimum 0.0084
Urea(3094-0) -latest value -0.082 Cholesterol.in(13457-7) -latest value -0.007
Glucose(2345-7) -decreasing -0.079 Cholesterol(2093-3) -decreasing -0.000
Alanine(1742-6) -minimum -0.066 Potassium(2823-3) -minimum 0.0
Urea(3094-0) -minimum -0.037 Chloride(2075-0) -minimum 0.0
Cholesterol(2093-3) -increasing -0.031 Chloride(2075-0) -maximum 0.0



Table 25: Top Features from the baseline model for 250.00 DMII wo cmp nt st uncntr

Feature weight Feature weight

Alanine(1742-6) -minimum -0.406 Sodium(2951-2) -maximum -0.104
Aspartate(1920-8) -increasing -0.371 Potassium(2823-3) -latest value -0.099
Creatinine(2160-0) -decreasing 0.2839 Urea(3097-3) -maximum 0.0990
Albumin(1751-7) -maximum 0.2038 Triglyceride(2571-8) -maximum 0.0983
Alanine(1742-6) -increasing -0.184 Urea(3094-0) -decreasing 0.0894
Glucose(2345-7) -maximum 0.1364 Cholesterol.in(13457-7) -minimum 0.0803
Aspartate(1920-8) -maximum 0.1264 Chloride(2075-0) -increasing -0.075
Cholesterol.in(13457-7) -latest value 0.1119 Aspartate(1920-8) -minimum 0.0737
Calcium(17861-6) -increasing -0.107 Glucose(2345-7) -increasing 0.0639
Glucose(2345-7) -decreasing -0.105 Bilirubin(1975-2) -increasing -0.060

Table 26: Top Features from the baseline model for 425.4 Prim cardiomyopathy NEC
Feature weight Feature weight

Glucose(2345-7) -decreasing -0.272 Urea(3094-0) -increasing -0.010
Creatinine(2160-0) -maximum 0.1168 Protein(2885-2) -latest value 0.0038
Albumin(1751-7) -maximum 0.1132 Sodium(2951-2) -latest value 0.0
Urea(3094-0) -latest value -0.070 Chloride(2075-0) -maximum 0.0
Creatinine(2160-0) -minimum 0.0647 Chloride(2075-0) -minimum 0.0
Creatinine(2160-0) -decreasing 0.0560 Sodium(2951-2) -decreasing 0.0
Urea(3094-0) -maximum -0.025 Sodium(2951-2) -increasing 0.0
Glucose(2345-7) -maximum 0.0167 Sodium(2951-2) -maximum 0.0
Aspartate(1920-8) -maximum 0.0165 Chloride(2075-0) -increasing 0.0
Glucose(2345-7) -latest value -0.014 Calcium(17861-6) -latest value 0.0

Table 27: Top Features from the baseline model for 728.87 Muscle weakness-general
Feature weight Feature weight

Alanine(1742-6) -increasing 0.2943 Glucose(2345-7) -latest value -0.087
Creatinine(2160-0) -minimum 0.2361 Calcium(17861-6) -latest value -0.083
Glucose(2345-7) -decreasing -0.189 Calcium(17861-6) -maximum -0.079
Creatinine(2160-0) -decreasing 0.1719 Urea(3094-0) -latest value -0.076
Creatinine(2160-0) -increasing 0.1644 Alanine(1742-6) -maximum -0.075
Creatinine(2160-0) -maximum 0.1479 Alanine(1742-6) -latest value -0.071
Alanine(1742-6) -minimum -0.112 Albumin(1751-7) -minimum 0.0697
Triglyceride(2571-8) -maximum -0.108 Cholesterol.in(13457-7) -increasing -0.067
Urea(3094-0) -minimum 0.1040 Protein(2885-2) -decreasing -0.064
Aspartate(1920-8) -minimum 0.1020 Protein(2885-2) -increasing 0.0623



Table 28: Top Features from the baseline model for 620.2 Ovarian cyst NEC/NOS

Feature weight Feature weight

Alanine(1742-6) -decreasing 0.5072 Protein(2885-2) -decreasing 0.1532
Cholesterol.in(13457-7) -minimum -0.287 Urea(3094-0) -minimum -0.147
Aspartate(1920-8) -decreasing -0.285 Cholesterol.in(13457-7) -increasing -0.136
Alanine(1742-6) -latest value -0.232 Alanine(1742-6) -maximum -0.131
Urea(3094-0) -decreasing -0.213 Glucose(2345-7) -decreasing 0.1079
Creatinine(2160-0) -latest value 0.2003 Aspartate(1920-8) -latest value 0.1043
Chloride(2075-0) -maximum 0.1717 Glucose(2345-7) -minimum 0.1004
Urea(3094-0) -maximum 0.1681 Albumin(1751-7) -maximum 0.0953
Creatinine(2160-0) -maximum -0.157 Urea(3097-3) -latest value 0.0884
Glucose(2345-7) -increasing -0.156 Albumin(1751-7) -latest value 0.0792

Table 29: Top Features from the baseline model for 286.9 Coagulat defect NEC/NOS
Feature weight Feature weight

Chloride(2075-0) -minimum -0.337 Creatinine(2160-0) -maximum 0.1148
Carbon(2028-9) -increasing 0.3219 Glucose(2345-7) -maximum 0.1124
Glucose(2345-7) -decreasing -0.300 Creatinine(2160-0) -latest value 0.1008
Creatinine(2160-0) -minimum 0.2578 Aspartate(1920-8) -decreasing 0.0993
Triglyceride(2571-8) -increasing -0.203 Albumin(1751-7) -latest value -0.090
Albumin(1751-7) -maximum 0.1802 Creatinine(2160-0) -increasing 0.0865
Alanine(1742-6) -minimum -0.179 Sodium(2951-2) -maximum -0.082
Cholesterol(2093-3) -latest value -0.147 Urea(3097-3) -latest value -0.080
Protein(2885-2) -decreasing -0.139 Alanine(1742-6) -increasing 0.0764
Triglyceride(2571-8) -latest value -0.123 Potassium(2823-3) -latest value -0.075

Table 30: Top Features from the baseline model for 443.9 Periph vascular dis NOS

Feature weight Feature weight

Glucose(2345-7) -decreasing -0.395 Creatinine(2160-0) -maximum 0.1184
Alanine(1742-6) -increasing 0.2594 Triglyceride(2571-8) -minimum 0.1182
Alanine(1742-6) -minimum -0.227 Triglyceride(2571-8) -increasing -0.116
Cholesterol.in(13457-7) -latest value -0.199 Sodium(2951-2) -increasing 0.1053
Aspartate(1920-8) -latest value 0.1825 Chloride(2075-0) -minimum -0.095
Creatinine(2160-0) -minimum 0.1554 Urea(3094-0) -increasing 0.0914
Glucose(2345-7) -maximum 0.1403 Albumin/Globulin(1759-0) -maximum -0.077
Protein(2885-2) -decreasing -0.133 Aspartate(1920-8) -increasing -0.075
Urea(3094-0) -latest value -0.128 Aspartate(1920-8) -minimum 0.0724
Glucose(2345-7) -minimum -0.123 Cholesterol.in(13457-7) -decreasing -0.065



Table 31: Top Features from the baseline model for 362.51 Nonexudat macular degen

Feature weight Feature weight

Creatinine(2160-0) -latest value -0.117 Sodium(2951-2) -decreasing 0.0
Glucose(2345-7) -decreasing -0.080 Sodium(2951-2) -increasing 0.0
Protein(2885-2) -latest value -0.060 Sodium(2951-2) -minimum 0.0
Creatinine(2160-0) -increasing 0.0179 Sodium(2951-2) -maximum 0.0
Glucose(2345-7) -latest value -0.015 Calcium(17861-6) -decreasing 0.0
Creatinine(2160-0) -maximum 0.0099 Chloride(2075-0) -minimum 0.0
Glucose(2345-7) -minimum 0.0075 Calcium(17861-6) -increasing 0.0
Urea(3094-0) -latest value -0.001 Calcium(17861-6) -minimum 0.0
Chloride(2075-0) -maximum 0.0 Calcium(17861-6) -maximum 0.0
Sodium(2951-2) -latest value 0.0 Cholesterol.in(13457-7) -latest value 0.0

Table 32: Top Features from the baseline model for 414.9 Chr ischemic hrt dis NOS

Feature weight Feature weight

Glucose(2345-7) -decreasing -0.328 Chloride(2075-0) -latest value 0.1241
Glucose(2345-7) -maximum 0.2678 Alanine(1742-6) -minimum -0.116
Aspartate(1920-8) -increasing -0.264 Sodium(2951-2) -increasing 0.1142
Cholesterol.in(13457-7) -latest value -0.229 Cholesterol.in(13457-7) -increasing -0.108
Creatinine(2160-0) -decreasing 0.1837 Cholesterol(2093-3) -minimum -0.103
Creatinine(2160-0) -minimum 0.1787 Triglyceride(2571-8) -increasing -0.096
Aspartate(1920-8) -latest value 0.1648 Chloride(2075-0) -decreasing -0.070
Alanine(1742-6) -decreasing 0.1462 Urea(3094-0) -maximum 0.0699
Creatinine(2160-0) -latest value -0.139 Calcium(17861-6) -maximum -0.069
Cholesterol(2093-3) -latest value 0.1360 Potassium(2823-3) -decreasing 0.0680

Table 33: Top Features from the baseline model for 781.2 Abnormality of gait
Feature weight Feature weight

Alanine(1742-6) -increasing 0.1921 Cholesterol.in(13457-7) -minimum 0.1334
Glucose(2345-7) -latest value -0.180 Alanine(1742-6) -maximum -0.128
Creatinine(2160-0) -increasing 0.1772 Aspartate(1920-8) -latest value 0.1276
Triglyceride(2571-8) -increasing -0.170 Chloride(2075-0) -latest value 0.0991
Creatinine(2160-0) -minimum 0.1568 Creatinine(2160-0) -latest value -0.097
Calcium(17861-6) -decreasing 0.1538 Aspartate(1920-8) -increasing 0.0878
Chloride(2075-0) -maximum -0.148 Alanine(1742-6) -latest value -0.081
Creatinine(2160-0) -decreasing 0.1446 Cholesterol.in(13457-7) -increasing -0.077
Creatinine(2160-0) -maximum 0.1418 Glucose(2345-7) -decreasing -0.074
Protein(2885-2) -decreasing -0.141 Potassium(2823-3) -latest value -0.069



Table 34: Top Features from the baseline model for 280.9 Iron defic anemia NOS
Feature weight Feature weight

Glucose(2345-7) -decreasing -0.360 Urea(3094-0) -minimum 0.1416
Urea(3094-0) -increasing 0.2385 Triglyceride(2571-8) -minimum -0.141
Carbon(2028-9) -increasing 0.2151 Protein(2885-2) -minimum -0.127
Cholesterol.in(13457-7) -latest value -0.208 Carbon(2028-9) -maximum -0.125
Cholesterol.in(13457-7) -increasing -0.205 Creatinine(2160-0) -minimum 0.1219
Aspartate(1920-8) -decreasing 0.1938 Aspartate(1920-8) -increasing 0.1147
Creatinine(2160-0) -increasing 0.1650 Protein(2885-2) -latest value 0.1064
Alanine(1742-6) -increasing 0.1560 Potassium(2823-3) -maximum 0.1056
Chloride(2075-0) -latest value 0.1500 Urea(3097-3) -minimum -0.097
Creatinine(2160-0) -decreasing 0.1487 Creatinine(2160-0) -maximum 0.0954
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