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Abstract
We study the problem of estimating the continuous response over time of interventions from
observational time series—a retrospective dataset where the policy by which the data are generated
are unknown to the learner. We are motivated by applications where response varies by individuals
and therefore, estimating responses at the individual-level are valuable for personalizing decision-
making. We refer to this as the problem of estimating individualized treatment response (ITR)
curves. In statistics, G-computation formula (Robins, 1986) has been commonly used for estimating
treatment responses from observational data containing sequential treatment assignments. However,
past studies have focused predominantly on obtaining point-in-time estimates at the population level.
We leverage G-computation formula and develop a novel method based on Bayesian nonparametrics
(BNP) that can flexibly model functional data and provide posterior inference over the treatment
response curves both at the individual and population level. On a challenging dataset containing
time series from patients admitted to a hospital, we estimate treatment responses for treatments used
in managing kidney function and show that the resulting fits are more accurate than alternative
approaches. Accurate methods for obtaining ITRs from observational data can dramatically
accelerate the pace at which personalized treatment plans become possible.

1. Introduction

Accurate models of actions and their effects on the state of the agent are critical for decision-making.
Learning of action-effect models is most straightforward from data where the learner can control
the choice of actions and observe their responses. But, such data are not always possible to acquire.
Alternatively, retrospective data may be available that contain time series generated from observing
other agents act. Estimating action-effect models from observational data—data where the learner
cannot control the actions that are prescribed, and the actions may be prescribed by a mechanism
that is not known to the learner—are more challenging. We study an instance of this problem:
specifically, we consider the problem of estimating the continuous response over time to an action.
We are particularly motivated by applications in medicine where accurate action-effect models for
estimating treatment effects can be used for personalizing therapy.

In statistics, the problem of estimating treatment effects from observational data containing
sequential treatment assignments has been studied extensively using approaches such as the G-
computation formula (Robins, 1986), G-estimation of structural nested models (Robins, 2004), inverse
probability of treatment weighted (IPTW) estimation of marginal structure models (van der Laan
and Petersen, 2007), doubly robust learning (Tsiatis, 2007; Zhao et al., 2015) with applications
to longitudinal data analysis (Hernán et al., 2000), survival analysis (Lunceford et al., 2002), and
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adaptive treatment selections in clinical trials (Murphy et al., 2007a,b). A related problem in
reinforcement learning is off-policy evaluation where the goal is to estimate the value of a policy
(sequence of actions) from data collected by another policy (Sutton et al., 1998). For example,
doubly-robust estimators for policy evaluation have been developed for contextual bandits (Dudik
et al., 2011) and for sequential decision-making problems (Jiang and Li, 2015). See survey of example
techniques in Paduraru et al. (2012). In this paper, we use G-computation formula to adjust for
time-varying confounding. However, we depart from the existing literature by using a novel Bayesian
nonparametric method so as to (1) flexibly model the longitudinal outcome over time, and (2)
characterize heterogeneity in treatment effects across individuals.

Bayesian nonparametric (BNP) methods (Ferguson, 1973; Müller and Mitra, 2013; Müller and
Rodriguez, 2013) are gaining popularity in longitudinal data analysis and treatment effect modeling
since they are characterized by parameters that live in an infinite-dimensional space, allowing one to
flexibly approximate arbitrary distributions. For flexible longitudinal data analysis, Silva (2016) uses
Gaussian process to model longitudinal outcome under different levels of interventions. In another
example, Chib and Hamilton (2002) uses the Dirichlet Process prior to add flexiblility in representing
the outcome and the treatment effects.

A number of related works have focused on heterogeneous treatment effects (HTE) by estimating
the effects conditional on covariates definining subpopulations. For example, Tian et al. (2014) and
Imai et al. (2013) apply regularized linear regression to select covariates characterizing subpopulations
with differential outcomes. Other work use tree structure to partition based on covariates that
identify subpopulations with different outcomes (Foster et al., 2010; Su et al., 2009) or different
conditional treatment effects (Athey and Imbens, 2015). All of the above-mentioned works focus on
obtaining point-in-time estimates. Only recently, Huang et al. (2015) and Xu and Ji (2014) have
used parametric models to estimate treatment effects over time.

The proposed method advances state-of-the-art in a number of ways. First, in contrast with
pat works that focus on modeling response at a point-in-time, this work obtains the continuous
response over time. Further, we obtain these from sparse and irregularly sampled observational data.
Second, the proposed BNP model flexibly models variations in treatment effects while borrowing
strength across individuals. In applications such as education and healthcare where response across
individuals can vary widely, recovering individual level effects are more informative for decision-
making. Third, the fully Bayesian approach quantifies uncertainty at the individual-level; this is
particularly important for individuals where the estimated effects maybe uncertain due to lack of data.
A key practical advantage of using a nonparametric approach is that they often provide better fits to
challenging data than can be obtained using parametric model based methods. This is particularly
important in our application of estimating treatment response curves for physiologic time series.

2. Longitudinal Treatment Response Model

As a running example, we use the application of estimating the longitudinal model for creatinine
(a measurement of kidney function). Specifically, our goal is to obtain an individualized estimate
of the effect over time for treatments given for modulating creatinine. We consider the problem of
estimating these from sparse, irregularly sampled data such as those in electronic health records
(EHRs). There are two key challenges that must be addressed. First, in clinical data contained within
EHRs, measurements are often not obtained at regular intervals, and measurement schedules vary
across individuals. For example, caregivers may choose to make measurements of creatinine once a
day on some patients while multiple times a day on others. When the data are collected at fixed
regular intervals, discrete-time approaches that maintain estimates only at specific points-in-time are
adequate (e.g. Taubman et al. (2009)). To address this, we will employ functional representations
instead (Quintana et al., 2015).

Another key challenge is the presence of time-varying confounding (Robins, 1986, 1987). To
understand time-varying confounding, first, let us consider the simple example where a treatment
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tends to be assigned to sicker patients. Since these patients are also more likely to die, without
accounting for this bias, one might assume that this treatment kills people. In the sequential-treatment
assignment setting, such confounding occurs because doctors use the measurement of a variable
(creatinine) to determine whether or not to treat which affects its value at a subsequent time. To
correct for this confounding, our estimation is based on Robins (1986, 1987)’s G-computation formula,
a widely used approach in estimating treatment effects from data with time-varying confounding.
The key assumption for G-computation formula is that the treatment received at each time was
allocated (i.e., ignorable) conditional on the observed past treatment and covariate history. In
medicine, often treatment decisions are made based on well-documented clinical history about the
individual. Therefore, this assumption is often applicable.

Notation: Assume we have observations Yi = {Yij : j = 1, .., Ji} from the ith individual at
(irregularly-sampled) times {ti1, ..., tiJi}. In addition, we haveXi, a 1×p vector of observed covariates
(e.g., age, gender) about this individual. We also have treatments Ai = {Ail : l = 1, ..., Li} that were
given to patient i at times {τi1, ..., τiLi}, where Ail = d for some treatment type d ∈ {1, .., D}. We
assume that the effect of each treatment type d lasts at most within a window Wd. In our setting, as
is the case for many drugs, the effects are transient and last over the course of the disease but do not
permanently alter the body chemistry. We use Hij to denote the set of active treatments at tij i.e.,
treatments that were given to patient i within their windows prior to time tij and affect the outcome
at tij . Specifically, Hij = {Ail : tij −WAil ≤ τil ≤ tij}. The value of a measurement Yi within an
interval (t, T ] is denoted by Yi,(t,T ]. The sets of measurements and treatments preceding a time t are
denoted by Yi,<t and Ai,<t respectively.

Our goal is to obtain posterior inference for the treatment response curves at the individual and
population levels, and for the outcomes Yi,>t given any sequence of treatments conditioned upon
historical data about the individual and the population. Estimation using G-computation requires
the specification of the outcome model for Y as a function of the covariates and treatments (Robins,
1986, 1987). In contrast with prior methods that assume a parametric model for Y at discrete points
in time (e.g., Hernán et al. (2000)), we describe below a Bayesian nonparametric model that models
uncertainty over the baseline progression of a measurement under no treatment and the response to
treatment over time. We tackle the general setting of learning from data with multiple exposures to
the same treatment or different treatments under the assumption of additivity of treatment effects.

We model the outcome Yij using a generalized mixed-effects model combining the baseline
progression and the change in response due to prior treatments as follows:

Yij |Xi,Hij = b(Xi) + ui(tij)︸ ︷︷ ︸
baseline progression

+ fi(tij ;Hij)︸ ︷︷ ︸
treatment response

+ εi(tij ;Hij)︸ ︷︷ ︸
noise

, j = 1, ..., Ji. (1)

We describe each of these components in more details below.

2.1 Modeling Baseline Progression

b(Xi) is the fixed-effects component that captures the dependence of the outcome variable on the
observed featuresXi (e.g., age, gender, genetic mutation). Here we model b(Xi) as a linear regression,
by assuming b(Xi;βi) = XT

i βi. ui is the random-effects component that models the individual-
specific deviations over time in baseline progression from b(Xi). We choose ui to be generated from
a zero-mean Gaussian process with a structured covariance Kui(σ2

ui, ρui) = Cov(ui(tij),ui(tij′)) =

σ2
uiρ
|tij−tij′ |
ui with ρui ∈ (0, 1); this represents an exponential covariance function. Similar choices

were made by Quintana et al. (2015) in their application of modeling functional data. A different
choice for both the mean and the covariance kernel can be made depending on the properties of
the data; see Schulam and Saria (2015) for a different example of the baseline model for modeling
progression in chronic diseases.
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Figure 1: An example of decreasing treatment-response curve and an illustration of additive effects

2.2 Modeling Treatment-Response

We focus on the scenario where treatment choices are discrete and assume that the treatment effects
are additive. Further, we assume that the effect of each treatment type d lasts at most within window
Wd. Given the set of treatments Hij = {Ail : tij −WAil ≤ τil ≤ tij} preceding time tij , we formulate
the treatment response model as:

fi(tij ;Hij) =
∑

l:tij−WAil
≤τil≤tij

gi,Ail(tij − τil), (2)

where gi,Ail(tij − τil) denotes the response curve of individual i for treatment Ail that was given at
time τil. To estimate the cumulative effect at tij , the response curves from the treatment set Hij are
added. We parameterize the function gid(t) as

gid(t) =

{
b0 + α1id/[1 + exp(−α2id(t− γid/2))], if 0 ≤ t < γid

bid + α0/[1 + exp(α3id(t− 3γid/2))]. if t ≥ γid,
(3)

with the free parameters {α1, α2, α3, γ, b}; here, the collection of individual-specific treatment effect
parameters α1id ’s are short-handed to α1 and so on.

The motivation of choosing this particular form of the gid(t) function is to obtain a flexible
asymmetric “U” shape curve. We concatenate two sigmoid curves and allow the parameters for the
two sigmoid functions and the point of switching between the two sigmoids to vary so that it can
flexibly capture responses where a marker may either increase or decrease and eventually converges to
a stable value. Figure 1 (a) visualizes one example g(t;α1 = −10, α2 = 0.7, α3 = 0.1, γ = 20, b = −8),
where α1 ∈ < represents the curve’s maximum value and the sign of α1 determines how the
individual responds to the treatment. For example, α1 < 0 if the marker decreases in response,
α1 > 0 if the marker increases in response. α2 ∈ (0, 1) and α3 ∈ (0, 1) individually models
the “steepness” of the two sigmoid curves; γ ∈ < denotes the switching point; b denotes the
value that the curve stabilizes and is constrained such that b/g(γ) ∈ (0, 1). Lastly, to make the
gid(t) function well defined, we set b0 = −α1id/[1 + exp(α2idγid/2)] for attaining gid(0) = 0, and
α0 = (a1id + 2b0 − bid)/(1 + exp(−a3idγid/2)) for attaining a unique peek value at t = γid.

Based on the example we give in Figure 1 (a) where the marker’s value decreases in response
to the treatment, Figures 1 (b-c) illustrate the cumulative effect where the response curves from
sequential treatments are added. The black line in Figure 1 (b) denotes the increasing baseline
progression under no treatment, and the vertical red line denotes when the treatment was prescribed;
the outcome value is reduced after adding the response curve as is shown in Figure 1 (c); and the
response to multiple sequential treatments is shown in Figure 1 (d).

2.3 Modeling Noise

We model the noise in two parts: the independent random noise ε0ij for individual i at each time
point tij and the time-dependent random noise ε′d(t) for treatment d within its effective window Wd.
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We model this additional noise because adding the effects of the treatments can introduce higher
uncertainty and error into the outcome model. The noise is time-dependent because the uncertainty
reduces as the time from treatment administration increases and the effects diminish. So we formulate
the overall noise as

εi(tij ;Hij) = ε0ij +
∑

l:tij−WAil
≤τil≤tij

ε′Ail(tij − τil), (4)

where ε0ij ’s are i.i.d. Gaussian distributed with mean zero and variance σ2
εi , ε

′
d(t)’s are jointly Gaussian

distributed with mean zero and structured covariance Kεd(σ2
ε′d
, ρε′d) = Cov(ε′d(t), ε

′
d(t
′)) = σ2

ε′d
ρ
|t−t′|
ε′d

.

2.4 A Hierarchical Prior for Estimating Individualized Treatment Response (ITR)
Curves

The baseline progression and the treatment response curves for individuals can be more flexibly
modeled with nonparametric hierarchical models. This allows the model to estimate the parameters at
the individual level while borrowing strength across individuals. Bayesian nonparametric approaches
such as Dirichlet process (DP) and DP mixture have been widely used in clustering time-series data.
For example, Ren et al. (2015) have applied DP priors in latent factor models to cluster multiple
housing price data streams. Nieto-Barajas et al. (2014) uses a generalization of DP mixture—Possion-
DP priors—in linear dynamic models to group stock exchange data. We use the DP mixture to cluster
the parameters for the fix-effects component of the baseline progression and the treatment response
curves, and use the DP mixture of Gaussian processes to cluster the random-effects component for the
baseline progression. The DP mixture of GPs has been used to identify and group the sub-divisions
in each individual’s gene expression (Hensman et al., 2015) or disease trajectories (Ross and Dy,
2013). We use DP mixture of GPs to group individuals’ baseline deviations on their similarity in
the GP’s kernel parameters. Alternative solutions can use a hierarchical GP (Hensman et al., 2013,
2015), where a single GP is used to model the behavior of the population and a fix number of other
GPs are used to model the group-specific deviations from the population. Others have proposed
methods for transfer across tasks (e.g., Li et al. (2009), Ammar et al. (2015)) though often assuming
that the responses are modeled at discrete times.

2.4.1 Background on the Dirichlet Process Mixture

We briefly describe the DP and the DP mixture (DPM). Ferguson (1973) introduced the DP prior
as a probability distribution on an infinite dimensional measurable space of probability measures.
The stick-breaking construction by Sethuraman (1994) provides an intuitive and interpretable
representation of the DP. Let G0 be a known distribution and let M > 0 be a positive constant.
Then we say G ∼ DP (G0,M) provided

G(·) =

∞∑
k=1

ωkδθk(·), θk
iid∼ G0,

where δθk(·) defines point mass at θk and ωk’s are defined as ωk = Vk
∏k−1
r=1(1−Vr), Vk ∼ Beta(1,M).

Thus G is a random distribution that is discrete with probability one. G0 is the base or centering
distribution since E(G) = G0.

The discrete nature of the DP makes it inappropriate for modeling continuous data where units
within a partition share similar rather than the same parameter. Therefore, DPM extends DP by
introducing a continuous kernel centered at θk instead of a point mass δθk . Let y1, y2, . . . be i.i.d.
samples and f(·|θ) be a parametric density function, we can write the stick-breaking construction of
the DPM as

yi | (ωk), (θk) ∼
∞∑
k=1

ωkf(·|θk), θk ∼ G0.
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Figure 2: Graphical representation of the hierarchical treatment response model. Hidden variables
are circled; observed outcome variables are shaded; observed input variables are filled.

2.4.2 Hierarchical Individualized Treatment-Response (ITR) model

We leverage the DPM prior to cluster both the baseline progression and the treatment response
parameters—while allowing individual-specific variability—and obtain a hierarchical treatment-
response model as shown in Figure 2. Specifically, let bi denote the sum of the fixed-effects
component b(Xi) and the random-effects component ui in the baseline progression. Then based on
the description in Section 2.1, bi follows the distribution

p(bi|ϕi) = N (XT
i βi,Kui), (5)

Kui(tij , tij′ ;σ2
ui, ρui) = σ2

uiρ
|tij−tij′ |
ui ,

where ϕi = {βi, σ2
ui, ρui} denotes all the individual-specific baseline progression parameters. We

put a DPM prior on ϕi’s. As shown in Figure 2, Zϕi is a discrete latent variable that indicates
the mixture component associated with individual i. ϕi is sampled from a multivariate normal
distribution centered at the parameters θ∗ϕk associated with the mixture component specified by Zϕi
(we put supscript ∗ to denote the unique component parameters). The hyperparameter M1 controls
the degree of clustering and generates the Vϕk ’s and the associated mixture component weights.
The distributions for the remainder of the parameters in the DPM prior for the baseline model are
specified in Eq. (6). For parameters that lie in the real-space we assume they are sampled from
a Gaussian distribution. For parameters that are constrained (e.g., σ2

ui ∈ (0,+∞)), we transform
the support of these variables into the real-space first and posit Gaussian priors on the transformed
variables. This requires a calculation of the additional Jacobian adjustment |det J(T−1(y))| for
each transformation y = T (x) (Olive, 2014). More details are in Appendix A. The parameters
β0, κ0, θ0,S0, µρ′0 , σ

2
ρ′0
, µσ′0 , σ

2
σ′0

in the base-distribution G10 serve as hyperparameters a1 in Figure 2.
These are selected to place uninformative priors; we discuss this in more detail in Section 4.

p(βi) = N (βi;βbi ,Σbi), (6)

p(σ2
ui) = N (log(σ2

ui);µσ′ui , σ
2
σ′u0

)/σ2
ui,

p(ρui) = N (logit(ρui);µρ′ui , σ
2
ρ′u0

)/(1− ρui)2,

G10(βbi ,Σbi , µσ′ui , µρ′ui) = NIW(βbi ,Σbi ;β0, κ0, θ0,S0)N (µσ′ui ;µσ′0 , σ
2
σ′0

)N (µρ′ui ;µρ′0 , σ
2
ρ′0

).
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For the treatment response model, fi is defined in Eq. (2). We let φid = {α1id , α2id , α3id , γid, bid}
denote the individual-specific treatment parameters in the gid(t) function in Eq. (3). Similarly, we
put DPM priors on φid’s. Then φid is sampled from a multivariate normal distribution centered at
the parameters θ∗φid associated with the mixture component specified by Zφid . The hyperparameter
M2d generates the broken-off portions Vφk ’s and controls the degree of clustering. The distributions
for the remainder of the parameters in the DPM prior for the treatment response model are specified
in Eq. (7). For those constrained parameters (e.g. α2id ∈ (0, 1)), we still transform them into the
real-space first and posit Gaussian priors on the transformed variables. The parameters µd0 and
Dd0 in the base-distribution G20 serve as hyperparamters a2d in Figure 2. These are also selected to
place broad priors; we discuss this in more detail in Section 4.

p(φid) = N (T−1(φid);µφ′id ,Dφ′0
)|ζid|/(1− α2id)4, G2d0(µφ′id) = N (µd0 ,Dd0), (7)

where ζid = −1/g(γid)(1− b/g(γid))
2 is from the Jacobian adjustment for the transformed φid’s.

For the noise model, based on the description in Section 2.3, εi follows the distribution

p(εi|σ2
εi ,σ

2
ε′ ,ρε′) = N (0, σ2

εiIJi +Kε′i), (8)

Kε′i(tij , tij′ ;σ
2
ε′ ,ρε′) =


∑
l σ

2
ε′Ail

ρ
|tij−tij′ |
ε′Ail

, ∀l s.t. τil ≤ tij , tij′ ≤ τil +WAil

0 , otherwise.

To complete the prior specification ,we put inverse gamma (IG) on the variance parameter σ2
εi , and

transform the constrained parameters σ2
ε′d

and ρε′d into the real-space then posit Gaussian priors on
the transformed variables.

p(σ2
εi) = IG(sε, ν), (9)

p(σ2
ε′d

) = N (log(σ2
ε′d

);µε1 , σ
2
ε1)/σ2

ε′d
,

p(ρε′d) = N (logit(ρε′d);µε2 , σ
2
ε2)/(1− ρε′d)2.

3. Inference

We use MCMC to approximate the posterior inference of our model. Consider the joint posterior

p(u,f ,ϕ,φ, σ2
ε ,σ

2
ε′ ,ρε′ | Y ) (10)

∝
{ I∏
i=1

p(Yi, bi,fi | ϕi,φi, σ2
εi ,σ

2
ε′ ,ρε′)

}
p(ϕ)p(φ)p(σ2

εi)p(σ
2
ε′)p(ρε′)

=

{ I∏
i=1

p(Yi | bi,fi, σ2
εi ,σ

2
ε′ ,ρε′)p(bi | ϕi)p(fi | φi)

}
p(ϕ)p(φ)p(σ2

ε )p(σ2
ε′)p(ρε′),

the first term in the product is N (Xibi + fi, σ
2
εiIJi +Kε′i) with Kε′i specified in Eq. (8), the second

term is defined in Eq. (5), the third term is deterministic and specified in Eq. (2). We factorize the
remaining terms as { I∏

i=1

{
p(ϕi)

D∏
d=1

p(φid)
}}{ I∏

i=1

p(σ2
εi)

}{ D∏
d=1

p(σ2
ε′d

)p(ρε′d)

}
,

with each distribution specified in Eq. (6, 7 & 9) respectively.
For the infinite-dimensional DPM priors on ϕi and φid, we use a truncated stick-breaking process

that was developed by Ishwaran and James (2001) to approximate. Ishwaran and James (2001)
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justify that the truncated process greatly reduces computations and can closely approximate a full
Dirichlet process when the truncation level is relatively large to the number of the observations. For
our data that contains 123 patients, we choose the truncation level to be 20. This results at a small
approximation error of 2.7× 10−6 based on Theorem 2 in Ishwaran and James (2001). Given the
truncation approximation, it allows us to use standard MCMC algorithms to update the parameters
in the finite-dimension space. Particularly, we use Gibbs sampler to update the DPM parameters
because for all of the variables, due to our use of conjugate priors, their full conditional distributions
(conditioned upon all the other variables in the model) can be derived in closed form. Specifically,
the form of this distribution for the component indicator variables Zϕi and Zφid is Dirichlet; for the
component-level variables β∗bk , Σ∗bk is NIW, for µ∗σ′uk

, µ∗ρ′uk
and µ∗φdk is Gaussian; for Vϕk and Vφdk

is Beta; for the concentration parameters M1 and M2d is Gamma. In addition, we also use Gibbs
sampler to update βi, bi and σ2

εi . The form of these conditional distributions are all Gaussian. See
more details in Appendix B.1 and B.2.

For the remaining variables, the conditional distributions cannot be derived in closed form. Thus
we use a Metropolis-Hastings sampler. Particularly, for the unconstrained variables α1id and γid, we
choose the proposal distribution to be normal with standard deviation 0.3. For the positive variables
σ2
ui and σ2

ε′d
, we choose the truncated normal (dividing the p.d.f of normal by its c.d.f.) with standard

deviation 0.3. For variables ρui, α2id , α3id and bid/g(γid) that are constrained in (0, 1), we choose
normal with standard deviation 0.15 to propose a new sample and then reflect it by 0 or 1 to map it
back onto its support. See Appendix B.3 for details. In our experiments discussed in Section 4, these
proposal distributions performed well (with acceptance rates between 0.14 - 0.22 across the chains).

4. Numerical Analysis

We evaluate the proposed model on the task of estimating treatment response curves using an
observational health dataset. Specifically, we focus on the population of patients with sepsis, a
deathly adverse event. We estimate the responses for different treatments used to manage creatinine,
a measure used for monitoring kidney deterioration that is a common symptom of sepsis. Intermittent
hemodialysis (IHD) and continuous renal replacement therapy (CRRT), the latter prescribed at three
different levels, are the four main treatment choices for managing kidney function.

We fit the models on electronic health record data from patients admitted to the Beth Israel
Deaconess Medical Center in Boston. The data are publicly available in the MIMIC-II Clinical
Database (Saeed et al., 2002). To identify those with sepsis, we used the criteria described in Henry
et al. (2015). We use expert guidance to set the window sizes to be sufficiently long to capture the
full response curve. For example, the effect of IHD typically occurs over a few hours and therefore,
we set WIHD = 1 hr. Decisions about CRRT prescriptions are made on a daily, rather than hourly
basis, and therefore we set WCRRT = 24 hrs.

The creatinine data contains timeseries from 123 individuals with average duration of 20.75 days
and a total of 6,992 observations. These were obtained from the MIMIC2 database. Series containing
atleast 50 creatinine measurements were included, within which we observe a total of 56, 107, 1238
and 289 instances of IHD and CRRT with the three dose levels of < 500 ml/hr, = 500 ml/hr and
> 500 ml/hr. Data were standardized by the population mean 2.75 and standard deviation 17.32.

Baselines. We refer to the individualized treatment response model as ITR, and compare its
performance to three baselines. First, we evaluate against what we refer to as the pop model, which
implements estimating treatment responses at the population level and variations across individuals
are not accounted for. This is an instance of ITR where the baseline progression and the treatment
response (transformed) parameters are drawn uniformly from a broad prior. To evaluate the extent
to which individualizing the treatment response estimates is important, we also compare against a
second baseline where the model parameters are drawn independently from a broad prior so that
each individual samples it’s own set of parameters. We refer to this as the individual model. At last,
we compare against a third baseline where the model parameters are drawn from a DP instead of a
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DPM. This allows treatment responses to vary by subgroups but there is no explicit representation
for differences across individuals within a subgroup. Hereon, we refer to this as the sub-pop baseline.

Experimental setup. We use prediction error on a held-out test set to compare the proposed
model to alternatives. We use the first 50 observations of the measurements for training and the
remainder for measuring prediction error in the test set. Predictions of the creatinine measurements
are made under the treatment strategy prescribed in the test set. We run 4 randomly initialized
chains each for 5000 iterations, and report the root mean squared error (RMSE) averaged across the
last 2500 iterations for all 4 chains.

We assume b(Xi) to be a linear model, i.e., b(Xi) = Xiβi, and assign a non-informative normal-
inverse-Wishart (NIW) prior for the β’s as β0 = 0, κ0 = 1, ν0 = p+ 2,S0 = Ip. We condition upon
only p = 2 observed covariates, age and admitted weight, which along with the individual-specific
intercept turn out to be sufficient to estimate the patient’s initial value of creatinine. The longitudinal
measurements of creatinine are then modeled by the time-dependent progression ui(tij) and the
parametric treatment-response function f(tij ;Hij) that were defined in Section 2. Within the
treatment response model, the prior for the change point γ is set to be the normal distribution with
a wide-range and mean chosen by the domain expert based on the expected duration over which the
treatment takes effect. Specifically, these were set as N(1 hr,100 hrs) for IHD, N(10 hrs, 100 hrs) for
all three levels of CRRT. Similarly, for the maximum effect, the priors were chosen to be normal
with the mean guided by the domain expert. Specifically, for α1’s, the means were respectively
set to be -2, -1, -1.5, -2 and variances to be 4 for IHD and the three levels of CRRT. Because the
long-term effect b should be bounded by the peak effect in the curve, that is b/g(γ) ∈ (0, 1), so we
put priors directly on this constrained ratio instead of b. The base distribution for the transformed
ratio logit(b/g(γ))’s and the two transformed “steepness” parameters logit(α2)’s and logit(α3)’s are
both set to be non-informative, i.e., normal with mean logit(0.5) and variance 4 (which covers the
range from (0.02, 0.98)). Finally, the prior for the noise variance σ2

εi is set to be IG(1, 1). For the
window W , we set it to be 24 hours for IHD and CRRT.

(a) (b)
Figure 3: Prediction RMSE on creatinine for 10 future days (error bars denoting the standard errors

that were calculated across the prediction errors from the 123 individuals).
Results. In Figure 3, we report held-out prediction error. We report errors averaged within a

day for 10 future days following the time of prediction. To evaluate the flexibility and expressivity
of ITR on modeling the treatment response, the left panel reports the errors from those patients
whose treatment types prescribed in the test data were all observed in the training data, and the
right panel reports the errors from those of whom at least one treatment type in the test data was
not observed in the training data. In Figure 3a, we see that ITR’s performance is as good as the
individual model. It outperforms the sub-pop model significantly because it is more expressive since
it allows individual-level heterogeneity and borrowing strength across individuals in the same group.
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In Figure 3b, we see the individual model performs the worst, even worse than pop model, because
the lack of subgroup structure makes the individual model statistically less efficient. Overall, ITR
performs similar to the subpop model when little data is available on the individual, and as more
data begins to accrue its performance improves. When sufficient data are available to estimate
individual-specific parameters reliably, the individual model begins to perform similar to ITR.

In Figure 4, we show trajectory predictions for a randomly chosen patient (ID number 43) under
ITR and the pop model. Starting with the left panel, the first 4 black points are observations in the
training set and the rest red points are unseen measurements in the test set. Prescriptions of IHD are
shown with vertical dashed lines. The ribbons denote the 95% confidence interval for the prediction.
We see that ITR has a better short-term prediction with tighter confidence interval than pop. From
left to right, as we observe more evidence (including both the exposure of creatinine measurements
and the prescribed treatment strategy), both models predict better with higher confidence whereas
pop is less accurate and suffers from high variance compared to the estimates obtained from ITR.

Figure 4: Comparison of ITR vs. pop on predicting creatinine measurements for an example patient:
black and red points are observed and unseen measurements respectively. IHD prescription
appears as vertical dashed lines.

In Figure 5, we show the distribution over the individual-specific response curves for IHD and
CRRT at the three different dose levels. These were obtained by averaging the function estimated
for each individual from the last iteration in each chain. As is clear, there is significant treatment
heterogeneity across all treatments.

Figure 5: Treatment-response curves

5. Conclusion

In this paper, we have developed a novel Bayesian nonparametric method for estimating treatment
response curves from sparse observational time series. We leverage hierarchical priors that allow
individual-specific estimates while borrowing strength across individuals. Notably, we maintain the
full posterior rather than just point estimates. We demonstrate significant gains in performance for
modeling creatinine and effects of treatments used for managing kidney function. As future work, we
plan to evaluate these models on other subpopulations with MIMIC and test sensitivity to different
modeling choices. Access to accurate models for estimating treatments responses at the individual
are critical for designing new personalized treatments.
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Appendix A. Transformation of Constrained Variables

The treatment-response curves were characterized using a parametric form containing constrained
variables (e.g., α2, α3 ∈ (0, 1)). To simplify inference, we transform the support of these variables
such that they live in the real space R and posit (Gaussian) priors on these transformed variables.
Given a random variable X ∈ Rd with continuous probability density function fX(x) and support
X = supp(fX(x)), we can define a random variable Y ∈ Rd such that Y = T (X) with support
Y = supp(fY (y)) and a one-to-one differentiable function T : X → Y. Then based on Olive (2014),
Y has the probability density function

fY (y) = fX(T−1(y))|det JT−1(y)|,

where the adjustment term is the absolute determinant of the Jacobian:

JT−1(Y ) =


∂T−1

1

∂y1
· · · ∂T−1

1

∂yd
...

...
∂T−1

d

∂y1
· · · ∂T−1

d

∂yd


Let us first consider the univariate variable α2 ∈ (0, 1) from the g function we defined in Section 2.2.

We transform it to be α′2 = logit(α2), and posit a Gaussian prior on it. That is, α′2 ∼ N (α′2;µα′2 , σ
2
α′2

).
The Jacobian adjustment is calculated as |det J(logit(α2))| = 1/α2(1 − α2). Thus we get the
probability density function

p(α2) = N (logit(α2);µα′2 , σ
2
α′2

)/α2(1− α2).

Now let us consider the multivariate variable φ = {α1, α2, α3, γ, b : α1 ∈ R, α2, α3 ∈ (0, 1), γ ∈
R, b/g(γ) ∈ (0, 1)} in the g function. We define a transformation

φ′ = T−1(φ) = {α1, logit(α2), logit(α3), γ, logit(b/g(γ))},

where g(γ) = α1(exp(α2γ/2)− 1)/(exp(α2γ/2) + 1). Since the support of φ′ is Rd, we can posit a
diagonal Gaussian prior φ′ ∼ N (φ′;µφ′ , Dφ′), and calculate the Jacobian

JT−1(φ) =


1 0 0 0 0
0 1/α2(1− α2) 0 0 0
0 0 1/α3(1− α3) 0 0
0 0 0 1 0
bζ
α1

bγζ exp(α2γ/2)
exp(α2γ)−1 0 bα2ζ exp(α2γ/2)

exp(α2γ)−1 ζ

 .

Here, ζ = g(γ)/b(g(γ)− b). Thus we obtain the adjustment |det JT−1(φ)| = |ζ|/α2α3(1−α2)(1−α3)
and reach at the probability density function

p(φ) = N (T−1(φ);µφ′ ,Dφ′)|ζ|/α2α3(1− α2)(1− α3).

We also have constrained parameters in the exponential kernels: σ2 ∈ R+ and ρ ∈ (0, 1) (to be
more precise, σ2

ui, ρui and σ2
ε′d
, ρε′d). We again define transformations σ′2 = log(σ2) and ρ′ = logit(ρ)

and posit Gaussian priors on them. Thereafter, we get the densities p(σ2) = N (log(σ2);µσ′ , σ
2
σ′)/σ

2

and p(ρ) = N (logit(ρ);µρ′ , σ
2
ρ′)/ρ(1− ρ) respectively.

Appendix B. Posterior inference for the individualized treatment
response model

B.1 Blokced Gibbs Sampler for the DPM

We first summarize the blocked Gibbs sampler for general DPMs, and then apply it specifically to ϕi
and φi in our model.
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Given a sufficiently large K, the mixture component parameters θ∗ = {θ∗1 , ..., θ∗K}, the stick
breaking variables V = {V1, ..., VK−1, VK = 1} and the component indicators Z = {Z1, ..., ZN} for
the N observations o = {o1, ..., oN}, the truncated stick-breaking representation of DPM is written
as follows.

p(on|πk, θ∗k) =

K∑
k=1

πkp(on|θ∗k) (11)

πk = Vk
∏
j<k

(1− Vj), for k = 1, ...,K

Vk ∼ Beta(1,M), for k = 1, ...,K − 1

Then the blocked Gibbs sampler is formulated by the following steps.

1. Independently sample θ∗k from p(θ∗k|Z,V ,o) ∝ G0(θ∗k)
∏N
n=1 p(on|θ∗k)1{Zn=k};

2. Independently sample vk from p(Vk|Z,θ,o) = Beta(1 + nk,M +
∑K
j=k+1 nj), where nj is the

number of observations in cluster j;

3. Independently sample zn from p(Zn = k|V ,θ,o) = πkp(on|θk), where πk = Vk
∏
j<k(1− Vj).

Note that step 1 can be derived in closed form if the base distribution G0 is chosen to be conjugate—a
choice we make in (6). Now let us specify the samplers for the DPM parameters in our model.

We first describe the steps of sampling DP mixtures for ϕi’s. Suppose K1 is the truncation
level we assume for the baseline progression. Denote the mixture component hyperparameters as
θ∗ϕ = {β∗b ,Σ∗b ,µ∗σ′u ,µ

∗
ρ′u
}, where β∗b = {β∗b1 , ..., β

∗
bK1
}, Σ∗b = {Σ∗b1 , ...,Σ

∗
bK1
}, µ∗σ′u = {µ∗σ′u1 , ..., µ

∗
σ′uK1

},
µ∗ρ′u = {µ∗ρ′u1 , ..., µ

∗
ρ′uK1

}. Further, the stick breaking variables Vϕ = {Vϕ1
, ..., VϕK1−1

, VϕK1
= 1} and

the component indicators Zϕ = {Zϕ1
, ..., ZϕI} for the parameters ϕ = {ϕ1, ..,ϕI}.

1. Independently sample β∗bk , Σ∗bk from

p(β∗bk ,Σ
∗
bk
|Zϕ,Vϕ,ϕ) = NIW(β∗bk ,Σ

∗
bk
|mk, κk, νk,Sk)

mk =
κ0β0 +

∑I
i=1 βi1{Zϕi=k}

κk

κk = κ0 +

I∑
i=1

1{Zϕi=k}

νk = ν0 +

I∑
i=1

1{Zϕi=k}

Sk = S0 +

I∑
i=1

βiβ
T
i 1{Zϕi=k} + κ0β0β

T
0 − κkmkm

T
k ;

2. Independently sample µ∗σ′uk
from

p(µ∗σ′uk
|Zϕ,Vϕ,ϕ) = N (µ∗σ′uk

;mσ′u
, sσ′u)

mσ′ =
σ2
σ′u0

µσ′0 + σ2
σ′0

∑I
i=1 log(σ2

ui)1{Zϕi=k}

σ2
σ′u0

+
∑I
i=1 σ

2
σ′0
1{Zϕi=k}

sσ′u =
σ2
σ′u0

σ2
σ′0

σ2
σ′u0

+
∑I
i=1 σ

2
σ′0
1{Zϕi=k}
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3. Independently sample µ∗ρ′uk
from

p(µ∗ρ′uk
|Zϕ,Vϕ,ϕ) = N (µ∗ρ′uk

;mρ′u
, sρ′u)

mρ′ =
σ2
ρ′u0
µρ′0 + σ2

ρ′0

∑I
i=1 logit(ρui)1{Zϕi=k}

σ2
ρ′u0

+
∑I
i=1 σ

2
ρ′0
1{Zϕi=k}

sρ′u =
σ2
ρ′u0
σ2
ρ′0

σ2
ρ′u0

+
∑I
i=1 σ

2
ρ′0
1{Zϕi=k}

4. Independently sample Vϕk from

p(Vϕk |Zϕ,θ∗ϕ,ϕ) = Beta(1 + n1k,M1 +

K1∑
j=k+1

n1j),

where n1j is the number of ϕi’s that were assigned to cluster j;

5. Independently sample Zϕi from

p(Zϕi = k|Vϕ,θ∗ϕ,ϕ)

= ω1kN (βi;β
∗
bk
,Σ∗bk)N (log(σ2

ui);µ
∗
σ′uk

, σ2
σ′u0

)N (logit(ρui);µ
∗
ρ′uk

, σ2
ρ′u0

)/σ2
ui(1− ρui)

2,

where ω1k = Vϕk
∏
j<k(1− Vϕj ).

Now we describe the steps of sampling DP mixtures for φid’s. Let K2d be the truncation
level assumed for the DPM prior on the dth treatment-response for (d = 1, ..., D). Denote the
mixture component hyperparameters as θ∗φd = {µ∗φ′d}, where µ

∗
φ′d

= {µ∗φ′d1 , ...,µ
∗
φdK2d

}. Further,
the stick breaking variables Vφd = {Vφd1 , ..., VφdK2d−1

, VφdK2d
= 1} and the component indicators

Zφd = {Zφ1d
, ..., ZφId} for the parameters φd = {φ1d, ..,φId}.

6. Independently sample µ∗φ′d from

p(µ∗φ′d
|Zφd ,Vφd ,φd) = N (µ∗φ′d

;mφ′d
,Sφ′d)

Sφ′d = (D−1
0d

+D−1
φ′0

I∑
i=1

1{Zφid=k})
−1

mφ′d
= Sφ′d(D−1

0d
µ0d +D−1

φ′0

I∑
i=1

T−1(φid)1{Zφid=k}),

where T−1(φid) = {α1id , logit(α2id), logit(α3id), γid, logit(bid/g(γid))};

7. Independently sample Vφdk from

p(Vφdk |Zφd ,θ∗φd ,φd) = Beta(1 + n2dk,M2d +

K2d∑
j=k+1

n2dj),

where n2dj is the number of φid’s that were assigned to cluster j;

8. Independently sample Zφid from

p(Zφid = k|Vφd ,θ∗φd ,φd) = ω2dkN (T−1(φid);µ
∗
φ′dk

,Dφ′0
)|ζid|/(1− α2id)4,

where ω2dk = Vφdk
∏
j<k(1− Vφdj ).
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B.2 Gibbs Sampler for the Variables with Conjugate Priors

9. Independently sample βi from

p(βi|θ∗ϕ, Zϕi , σ2
εi , bi,fi) = N (βi;mbi ,Sbi)

Sbi = (Σ∗−1
bZϕi

+ σ−2
εi XiX

T
i )−1

mbi = Sbi(σ
−2
εi XiYbi + Σ∗−1

bZϕi
µ∗bZϕi

),

where Xi = {Xi1, ...,XiJi}T is a Ji × p matrix, Ybi = Yi − bi − fi is a 1× Ji vector and fi is
defined in Eq. (2). Σ∗−1

bZϕi
and µ∗bZϕi are sampled in Step 1.

10. Independently sample bi from

p(bi|βi,ϕi, σ2
εi ,fi) = N (bi;mui ,Sui)

Sui =
(
K−1
u (tij , tij′ ;ϕi) + σ−2

εi IJi
)−1

mui = σ−2
εi SuiYui ,

where Yui = Yi −Xiβi − fi is a 1× Ji vector.

11. Independently sample σ2
εi from

p(σ2
εi |βi, bi,f

′
i) = IG(sε + Ji/2, ν + YeiY

T
ei /2),

where Yei = Yi−Xiβi− bi−f ′i is a 1×Ji vector and the auxiliary variable f ′i is sampled from

p(f ′i |βi,φi,σ2
f ,ρ

2
f , σ

2
εi , bi) = N (f ′i ;mfi ,Sfi)

Sfi =
(
K−1
f (tij , tij′ ;σ

2
f ,ρ

2
f ) + σ−2

εi IJi
)−1

mfi = Sfi
(
σ−2
εi Yfi +K−1

f (tij , tij′ ;σ
2
f ,ρ

2
f )m(ti;φi)

)
,

where Yfi = Yi −Xiβi − bi is a 1× Ji vector.

12. Sample M1 from

p(M1|η1, k1) ∼ c1 + k1 − 1

c1 + k1 − 1 + I(d1 − log(η1))
Gamma(c1 + k1, d1 − log(η1))

+
I(d1 − log(η1))

c1 + k1 − 1 + I(d1 − log(η1))
Gamma(c1 + k1 − 1, d1 − log(η1)),

where the auxiliary variable η1 ∼ Beta(M1 + 1, I), the prior for M1 is Gamma(c1, d1), and k1

is the current cluster number for ϕi’s.

13. Independently sample M2d from

p(M2d|η2d, k2d) ∼
c2d + k2d − 1

c2d + k2d − 1 + I(d2d − log(η2d))
Gamma(c2d + k2d, d2d − log(η2d))

+
I(d2d − log(η2d))

c2d + k2d − 1 + I(d2d − log(η2d))
Gamma(c2d + k2d − 1, d2d − log(η2d)),

where the auxiliary variable η2d ∼ Beta(M2d + 1, I), the prior for M2d is Gamma(c2d, d2d), and
k2d is the current cluster number for φid’s.
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B.3 Metropolis-Hastings Sampler in the Non-Conjugate Case

We use blocked Metropolis-Hastings to sample the remaining parameters i.e., parameters for which we
cannot obtain the conditional distributions in closed-form: σ2

ui , ρui , σ
2
ε′d
, ρε′d , and φid’. Specifically,

for a variable x, we propose a candidate value xcand from a proposal distribution p(xcand|x) and
accept the candidate with probability

min{1, π(xcand)p(x|xcand)

π(x)p(xcand|x)
},

where π(·) is the full joint posterior defined in Eq. (10). Below, we choose different proposal
distributions for x for the following three different types of support.

• For x ∈ R, we propose new sampler from N (x, 0.32), which is a symmetric proposal distribution.

• For x ∈ R+, we propose new sampler from N (x, 0.32)/Φ(x, 0.32), where Φ is the CDF of the
normal distribution. This is not a symmetric proposal distribution.

• For x ∈ (0, 1), we propose a new sampler from N (x, 0.152) and “reflect” it by 0 or 1 to make it
fall back in (0, 1). This is so-called “reflected normal”, and the reflection can be done multiple
times if needed. It is still a symmetric proposal distribution.

We experimented with a few different choice of values for the variance parameter in the proposal
distribution. The values selected above yielded reasonable acceptance rates in the range of 0.14−0.22.

In detail, the sampling for the remainder of the parameters proceeds as follows.

14. Propose σ2cand

ui ∼ N (σ2
ui , 0.3

2)/Φ(σ2
ui , 0.3

2), ρcand
ui ∼ N (ρui , 0.152) an reflect ρcand

ui into (0, 1).

We accept the proposal with probability of min{1, π(σ2cand
ui

,ρcand
ui

)Φ(σ2
ui

)

π(σ2
ui
,ρui )Φ(σ2cand

ui
)
}, where π(σ2·

ui , ρ
·
ui) is

N
(
Yui ;0,Ku(βi, σ

2·

ui , ρ
·
ui)+σ

2
εiIJi

)
N
(

log(σ2·

ui);µσ′ui , σ
2
σ′u0

)
N
(
logit(ρ·ui);µρ′ui , σ

2
ρ′u0

)
/σ2·

ui(1−ρ
·
ui)

2.

15. Propose σ2cand

ε′ ∼ N (σ2
ε′ , 0.3

2ID)/Φ(σ2
ε′ , 0.3

2ID) and ρcand
ε′ ∼ N (ρε′ , 0.152ID) and reflect ρcand

ε′

into (0, 1)D. We accept the proposal with probability of min{1, π(σ2cand
ε′ ,ρcand

ε′ )Φ(σ2
ε′ ,0.3

2ID)

π(σ2
ε′ ,ρε′ )Φ(σ2cand

ε′ ,0.32ID)
},

where π(σ2·

ε′ ,ρ
·
ε′) is

I∏
i=1

N
(
Yei ;m(ti,φi),Kε′(σ2·

ε′ ,ρ
·
ε′) + σ2

εiIJi
) D∏
d=1

N
(

log(σ2·

ε′d
);µε′1 , σ

2
ε′1

)
N
(
logit(ρ·ε′d);µε′2 , σ

2
ε′2

)
/σ2·

ε′d
(1− ρ·ε′d)2.

16. Propose {αcand
1id

, αcand
2id

, αcand
3id

, γcand
id , bcand

id /g(γcand
id )} ∼ N ({α1id , α2id , α3id , γid, bid/g(γid)},

Diag(0.32, 0.152, 0.152, 0.32, 0.152)), αcand
2id
∼ N (α1id , 0.3

2) and reflect αcand
2id

, αcand
3id

and bcand
id /g(γcand

id )

into (0, 1) individually. We accept the proposal with probability of min{1, π(φcand
i )

π(φi)
}, where

π(φ·i) is

N
(
Yei ;m(ti,φ

·
i),Kf (σ2

ε′ ,ρε′) + σ2
εiIJi

) D∏
d=1

N
(
T−1(φ·id);µφ′id ,Dφ′0

)
|ζ ·id|/(1− α·2id)4.
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