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Abstract
While simulated game environments have greatly
accelerated research in reinforcement learning,
existing environments lack the open-domain re-
alism of tasks in computer vision or natural lan-
guage processing, which operate on artifacts cre-
ated by humans in natural, organic settings. To
foster reinforcement learning research in such
settings, we introduce the World of Bits (WoB),
a platform in which agents complete tasks on
the Internet by performing low-level keyboard
and mouse actions. The two main challenges
are: (i) to curate a diverse set of natural web-
based tasks, and (ii) to ensure that these tasks
have a well-defined reward structure and are re-
producible despite the transience of the web. To
tackle this, we develop a methodology in which
crowdworkers create tasks defined by natural lan-
guage questions and provide demonstrations of
how to answer the question on real websites us-
ing keyboard and mouse; HTTP traffic is cached
to create a reproducible offline approximation of
the website. Finally, we show that agents trained
via behavioral cloning and reinforcement learn-
ing can complete a range of web-based tasks.

1. Introduction
Over the last few years, we have witnessed significant
progress in developing agents that can interact with in-
creasingly complex environments (Mnih et al., 2015; Silver
et al., 2016; Levine et al., 2016). Critical to this progress
are not only the core learning algorithms (Sutton et al.,
1999; Mnih et al., 2015; Schulman et al., 2015a) and the
associated techniques for learning at scale (Mnih et al.,
2016), but simulated environments that feature complex
dynamics and help benchmark our progress (e.g., Belle-
mare et al. (2013); Mikolov et al. (2015); Todorov et al.
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Figure 1. Agents in the World of Bits perceive the screen pixels,
the DOM (with element coordinates grounded in the image), and
a reward, and output keyboard and mouse commands.

(2012); Johansson et al. (2016)). However, simulated envi-
ronments are intrinsically limited: agents in such environ-
ments never experience the sheer breadth of experience of
the real world, and thus they miss out on important seman-
tic knowledge crucial for developing intelligence. For con-
trol tasks, it is possible to work with realistic environments
in robotics, but the complexity of physical hardware con-
straints efficient data gathering and rapid iteration. Even
for narrow domains such as grasping (Levine et al., 2016;
Pinto & Gupta, 2016), the cost and effort of large-scale data
collection is daunting.

To address this, we introduce World of Bits (WoB),1 a learn-
ing platform that uses the web as a rich source of open-
domain environments. In WoB, an agent receives its obser-
vations in the form of the Document Object Model (DOM)
of a webpage and its rendered pixels, and accomplishes
web tasks by sending mouse and keyboard actions. The
use of web as a learning platform offers three benefits:

Open-domain. By allowing agents to interact with the
web, we open up the world’s supply of websites as a rich
source of learning environments and application domains.
Since agents directly work with the UI, we can use existing
web infrastructure without designing specialized APIs.

Open-source. Unlike robotics, WoB is digital, which en-
ables fast iteration and massive scaling. Webpages are
open-source and consist entirely of HTML/CSS/Javascript,
which is easy to inspect and change dynamically.

Easy to collect data. Because agents use same interface
as humans do, it is possible to crowdsource human demon-
strations of a web task from anyone with an access to a web
browser, keyboard and mouse at a low cost. This unlocks

1in contrast to the world of atoms https://goo.gl/JdLQGT
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Question: Can you
book a flight from
San Francisco to
New York?

Question: What is the
top rated place to eat
Korean food in SF?

Question: What is the
monthly payment for
$2000 with a term of
2 years at today’s rates?

Question: How much
is an iPhone 7 Plus in
Indiana?

Question: What is a
word that can be made
using scypotnha that is 9
letters long?

Question: What is a
recipe I can make that
contains Avacado but not
Chicken?

Figure 2. Examples of open-domain web tasks. Each web task is specified by a natural language query template and slot values
(underlined), and the agent receives positive reward for clicking on the correct answer. We crowdsource the creation of these tasks.

the potential for large-scale data collection.

While WoB specifies a platform, the main conceptual chal-
lenge is to define meaningful web tasks in a scalable way.
In Section 2.2, we start by constructing the Mini World of
Bits (MiniWoB), 100 web tasks (see Figure 7 for exam-
ples) of varying difficulty, in which the reward function is
manually constructed.

Next, in Section 2.3, we describe FormWoB, which con-
sists of four web tasks based on real flight booking web-
sites. The main difficulty here is that websites are con-
stantly changing, and yet we would like to package them
into reproducible research environments for our agents. To
this end, we use a man-in-the-middle proxy to capture and
replay live HTTP traffic, building up an approximation of
the live website.

Finally, inspired by large datasets such as ImageNet in
computer vision (Deng et al., 2009) and SQuAD in NLP
(Rajpurkar et al., 2016), we would like to scale up to a
diverse set of web tasks without manual effort on each
web task. To tackle this, we develop a methodology based
on crowdsourcing that effectively casts web tasks as ques-
tion answering (Section 2.4). First, we ask crowdworkers
to write queries that can be answered by interacting with
a given website. Each query is defined by a query tem-
plate and slot values (e.g., “New York”) that fill the tem-
plate slots (See Figure 2 for examples). Positive reward is
given if an agent clicks on the correct answer. We create a
dataset, QAWoB, which has 11,650 queries (from 521 tem-
plates). We collected initial demonstrations for four of the
templates, with one demonstration per query. Collecting
demonstration for the full dataset is on-going work.

To benchmark a standard approach, we evaluate the perfor-
mance of convolutional neural networks that take as input
the image and text from the DOM and outputs keyboard

and mouse actions. We train these models using both super-
vised learning and reinforcement learning, and show that
in some cases we can generalize across different queries
of the same template. However, our overall error rates re-
main relatively high, suggesting that the proposed bench-
mark leaves a lot of room for improvement.

2. Constructing Web Tasks
In this section, we describe a progression of three tech-
niques for creating web tasks, MiniWoB (Section 2.2),
FormWoB (Section 2.3), and QAWoB (Section 2.4).

2.1. Web as an Environment

To interact with a web browser, we developed our platform
on top of OpenAI Universe (http://universe.openai.com/),
which allows one to package nearly arbitrary programs into
Gym (Brockman et al., 2016) environments suitable for re-
inforcement learning. Specifically, we package a Chrome
browser inside a Docker container, which exposes a Gym
interface for the agent to interact with. At each time step
t, the agent receives an observation, which consists of
the raw screen pixels I ∈ RW×H×3 (e.g. of resolution
1024×768×3), the text DOMD, and a scalar reward signal
r. Each element of D is localized in the image by a 4-tuple
(x, y, w, h), denoting its bounding box. The agent commu-
nicates back a list of actions, which can be 1) a KeyEvent
(e.g. hold down the k button), or 2) a PointerEvent (e.g.
move the mouse to location (140, 56) while holding down
the left mouse button). Then the agent obtains reward rt
which is defined by the specific web task.

2.2. Minimalistic Web Tasks: MiniWoB

Inspired by the ATARI Learning Environment (Bellemare
et al., 2013), we designed a benchmark of 100 reinforce-

http://universe.openai.com/
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Figure 3. 7 of the 100 MiniWoB web tasks, ranging from simple (left) to more complex (right).

ment learning environments called Mini World of Bits
(MiniWoB) that share many of the characteristics of live
web tasks (interacting with buttons, text fields, sliders, date
pickers, etc.) and allows us to study these challenges in a
controlled context. Since the web offers powerful visual
design tools, the average MiniWoB environment is only
112 lines of HTML/CSS/JavaScript. Each MiniWoB envi-
ronment is an HTML page that is 210 pixels high, 160 pix-
els wide (i.e. identical to the ATARI environment dimen-
sions) — the top 50 pixels (in yellow background) contain
the natural language task description (randomly generated)
and the 160 × 160 area below is for interactions. The re-
wards range from −1.0 (failure) to 1.0 (success) and are
weighted linearly with time to encourage fast completion
time. See Figure 7 for examples.

2.3. Live Web Tasks: FormWoB

While it is possible to create web tasks from scratch (e.g.
MiniWoB), the Internet already offers a massive repository
of websites. In this section we describe an approach that
allows us to convert these websites into web tasks.

Since websites change over time and since we do not wish
to spam websites with requests while the agent is train-
ing, we need to create an offline approximation that the
agent can interact with. To do this, when we collect hu-
man demonstrations, we use a proxy to record all HTTP
requests and responses between the agent and the website.
To train and evaluate agents on a web task, we use the proxy
to handle all requests with the recorded responses.

We also use requests to define reward functions. Form-
filling tasks involve making a final request to the website
with a set of key-value pairs (e.g., {from: DEN, to: JFK}).
We define the reward function as the fraction of key-value
pairs that match those in human demonstrations.2

When an agent performs an action that generates a request
never seen during human demonstrations (i.e., a cache
miss), we immediately end the episode with zero reward.
This provides a lower bound on the true reward if the agent

2Ideally, we would require exact match, but this resulted in too
sparse of a reward signal to train and evaluate with.

Figure 4. Our crowdsourcing interface for collecting human
demonstrations on the web. The left side streams visual obser-
vations using VNC and the right side displays queries. All ob-
servations and actions are recorded. At the end of episode, the
worker marks a DOM element as the answer (green box).

were to interact with the real website (assuming all rewards
are non-negative), since all action sequences that result in
a cache miss receive the minimum possible reward.

FormWoB benchmark. We applied this approach to four
flight booking websites (United, Alaska, AA, and JetBlue).
On each website, an agent must fill out a form and click
on the submit button. The form filling process requires a
diverse set of interaction skills, such as typing cities in a
text box using autocomplete, using a date picker, etc. For
each website, there is a query template parameterized by
the following fields: an origin airport, a destination airport,
a departure date, and a return date. Airport names are sam-
pled from 11 major US cities, and dates are sampled from
March 2017. We created 100 different instantiations for
each query template, and collected on average 1 episode of
human demonstration for every query.

2.4. Crowdsourcing Web Tasks at Scale: QAWoB

To take full advantage of the scale and diversity of the web,
we now present a more scalable approach to generating
web tasks that does not involve specifying the reward func-
tions manually for each web task. The key is cast web tasks
as question answering, and solicit questions from crowd-
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(a) Website categories. (b) GUI operations.

Figure 5. QAWoB contains queries from a diverse set of cate-
gories and require many types of operations.

workers. The approach has two stages:

Stage 1. A worker provides a website (e.g., yelp.com)
and a query template (e.g., “What is the cheapest restau-
rant that serves (type of food) near (geographic loca-
tion)?”). We also ask workers to generate multiple slot
values for each template (e.g. “brunch” / “San Francisco”,
“hamburger” / “JFK international airport”, etc.).

Stage 2. Next, a worker takes a query from stage 1 and
uses our demonstration interface to answer it (see Fig-
ure 4).3 The interface has a “Select” button, which allows
the worker to mark the DOM element of the webpage cor-
responding to the answer. We define the (very sparse!) re-
ward for the task to be 1 only if an agent clicks on the an-
notated DOM element.

We encouraged workers to be creative when they pick the
website and the queries so that we can capture a wide
distribution of online activities. However, we do impose
some constraints. For instance, in the instruction we dis-
courge queries that require too much reading comprehen-
sion (e.g. “How many royal families are mentioned in
Game of Thrones?” on wikipedia.org). We also
require that the website be mobile-friendly, because the
learning environment operates in mobile view.

QAWoB benchmark. Our crowdsourced QAWoB dataset
has 521 query templates. The majority of the templates
have 2 slots, while the average is 2.54. We gather 10 - 100
slot values per template, resulting in 13,550 total queries.
11,650 of the queries have corresponding answers. In most
cases, one needs to navigate through multiple screens or
menus, and perform a search before locating the answer.
This makes the problem particularly hard for pure RL ap-
proaches, as random exploration has little chance to stum-
ble upon the goal state.

We label 100 of the templates with the sequence of GUI
operations required to find the answer. Note that there are
multiple ways to accomplish the task and some of the op-
erations can be reordered, so we only provide one of the
shortest paths. There are 7 GUI operations: search, text

3 The interface runs VNC connected to a WoB docker con-
tainer running a browser.

image

DOM

1. Input

CNN

2. State Features

feature

3. Action Representation 4. Action 

mouse

mouse buttons

keyboard

query

sample

FC

sample

FC sample

sa
mple

LocalCNN

GlobalCNN

Figure 6. CNN architecture. GlobalCNN: The CNN representa-
tion is concatenated with DOM features into a global feature vec-
tor, which is used to predict mouse and keyboard events. Local-
CNN (depicted): The mouse position defines an attention mecha-
nism that pools the CNN features.

(any textbox that is not a search box), date, dropdown,
scroll, click (any click that is not part of the other opera-
tions), and other (less common GUI widgets like sliders).
We also organize the templates into 7 categories: dining,
entertainment, housing, transportation, shopping, calcula-
tor, and other. Figure 5 shows the distribution of categories
and GUI operations.

3. Training Web Agents
To build an agent for the WoB setting requires modeling
a novel state space (images and DOM) and action space
(keyboard and mouse).

3.1. Model

State space. The state consists of a color image I , the
DOM D, and the query q. The color image I has size
W × H × 3. The DOM is a list of text elements, with
bounding boxes (x, y, w, h) to represent their spatial rela-
tions. For MiniWoB, the query is natural language. For
FormWoB and QAWoB, we assume a semantic frame is
extracted for q, in the format of (template, slots).

Action space. We model the cursor position m =
(mx,my) ∈ [0,W ) × [0, H) with a multinomial distri-
bution over the positions in a regular grid over the im-
age.4 We model the mouse actions with a multinomial dis-
tribution over four possibilities: no-op, click, drag,
scroll-up, scroll-down. Finally, the key actions
also follow the multinomial distribution. We found that
giving the agent unrestricted access to the keyboard is im-
practical, as the agent may press key combinations such

4We also experimented with a Gaussian distribution but found
it inadequate due to its unimodal shape.
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as ‘CTRL+w’, which closes the window. Therefore, in
addition to keys we create atomic actions out of com-
mon and safe key combinations, such as ‘CTRL+c’ (copy),
‘CTRL+v’ (paste), and ‘CTRL+a’ (select all).

Architecture. Our model (see Figure 6) first processes
the image using a Convolutional Neural Network (CNN).
For DOM, we compute a text feature map based on the
matching between query and DOM. Then the two maps
are concatenated into a join representation. On top of this
we develop two variants: first we flatten the features and
feed them directly through a fully-connected layer (Glob-
alCNN). Since we had the intuition that local features alone
should suffice to characterize the action, we also examine
a LocalCNN architecture to capture the intuition that agent
should attend to where cursor is. So the mouse distribution
is used as soft attention (Bahdanau et al., 2014) to aver-
age the CNN features into a global representation to predict
mouse buttons and keyboard events.

3.2. Optimization

We train models on web tasks by sequencing behavior
cloning and reinforcement learning.

Behavior cloning. Since our web tasks can have very long
time horizons and sparse rewards, a naive application of re-
inforcement learning will likely fail. Therefore, we pretrain
our networks by optimizing a supervised learning objective
(Pomerleau, 1989) on demonstrations (which were used to
define the reward in the first place). Since a typical record-
ing might have thousands of frames, we filter out frames
where there was no action to obtain a dataset of state-action
tuples.

Reinforcement learning. Policies trained with supervised
learning suffer from compounding errors, so we fine tune
the policies by optimizing the expected reward using a
policy gradient method (Sutton et al., 1999). In particu-
lar, we use the Asynchronous Advantageous Actor-Critic
(A3C) (Mnih et al., 2016) and estimate the advantage using
the Generalized Advantage Estimation (Schulman et al.,
2015b) with the standard settings γ = 0.9, λ = 0.95.

4. Experiments
Our goal in this section is to establish baselines that current
techniques provide on web environments, and highlight the
challenges for future work in this area.

4.1. Results on Synthetic Web Tasks (MiniWoB)

Demonstration data. We collected 10 minutes of human
demonstrations on each of the 100 MiniWoB environments
(about 17 hours total). Unlike the FormWoB and QAWoB
settings, the MiniWoB dataset contains interactions that re-

quire dragging and hovering (e.g. to trigger a menu expan-
sion). Therefore, we process the demonstrations at regu-
lar 83 millisecond intervals (12 frames per second) to ex-
tract approximately 720,000 state-action pairs. With grid-
points spaced 8 pixels across the 160 pixel area, we obtain
a 20 × 20 grid and 3 possible actions (move, drag, click),
leading to a total of 20× 20× 3 = 1200 possible actions.

Model. In these experiments we use a 6-layer feedforward
network that takes the 210× 160× 3 image, and applies 5
convolutional layers with 5 × 5 filters of stride 2 and sizes
[16, 24, 32, 48, 32]. We then average pool the representa-
tion and pass it through one fully-connected layer of 384
units and another to compute the logits for the mouse and
key actions. Surprisingly, we found that feeding in the pre-
viously taken actions hurts performance because the agent
learns to use continuous paths similar to humans and de-
velops a tendency to meander, which negatively impacts
exploration in many environments.

Evaluation. For the purposes of evaluation, a robust statis-
tic to use is the success rate (SR) for each environment.
The MiniWoB tasks are designed so that rewards in the in-
terval (0, 1] indicate partial credit towards the task, while
negative rewards indicate a failure. Given a list of re-
wards R, we thus compute the success rate as

∑
1[R >

0]/
∑

1[R 6= 0]. We can immediately evaluate two meth-
ods on all environments: 1) the random baseline, and 2)
humans (refer to Figure 7).

Supervised Learning. We obtain a behavior cloning pol-
icy by training on the demonstrations using Adam (Kingma
& Ba, 2014) with a learning rate of 10−3 and batch size
of 32. We achieved better results by weighing click and
keyboard event losses (which are rare compared to move
events) 10 times higher in the objective. We then run the
fixed policy on each environment for 100,000 steps (about
2 hours at 12FPS) and evaluate the success rate (see Figure
7, yellow bars).

Reinforcement Learning. We run 12 environments in par-
allel at 12 FPS for up to 1 million steps and perform an
update every 200 time steps (i.e. training batches have size
12 × 200 = 2400 steps) with Adam and a learning rate of
10−4. To mitigate the effects of our asynchronous setting,
we train 3 times and use the best one. The results are shown
in Figure 7 (green bars).

Interpretation. We summarize the quantitative results
across all environments in Table 1. We refer to an environ-
ment as “Solved” if its success rate is at least half (50%)
that of a human. From these numbers, it is evident that
supervised learning slightly improves the policy (20.8% to
24.8%), but a much larger improvement can be obtained by
fine-tuning the policy with reinforcement learning (24.8%
to 34.8%). We also see that most of our performance comes



World of Bits: An Open-Domain Platform for Web-Based Agents

Figure 7. The success rate on all MiniWoB environments, normalized by human performance. (The performance on the cropped Chase-
Circle is 250%). The tasks are arranged in an approximate/subjective level of difficulty from easy (left) to hard (right).

Random SL SL+RL #envs
Success Rate (SR) 20.8 24.8 34.8 100
% Solved 12 17 26 100
SR: Click 28.1 35.2 48.5 57
SR: Drag 21.5 24.7 34.6 15
SR: Mouse+Keyboard 6.4 3.5 7.8 21
SR: Compound 3.3 3.8 4.3 7

Table 1. Summary of MiniWoB human-normalized success rate
across all environments, and across 4 environment categories
based on the required interactions. #envs denotes the number of
environments in each category. SL is supervised learning and RL
is reinforcement learning.

from environments that require mouse interaction (Click /
Drag). We also see a sharp drop in tasks that require key-
board input (7.8% SR). Finally, “Compound” environments
are our most difficult environments (e.g. a synthetic email,
flight booking, search engine, calendar, text editor, etc.);
They combine multiple interactions over longer sequences
(e.g. search for an email and reply with some text), and
clearly pose a significant challenge (4.3% SR). Note that
Random policy can do well in some environments because
the action frequency is high (12 FPS), and our rewards for
correct actions are scaled linearly based on time.

4.2. Results on Live Web Tasks (FormWoB)

Environment setup. Next, we evaluate our model on
the four FormWoB tasks. The resolution of these envi-
ronments is 375 × 667 × 3. The FormWoB dataset con-
tains four flight booking website: United (united.com),
Alaska (alaskaair.com), JetBlue (jetblue.com) and Amer-
ican (aa.com). We run the environments at 1 frame per
second to accommodate the load time of webpages.

Demonstration Data. For each website, we collected 100
(query, demonstration) pairs using AMT. Unlike MiniWoB,
most of the interactions here involve clicking and typ-
ing. After preprocessing, each episode consists of approxi-

mately 30–50 keyboard or mouse events. Similar to Mini-
WoB, we divide the screen into 20×20 grid points, and use
the key encoding scheme introduced in Section 3.1.

Model. Our model is the same 6-layer architecture in
MiniWoB, except we remove the dragging actions. We
also evaluate the LocalCNN model that directly outputs a
20× 20× 32 dense feature map, which is used to drive at-
tention and mouse clicks.We use a simple heuristic to com-
bine the DOM together with the query to compute a query-
specific feature map, which indicates salient locations in
the input. In particular, we intersect the words in the query
and the DOM using a similarity score based on edit dis-
tance, and “put” that score into the middle of the bounding
box that contains that DOM element. For instance, if a
query contains the word “From”, then any element in the
webpage that contains the word “From” would have higher
activation in the feature map.

We found that treating the keyboard simply as another
categorical distribution was very challenging because the
model would have to learn to type out entire phrases such
as “San Francisco” one character at a time. Therefore, we
augment the state with a pointer into each slot in the query
and define actions for typing the next character of some
slot. As an example, consider the following query with
four slots:

Departure City

Destination City

Departure Month

S  a  n   F  r  a  n  c  i  s  c  ok = 

Departure Day

N  e  w    Y  o  r  k

3

15

In this example, we would have a multinomial distribution
over the 4 slots. If the agent outputs the action sequence
K1 K1 K1 K2 K2, it will first type ‘S’, ‘a’, ‘n’ (the pre-
fix of “San Francisco”), reset the pointer for the first slot,
and then type ‘N’, ‘e’.

Supervised Learning. We use similar supervised learning

mobile.united.com
https://m.alaskaair.com/
https://mobile.jetblue.com/mt/book.jetblue.com/shop/search/
https://www.aa.com/booking/find-flights
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Figure 8. Learning curves and rewards on FormWoB task Book a flight from (origin) to (destination) leaving (departure date) and
returning (return date) on united.com. GlobalCNN outperforms LocalCNN across the board.
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Figure 9. Rewards for the 4 FormWoB tasks and 4 QAWoB tasks. Random achieves 0, human is 1.

setting as in MiniWoB, except the learning rate is 10−4 and
the keyboard event losses are weighted 20 times higher.

Reinforcement Learning. We fine-tune the models us-
ing RL on each of the environments separately. For every
episode, we sample randomly from the set of queries and
run the model at 8 FPS.

Evaluation. We are interested in measuring the model’s
generalization ability across queries. We split the tasks on
each website into 80% for training, and 20% for testing.
First, we report the test likelihood as a metric to show how
well the agent models human trajectories. We then evaluate
the rewards the agent is able to achieve on both training and
test sets. We report the average rewards over the final three
checkpoints.

Results on FormWoB. Figure 8 shows the learning curves
on the United website. The performance of random agents
is identically zero on these tasks. Our model shows some
learning and generalization. In particular, for flight book-
ing, the model achieves 20%–30% of human level perfor-
mance on training queries, and 16% on test queries. Fig-
ure 9 summarizes the model’s performance on 8 web tasks
in our experiment.

We visualize the model’s attention output at some key
frames in Figure 10. As we can see, the model generalizes
by correctly selecting the city in dropdown and picking the
correct date, aided by text matching. The CNN identifies

the “Submit” button even after some random scrolling has
occurred. The most common failure mode is if the agent
falls off the demonstrators’ state distributions (e.g. trig-
gering an error message), it is difficult to take actions to
recover.

4.3. Results on Crowdsourced Web Tasks (QAWoB)

Using same setup as in FormWoB, we perform experiments
on the following websites from the QAWoB dataset: Xe
(xe.com), Allrecipes (allrecipes.com), Scrabblewordfinder
(scrabblewordfinder.org), and Mapquest (mapquest.org).
The results of SL and SL+RL of both LocalCNN and
GlobalCNN models on QAWoB are reported in Figure 9.

We find the performance of LocalCNN to be inadequate
on these web tasks, while GlobalCNN performs much bet-
ter. This is consistent with GlobalCNN achieving a lower
training loss (∼ 0.08) compared to LocalCNN (∼ 0.2). It
is likely that the inductive bias introduced in LocalCNN
makes it incapable of fitting noisy human demonstrations.
Figure 11(c) shows some example failure cases.

5. Related Work
Reinforcement learning environments. Our work en-
joys the company of many recent projects that aim to pro-
vide challenging environments for reinforcement learning
agents, including the ATARI Learning Environment (Belle-

http://www.xe.com/en/currencyconverter/
http://allrecipes.com/
http://scrabblewordfinder.org/
https://www.mapquest.com/directions
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Figure 10. Visualization of agent’s distribution over mouse locations on a test task from FormWoB (united.com)
.

(a) (b) (c)

Figure 11. Common error cases: (a) Deviating from the human
demonstration state distribution. (b) HTTP request not in our
cache. (c) Picking the wrong answer to the query.

mare et al., 2013), MuJoCo (Todorov et al., 2012), Com-
mAI (Baroni et al., 2017), Project Malmo (Johansson et al.,
2016), SNES (Bhonker et al., 2016), TorchCraft (Synnaeve
et al., 2016), DeepMind Lab (Beattie et al., 2016) and ViZ-
Doom (Kempka et al., 2016). World of Bits differs primar-
ily by its focus on the open-domain realism of the web.

Performing tasks on the web. The web is a rich envi-
ronment with a long tail of different phenomena and the
emergence of high-level semantics. The information re-
trieval and natural language processing communities have
long used the web as a source of textual data (Hearst, 1992;
Brill et al., 2002; Etzioni et al., 2005). Nogueira & Cho
(2016) introduced WebNav, a software tool that transforms
a website into a synthetic goal-driven web navigation task.
Some work has also focused on mapping natural language
queries to programs that operate on the DOM structure of
web pages (Pasupat & Liang, 2014). These previous works
focus on higher-level actions that abstract away the visual
layout and the keyboard and mouse movements, which lim-
its their scope, especially given the increasing prevalence of
highly interactive websites. To our knowledge, our work is

the first to tackle the problem of interacting with websites
using both vision and raw mouse and keyboard actions on
open-domain tasks at scale.

Natural language to actions. There is a large body of
work on connecting language to actions. Closely related
to our work is Branavan et al. (2009), who used reinforce-
ment learning to map instructions (e.g. a Windows trou-
bleshooting article) to actions over a user interface in a
virtual machine; however, they used preprocessed actions.
Other work operates in the context of navigation (Vogel &
Jurafsky, 2010; Tellex et al., 2011; Artzi & Zettlemoyer,
2013), and building tasks (Long et al., 2016; Wang et al.,
2016). The focus of these efforts is on modeling natural
language semantics. Our work provides a bridge between
this semantic-oriented work and the more control-oriented
tasks found in most reinforcement learning environments.

6. Conclusion
In this paper, we introduced World of Bits (WoB), a plat-
form that allows agents to complete web tasks with key-
board and mouse actions. Unlike most existing reinforce-
ment learning platforms, WoB offers the opportunity to
tackle realistic tasks at scale. We described a progression
of three techniques to create web tasks suitable for rein-
forcement learning: 1) Minimalistic tasks such as Mini-
WoB (hand-crafted tasks), 2) Proxy environments such
as FormWoB (live websites, hand-crafted tasks), and 3)
Crowdsourced environments such as QAWoB (live web-
sites, crowdsourced tasks). Finally, we showed that while
standard supervised and reinforcement learning techniques
can be applied to achieve adequate results across these en-
vironments, the gap between agents and humans remains
large, and welcomes additional modeling advances.
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