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Abstract
We develop a novel and generic algorithm for the adversarial multi-armed bandit problem (or more
generally the combinatorial semi-bandit problem). When instantiated differently, our algorithm
achieves various new data-dependent regret bounds improving previous work. Examples include:
1) a regret bound depending on the variance of only the best arm; 2) a regret bound depending
on the first-order path-length of only the best arm; 3) a regret bound depending on the sum of
the first-order path-lengths of all arms as well as an important negative term, which together lead
to faster convergence rates for some normal form games with partial feedback; 4) a regret bound
that simultaneously implies small regret when the best arm has small loss and logarithmic regret
when there exists an arm whose expected loss is always smaller than those of other arms by a fixed
gap (e.g. the classic i.i.d. setting). In some cases, such as the last two results, our algorithm is
completely parameter-free.

The main idea of our algorithm is to apply the optimism and adaptivity techniques to the well-
known Online Mirror Descent framework with a special log-barrier regularizer. The challenges are
to come up with appropriate optimistic predictions and correction terms in this framework. Some
of our results also crucially rely on using a sophisticated increasing learning rate schedule.
Keywords: multi-armed bandit, semi-bandit, adaptive regret bounds, optimistic online mirror de-
scent, increasing learning rate

1. Introduction

The adversarial Multi-Armed Bandits (MAB) problem (Auer et al., 2002) is a classic online learning
problem with partial information feedback. In this problem, at each round the learner selects one of
theK arms while simultaneously the adversary decides the loss of each arm, then the learner suffers
and observes (only) the loss of the picked arm. The goal of the learner is to minimize the regret, that
is, the difference between her total loss and the total loss of the best fixed arm. The classic Exp3
algorithm (Auer et al., 2002) achieves a regret bound of order Õ(

√
TK) after T rounds,1 which is

worst-case optimal up to logarithmic factors.
There are several existing works on deriving more adaptive bandit algorithms, replacing the de-

pendence on T in the regret bound by some data-dependent quantity that is O(T ) in the worst-case
but could be potentially much smaller in benign environments. Examples of such data-dependent
quantities include the loss of the best arm (Allenberg et al., 2006; Foster et al., 2016) or the empiri-
cal variance of all arms (Hazan and Kale, 2011a; Bubeck et al., 2017). Extensions to more general

1. Throughout the paper we use the notation Õ(·) to suppress factors that are poly-logarithmic in T and K.
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settings such as semi-bandit, two-point bandit, and graph bandit have also been studied (Neu, 2015;
Chiang et al., 2013; Lykouris et al., 2017). These adaptive algorithms not only enjoy better perfor-
mance guarantees, but also have important applications for other areas such as game theory (Foster
et al., 2016).

In this work, we propose a novel and generic bandit algorithm in the more general semi-bandit
setting (formally defined in Section 2). By instantiating this generic algorithm differently, we obtain
various adaptive algorithms with new data-dependent expected regret bounds that improve previous
work. When specified to the MAB setting with `t,i ∈ [−1, 1] denoting the loss of arm i at time t
(and `0,i , 0), these bounds replace the dependence on T by (also see Table 1 for a summary):

•
∑T

t=1(`t,i? − 1
T

∑T
s=1 `s,i?)

2, that is, the (unnormalized) variance of the best arm i?. Similar
existing bounds of (Hazan and Kale, 2011a,b; Bubeck et al., 2017) replace T by the average
of the variances of all arms. In general these two are incomparable. However, note that
the variance of the best arm is always bounded by K times the average variance, while it is
possible that the latter is of order Θ(T ) and the former is only O(1). (Section 3.1)

• K
∑T

t=1 |`t,i? − `t−1,i? |, that is, (K times) the first-order path-length of the best arm. (Sec-
tion 3.2)

•
∑K

i=1

∑T
t=1 |`t,i − `t−1,i|, that is, the sum of the first-order path-lengths of all arms. Impor-

tantly, there is also an additional negative term in the regret similar to the one of (Syrgkanis
et al., 2015) for the full information setting. This implies a fast convergence rate of order
1/T

3
4 for several game playing settings with bandit feedback. (Sections 4.1)

• A new quantity in terms of some second-order excess loss (see Eq. (9) for the exact form).
While the bound is not easy to interpret on it own, it in fact automatically and simultane-

ously implies the so-called “small-loss” bound Õ
(√

K
∑T

t=1 `t,i?
)

,2 and logarithmic regret

O(K lnT
∆ ) if there is an arm whose expected loss is always smaller than those of other arms

by a fixed gap ∆ (e.g. the classic i.i.d. MAB setting (Lai and Robbins, 1985)). (Section 4.2)

These bounds are incomparable in general. All of them have known counterparts in the full
information setting (see for example (Steinhardt and Liang, 2014) and (De Rooij et al., 2014)),
but are novel in the bandit setting to the best of our knowledge. Note that for the first two results
that depend on some quantities of only the best arm, we require tuning a learning rate parameter
in terms of these (unknown) quantities. Obtaining the same results with parameter-free algorithms
remains open, even for the full information setting. However, for the other results, we indeed
provide parameter-free algorithms based on a variant of the doubling trick.

Our general algorithm falls into the Online Mirror Descent (OMD) framework (see for exam-
ple (Hazan et al., 2016)) with the “log-barrier” as the regularizer, originally proposed in (Foster
et al., 2016). However, to obtain our results, two extra crucial ingredients are needed:

• First, we adopt the ideas of optimism and adaptivity from (Steinhardt and Liang, 2014), which
roughly speaking amounts to incorporating a correction term as well as an optimistic predic-
tion into the loss vectors. In (Steinhardt and Liang, 2014), this technique was developed in the
Follow-the-Regularized-Leader (FTRL) framework,3 but it is in fact crucial here to re-derive

2. Assuming that losses are non-negative in this case as it is common for small-loss bounds.
3. Although it was confusingly referred as OMD in (Steinhardt and Liang, 2014).
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it in the OMD framework (due to the next ingredient). The challenges here are to come up
with the right correction terms and optimistic predictions.

• Second, we apply an individual and increasing learning rate schedule for one of the path-
length results. Such increasing learning rate schedule was originally proposed in (Bubeck
et al., 2016) and also recently used in (Agarwal et al., 2017), but for different purposes.

Although most algorithmic techniques we use in this work have been studied before, combining
all of them, in the general semi-bandit setting, requires novel and non-trivial analysis. The use of
log-barrier in the semi-bandit setting is also new as far as we know.

Related work. There is a rich literature in deriving adaptive algorithms and regret bounds for
online learning with full information feedback (see recent work (Luo and Schapire, 2015; Koolen
and Van Erven, 2015; van Erven and Koolen, 2016; Orabona and Pál, 2016; Cutkosky and Boahen,
2017) and references therein), as well as the stochastic bandit setting (such as (Garivier and Cappé,
2011; Lattimore, 2015; Degenne and Perchet, 2016)). Similar results for the adversarial bandit
setting, however, are relatively sparse and have been mentioned above. While obtaining regret
bounds that depend on the quality of the best action is common in the full information setting, it
is in fact much more challenging in the bandit setting, and the only existing result of this kind is
the “small-loss” bound (Allenberg et al., 2006; Foster et al., 2016). We hope that our work opens
up more possibilities in obtaining these results, despite some recent negative results discovered
by Gerchinovitz and Lattimore (2016).

Chiang et al. (2013) proposed bandit algorithms with second-order path-length bounds, but
their work requires stronger two-point feedback. The implication of path-length regret bounds on
faster convergence rate for computing equilibriums was studied in (Syrgkanis et al., 2015). Other
examples of adaptive online learning leading to faster convergence in game theory include (Rakhlin
and Sridharan, 2013b; Daskalakis et al., 2015; Foster et al., 2016).

There exist several bandit algorithms that achieve almost optimal regret in both the adversarial
setting (O(

√
TK)) and the i.i.d. setting (O(

∑
i:∆i 6=0

lnT
∆i

) where ∆i is the gap between the expected
loss of arm i and the one of the optimal arm) (Bubeck and Slivkins, 2012; Seldin and Slivkins, 2014;
Auer and Chiang, 2016; Seldin and Lugosi, 2017). Our results in Section 4.2 have slightly weaker
guarantee for the i.i.d. setting (at most K times worse specifically) since it essentially replaces all
∆i by mini:∆i 6=0 ∆i. On the other hand, however, our results have several advantages compared
to previous work. First, our guarantee for the adversarial setting is stronger since it replaces the
dependence on T by the loss of the best arm. Second, our logarithmic regret result applies to not just
the simple i.i.d. setting, but the more general setting mentioned above where neither independence
nor identical distributions is required. Our dependence on lnT is also better than previous works,
resolving an open problem raised by Seldin and Lugosi (2017). Finally, our algorithm and analysis
are also arguably much simpler, without performing any stationarity detection or gap estimation.
Indeed, the result is in some sense algorithm-independent and solely through a new adaptive regret
bound Eq. (9), similar to the results in the full-information setting such as (Gaillard et al., 2014).

Using a self-concordant barrier as regularizer was proposed in the seminal work of (Abernethy
et al., 2008) for general linear bandit problems. The log-barrier is technically not a barrier for the
decision set of the semi-bandit problem, but still it exhibits many similar properties as shown in
our proofs. Optimistic FTRL/OMD was developed in (Chiang et al., 2012; Rakhlin and Sridharan,
2013a). As pointed out in (Steinhardt and Liang, 2014), incorporating correction terms in the loss
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vectors can also be viewed as using adaptive regularizers, which was studied in several previous
works, mostly for the full information setting (see (McMahan, 2017) for a survey).

2. Problem Setup and Algorithm Overview

We consider the combinatorial bandit problem with semi-bandit feedback, which subsumes the
classic multi-armed bandit problem. The learning process proceeds for T rounds. In each round,
the learner selects a subset of arms, denoted by a binary vector bt from a predefined action set
X ⊆ {0, 1}K , and suffers loss b>t `t, where `t ∈ [−1, 1]K is a loss vector decided by an adversary.
The feedback received by the learner is the vector (bt,1`t,1, . . . , bt,K`t,K), or in other words, the loss
of each chosen arm. For simplicity, we assume that the adversary is oblivious and the loss vectors
`1, . . . , `T are decided ahead of time independent of the learner’s actions.

The learner’s goal is to minimize the regret, which is the gap between her accumulated loss and
that of the best fixed action b∗ ∈ X . Formally the regret is defined as

RegT ,
T∑
t=1

b>t `t −
T∑
t=1

b∗>`t, where b∗ , min
b∈X

T∑
t=1

b>`t.

In the special case of multi-armed bandit, the action set X is {e1, e2, . . . , eK} where ei denotes
the i-th standard basis vector. In other words, in each round the learner picks one arm it ∈ [K] ,
{1, 2, . . . ,K} (corresponding to bt = eit), and receives the loss `t,it . We denote the best arm by
i∗ , mini∈[K]

∑T
t=1 `t,i.

Notation. For a convex function ψ defined on a convex set Ω, the Bregman divergence of two
points u, v ∈ Ω with respect to ψ is defined asDψ(u, v) , ψ(u)−ψ(v)−〈∇ψ(v), u− v〉. The log-
barrier used in this work is of the form ψ(u) =

∑K
i=1

1
ηi

ln 1
ui

for some learning rates η1, . . . , ηK ≥
0 and u ∈ conv(X ), the convex hull of X . With h(y) , y− 1− ln y, the Bregman divergence with
respect to the log-barrier is: Dψ(u, v) =

∑K
i=1

1
ηi

(
ln vi

ui
+ ui−vi

vi

)
=
∑K

i=1
1
ηi
h
(
ui
vi

)
.

The all-zero and all-one vector are denoted by 0 and 1 respectively. ∆K represents the (K−1)-
dimensional simplex. For a binary vector b we write i ∈ b if bi = 1. Denote by K0 = maxb∈X ‖b‖0
the maximum number of arms an action in X can pick. Note that for MAB, K0 is simply 1.

We define `0 = 0 for notational convenience. At round t, for an arm iwe denote its accumulated
loss by Lt,i ,

∑t
s=1 `s,i, its average loss by µt,i , 1

tLt,i, its (unnormalized) variance by Qt,i ,∑t
s=1(`s,i − µt,i)

2, and its first-order path-length by Vt,i ,
∑t

s=1 |`s,i − `s−1,i|. For MAB, we
define αi(t) to be the most recent time when arm i is picked prior to round t , that is, αi(t) =
max{s < t : is = i} (or 0 if the set is empty).

2.1. Algorithm Overview

As mentioned our algorithm falls into the OMD framework that operates on the set Ω = conv(X ).
The vanilla OMD formula for the bandit setting is wt = argminw∈Ω{〈w, ˆ̀

t−1〉 + Dψ(w,wt−1)}
for some regularizer ψ and some (unbiased) estimator ˆ̀

t−1 of the true loss `t−1. The learner then
picks an action bt randomly such that E[bt] = wt, and constructs the next loss estimator ˆ̀

t based on
the bandit feedback. Our algorithm, however, requires several extra ingredients. The generic update

4
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Algorithm 1 Barrier-Regularized with Optimism and ADaptivity Online Mirror Descent (BROAD-OMD)

Define: Ω = conv(X ), ψt(w) =
∑K

i=1
1
ηt,i

ln 1
wi

.
Initialize: w′1 = argminw∈Ω ψ1(w).
for t = 1, 2, . . . , T do

wt = argminw∈Ω

{
〈w,mt〉+Dψt(w,w

′
t)
}

.
Draw bt ∼ wt, suffer loss b>t `t, and observe {bt,i`t,i}Ki=1.
Construct ˆ̀

t as an unbiased estimator of `t.

Let at,i =

{
6ηt,iwt,i(ˆ̀

t,i −mt,i)
2, (Option I)

0. (Option II)

w′t+1 = argminw∈Ω

{
〈w, ˆ̀

t + at〉+Dψt(w,w
′
t)
}
.

end

Table 1: Different configurations of BROAD-OMD and regret bounds for MAB. See Section 2 and
the corresponding sections for the meaning of notation. For the last two rows, to obtain
parameter-free algorithms one needs to apply a doubling trick to decrease the learning rate.

Sec. Option mt,i
ˆ̀
t,i ηt,i E[RegT ] in Õ

3.1 I µ̃t−1,i
(`t,i−mt,i)1{it=i}

wt,i
+mt,i fixed

√
KQT,i∗

3.2 I `αi(t),i
(`t,i−mt,i)1{it=i}

w̄t,i
+mt,i increasing K

√
VT,i∗

4.1 II `αi(t),i
(`t,i−mt,i)1{it=i}

wt,i
+mt,i fixed

√
K
∑K

i=1 VT,i

4.2 II `t,it
`t,i1{it=i}

wt,i
fixed min{

√
KLT,i∗ ,

K
∆}

rule is

wt = argmin
w∈Ω

{
〈w,mt〉+Dψt(w,w

′
t)
}
, (1)

w′t+1 = argmin
w∈Ω

{
〈w, ˆ̀

t + at〉+Dψt(w,w
′
t)
}
. (2)

Here, we still play randomly according to wt, which is now updated to minimize its loss with
respect tomt ∈ [−1, 1]K , an optimistic prediction of the true loss vector `t, penalized by a Bregman
divergence term associated with a time-varying regularizer ψt. In addition, we maintain a sequence
of auxiliary points w′t that is updated using the loss estimator ˆ̀

t and an extra correction term at.
When at = 0, this is studied in (Rakhlin and Sridharan, 2013a) under the name optimistic OMD.

When at 6= 0, the closest algorithm to this variant of OMD is its FTRL version studied by Steinhardt
and Liang (2014). However, while ψt is fixed for all t in (Steinhardt and Liang, 2014),4 some of our
results crucially rely on using time-varying ψt (which corresponds to time-varying learning rate)
and also the OMD update form instead of FTRL.

It is well known that the classic Exp3 algorithm falls into this framework with mt = at = 0
and ψt being the (negative) entropy. To obtain our results, first, it is crucial to use the log-barrier

4. Steinhardt and Liang (2014) also uses the notation ψt, but it corresponds to putting at into a fixed regularizer.
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as the regularizer instead, that is, ψt(w) =
∑K

i=1
1
ηt,i

ln 1
wi

for some individual and time-varying
learning rates ηt,i. Second, we focus on two options of at. For results that depend on some quantity
of only the best arm, we use a sophisticated choice of at that we explain in details in Section 3. For
the other results we simply set at = 0. With the choices of mt, ˆ̀

t, and ηt open, we present this
generic framework in Algorithm 1 and name it BROAD-OMD (short for Barrier-Regularized with
Optimism and ADaptivity Online Mirror Descent).

In Section 3 and 4 respectively, we prove general regret bounds for BROAD-OMD with Option
I and Option II, followed by specific applications in the MAB setting achieved via specific choices
of mt, ˆ̀

t, and ηt. The results and the corresponding configurations of the algorithm are summarized
in Table 1.

Computational efficiency. The sampling step bt ∼ wt can be done efficiently as long as Ω can be
described by a polynomial number of constraints. The optimization problems in the update rules of
wt and w′t are convex and can be solved by general optimization methods. For many special cases,
however, these two computational bottlenecks have simple solutions. Take MAB as an example, wt
directly specifies the probability of picking each arm, and the optimization problems can be solved
via a simple binary search (Agarwal et al., 2017).

3. BROAD-OMD with Option I

In this section we focus on BROAD-OMD with Option I. We first show a general lemma that update
rules (1) and (2) guarantee, no matter what regularizer ψt is used and what at,mt, and ˆ̀

t are.

Lemma 1 For the update rules (1) and (2), if the following condition holds:

〈wt − w′t+1,
ˆ̀
t −mt + at〉 ≤ 〈wt, at〉, (3)

then for all u ∈ Ω, we have

〈wt − u, ˆ̀
t〉 ≤ Dψt(u,w

′
t)−Dψt(u,w

′
t+1) + 〈u, at〉 −At, (4)

where At , Dψt(w
′
t+1, wt) +Dψt(wt, w

′
t) ≥ 0.

The important part of bound (4) is the term 〈u, at〉, which allows us to derive regret bounds
that depend on only the comparator u. The key is now how to configure the algorithm such that
condition (3) holds, while leading to a reasonable bound (4) at the same time.

In the work of (Steinhardt and Liang, 2014) for full-information problems, at can be defined as
at,i = ηt,i(`t,i −mt,i)

2, which suffices to derive many interesting results. However, in the bandit
setting this is not applicable since `t is unknown. The natural first attempt is to replace `t by ˆ̀

t,
but one would quickly realize the common issue in the bandit literature: ˆ̀

t,i is often constructed via
inverse propensity weighting, and thus (ˆ̀

t,i −mt,i)
2 can be of order 1/w2

t,i, which is too large.
Based on this observation, our choice for at is at,i = 6ηt,iwt,i(ˆ̀

t,i −mt,i)
2 (the constant 6 is

merely for technical reasons). The extra term wt,i can then cancel the aforementioned large term
1/w2

t,i in expectation, similar to the classic trick done in the analysis of Exp3 (Auer et al., 2002).
Note that with a smaller at, condition (3) becomes more stringent. The entropy regularizer used

in (Steinhardt and Liang, 2014) no longer suffices to maintain such a condition. Instead, it turns out
that the log-barrier regularizer used by BROAD-OMD addresses the issue, as shown below.
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Theorem 2 If the following three conditions hold for all t, i: (i) ηt,i ≤ 1
162 , (ii) wt,i|ˆ̀t,i −mt,i| ≤

3, (iii)
∑K

i=1 ηt,iw
2
t,i(

ˆ̀
t,i − mt,i)

2 ≤ 1
18 , then BROAD-OMD with at,i = 6ηt,iwt,i(ˆ̀

t,i − mt,i)
2

guarantees condition (3). Moreover, it guarantees for any u ∈ Ω (recall h(y) = y − 1− ln y ≥ 0),

T∑
t=1

〈wt − u, ˆ̀
t〉 ≤

K∑
i=1

 ln
w′1,i
ui

η1,i
+

T∑
t=1

(
1

ηt+1,i
− 1

ηt,i

)
h

(
ui

w′t+1,i

)+
T∑
t=1

〈u, at〉. (5)

The three conditions of the theorem are usually trivially satisfied as we will show. Note that
h(·) is always non-negative. Therefore, if the sequence {ηt,i}T+1

t=1 is non-decreasing for all i,5 the

term
∑T

t=1

(
1

ηt+1,i
− 1

ηt,i

)
h
(

ui
w′t+1,i

)
in bound (5) is non-positive. For some results we can simply

discard this term, while for others, this term becomes critical. On the other hand, the term ln
w′1,i
ui

appears to be infinity if we want to compare with the best fixed action (where ui = 0 for some i).
However, this can be simply resolved by comparing with some close neighbor of the best action in
Ω instead, similar to (Foster et al., 2016; Agarwal et al., 2017).

One can now derive different results using Theorem 2 with specific choices of ˆ̀
t and mt. As

an example, we state the following corollary by using a variance-reduced importance-weighted
estimator ˆ̀

t as in (Rakhlin and Sridharan, 2013a).

Corollary 3 BROAD-OMD with at,i = 6ηt,iwt,i(ˆ̀
t,i − mt,i)

2, any mt,i ∈ [−1, 1], ˆ̀
t,i =

(`t,i−mt,i)1{i∈bt}
wt,i

+mt,i, and ηt,i = η ≤ 1
162K0

enjoys the following regret bound:

E [RegT ] = E

[
T∑
t=1

〈bt − b∗, `t〉

]
≤ K lnT

η
+ 6ηE

[
T∑
t=1

∑
i:i∈b∗

(`t,i −mt,i)
2

]
+O(K0).

One can see that the expected regret in Corollary 3 only depends on the squared estimation
error of mt for the actions that b∗ chooses! This is exactly the counterpart of results in (Steinhardt
and Liang, 2014), but for the more challenging combinatorial semi-bandit problem. Note that our
dependence on K0 is also optimal (Audibert et al., 2013).

In the following subsections, we invoke Theorem 2 with different choices of ˆ̀
t and mt to obtain

various more concrete adaptive bounds. For simplicity, we state these results only in the MAB
setting, but they can be straightforwardly generalized to the semi-bandit case.

3.1. Variance Bound

Our first application of BROAD-OMD is an adaptive bound that depends on the variance of the best

arm, that is, a bound of order Õ
(√

KQT,i∗
)

= Õ
(√

K
∑T

t=1(`t,i∗ − µT,i∗)2

)
. According to

Corollary 3, if we were able to usemt = µT , with a best-tuned η the bound is obtained immediately.
The issue is of course that µT is unknown ahead of time. In fact, even settingmt = µt−1 is infeasible
due to the bandit feedback.

Fortunately this issue was already solved by Hazan and Kale (2011a) via the “reservoir sam-
pling” technique. The high level idea is that one can spend a small portion of time on estimating

5. One might notice that ηT+1,i is not defined here. Indeed this term is artificially added only to make the analysis of
Section 3.2 more concise, and ηT+1,i can be any positive number. In Algorithm 2 we give it a concrete definition.
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µt on the fly. More precisely, by performing uniform exploration with probability min
{

1, MK
t

}
at time t for some parameter M , one can obtain an estimator µ̃t of µt such that E[µ̃t] = µt and
Var[µ̃t,i] ≤ Qt,i

Mt (see (Hazan and Kale, 2011a) for details). Then we can simply pick mt = µ̃t−1

and prove the following result.

Theorem 4 BROAD-OMD with reservoir sampling (Hazan and Kale, 2011a), at,i = 6ηt,iwt,i(ˆ̀
t,i−

mt,i)
2, mt,i = µ̃t−1,i, ˆ̀

t,i =
(`t,i−mt,i)1{it=i}

wt,i
+mt,i, and ηt,i = η ≤ 1

162 guarantees

E [RegT ] = O
(
K lnT

η
+ ηQT,i∗ +K(lnT )2

)
.

With the optimal tuning of η, the regret is thus of order Õ
(√

KQT,i∗ +K
)
.

3.2. Path-length Bound

Our second application is to obtain path-length bounds. The counterpart in the full-information
setting is a bound in terms of the second-order path-length

∑T
t=1(`t,i∗ − `t−1,i∗)

2 (Steinhardt and
Liang, 2014). Again, in light of Corollary 3, if we were able to pick mt = `t−1 the problem would
be solved. The difficulty is again that `t−1 is not fully observable.

While it is still not clear how to achieve such a second-order path-length bound or whether
it is possible at all, we propose a way to obtain a slightly weaker first-order path-length bound

Õ
(
K
√
VT,i∗

)
= Õ

(
K
√∑T

t=1|`t,i∗ − `t−1,i∗ |
)

. Note that in the worst case this is
√
K times

worse than the optimal regret Õ(
√
TK).

The idea is to set mt,i to be the most recent observed loss of arm i, that is, mt,i = `αi(t),i, where
αi(t) is defined in Section 2. While the estimation error (`t,i − `αi(t),i)2 could be much larger than
(`t,i− `t−1,i)

2, the quantity we aim for, observe that if t−αi(t) is large, it means that arm i has bad
performance before time t so that the learner seldom draws arm i. In this case, the learner might
have accumulated negative regret with respect to arm i, which can potentially be used to compensate
the large estimation error.

To formalize this intuition, we go back to the bound in Theorem 2 and examine the key term∑T
t=1〈u, at〉 after plugging in u = ei for some arm i, mt,i = `αi(t),i, and ˆ̀

t,i =
(`t,i−mt,i)1{it=i}

wt,i
+

mt,i. We assume ηt,i = η for simplicity and also use the fact wt,i|ˆ̀t,i −mt,i| ≤ 2. We then have

T∑
t=1

〈u, at〉 = 6η

T∑
t=1

wt,i(ˆ̀
t,i − `αi(t),i)

2 ≤ 12η

T∑
t=1

|ˆ̀t,i − `αi(t),i| = 12η
∑
t:it=i

|`t,i − `αi(t),i|
wt,i

≤ 12η
∑
t:it=i

∑t
s=αi(t)+1|`s,i − `s−1,i|

wt,i
≤ 12η

(
max
t∈[T ]

1

wt,i

)
VT,i. (6)

Therefore, the term
∑T

t=1〈u, at〉 is close to the first-order path-length but with an extra factor
maxt∈[T ]

1
wt,i

. To cancel this potentially large factor, we adopt the increasing learning rate schedule
recently used in (Agarwal et al., 2017). The idea is that the term h

(
ui

w′t+1,i

)
in Eq. (5) is close to

1
wt+1,i

if ui is close to 1. If we increase the learning rate whenever we encounter a large 1
wt+1,i

,

8
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Algorithm 2 BROAD-OMD+ (specialized for MAB)

Define: κ = e
1

lnT , ψt(w) =
∑K

i=1
1
ηt,i

ln 1
wi

.
Initialize: w′1,i = 1/K, ρ1,i = 2K for all i ∈ [K].
for t = 1, 2, . . . , T do

wt = argminw∈∆K

{
〈w,mt〉+Dψt(w,w

′
t)
}

.
w̄t = (1− 1

T )wt + 1
KT 1.

Draw it ∼ w̄t, suffer loss `t,it , and let ˆ̀
t,i =

(`t,i−mt,i)1{it=i}
w̄t,i

+mt,i.

Let at,i = 6ηt,iwt,i(ˆ̀
t,i −mt,i)

2.
w′t+1 = argminw∈∆K

{
〈w, ˆ̀

t + at〉+Dψt(w,w
′
t)
}
.

for i = 1, . . . ,K do
if 1
w̄t,i

> ρt,i then ρt+1,i = 2
w̄t,i

, ηt+1,i = κηt,i.

else ρt+1,i = ρt,i, ηt+1,i = ηt,i.
end

end

then
(

1
ηt+1,i

− 1
ηt,i

)
h
(

ui
w′t+1,i

)
becomes a large negative term in terms of −1

wt+1,i
, which exactly

compensates the term
∑T

t=1〈u, at〉.
To avoid the learning rates increased by too much, similarly to (Agarwal et al., 2017) we use

some individual threshold (ρt,i) to decide when to increase the learning rate and update these thresh-
olds in some doubling manner. Also, we mix wt with a small amount of uniform exploration to
further ensure that it cannot be too small. The final algorithm, call BROAD-OMD+, is presented in
Algorithm 2 (only for the MAB setting for simplicity). We prove the following theorem.

Theorem 5 BROAD-OMD+ with mt,i = `αi(t),i and η1,i = η ≤ 1
810 guarantees

E [RegT ] ≤ 2K lnT

η
+ E[ρT+1,i∗ ]

(
−1

40η lnT
+ 90ηVT,i∗

)
+O (1)

when T ≥ 3. Picking η = min
{

1
810 ,

1
60
√
VT,i∗ lnT

}
so that the second term is non-positive leads to

E [RegT ] = Õ
(
K
√
VT,i∗ +K

)
.

4. BROAD-OMD with Option II

In this section, we move on to discuss BROAD-OMD with Option II, that is, at = 0. We also
fix ηt,i = η, although in the doubling trick discussed later, different values of η will be used for
different runs of BROAD-OMD. Again we start with a general lemma that holds no matter what
regularizer ψt is used and what mt and ˆ̀

t are.

Lemma 6 For the update rules (1) and (2) with at = 0, we have for all u ∈ Ω,

〈wt − u, ˆ̀
t〉 ≤ Dψt(u,w

′
t)−Dψt(u,w

′
t+1) + 〈wt − w′t+1,

ˆ̀
t −mt〉 −At,

where At , Dψt(w
′
t+1, wt) +Dψt(wt, w

′
t) ≥ 0.

9
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The proof is standard as in typical OMD analysis. The next theorem then shows how the term
〈wt − w′t+1,

ˆ̀
t −mt〉 is further bounded when ψt is the log-barrier as in BROAD-OMD.

Theorem 7 If the following three conditions hold for all t, i: (i) η ≤ 1
162 , (ii) wt,i|ˆ̀t,i −mt,i| ≤ 3,

(iii) η
∑K

i=1w
2
t,i(

ˆ̀
t,i −mt,i)

2 ≤ 1
18 (same as those in Theorem 2), then BROAD-OMD with at = 0

guarantees for any u ∈ Ω,

T∑
t=1

〈wt − u, ˆ̀
t〉 ≤

K∑
i=1

ln
w′1,i
ui

η
+ 3η

T∑
t=1

K∑
i=1

w2
t,i(

ˆ̀
t,i −mt,i)

2 −
T∑
t=1

At. (7)

For MAB, the last term can further be lower bounded by
∑T

t=1At ≥
1

48η

∑T
t=2

∑K
i=1

(wt,i−wt−1,i)
2

w2
t−1,i

.

In bound (7), the first term can again be bounded by K lnT
η via picking an appropriate u. The

last negative term is useful when we use the algorithm to play games, which is discussed in Sec-
tion 4.1.1. The second term is the key term, which, compared to the key term

∑T
t=1〈u, at〉 in Eq. (5)

for BROAD-OMD with Option I, has an extra wt,i and is in terms of all arms instead of the arms that
u picks. As a comparison to Corollary 3, if we pick ˆ̀

t,i =
(`t,i−mt,i)1{i∈bt}

wt,i
+mt,i, we obtain an ex-

pected regret bound in terms of E
[∑T

t=1

∑
i∈bt(`t,i −mt,i)

2
]

= E
[∑T

t=1

∑K
i=1wt,i(`t,i −mt,i)

2
]
,

which is not as easy to interpret as the bound in Corollary 3. However, in the following subsections
we will discuss in details how to apply bound (7) to obtain more concrete results.

Before that, we point out that since the bound is now in terms of all arms, we can in fact apply a
doubling trick to make the algorithm parameter-free! The idea is that as long as the observable term
3η
∑t

s=1

∑K
i=1w

2
s,i(

ˆ̀
s,i −ms,i)

2 becomes larger than K lnT
η at some round t, we half the learning

rate η and restart the algorithm. This avoids the need for optimal tuning done in Section 3. We
formally present the algorithm in Algorithm 3 (in Appendix G) and show its regret bound below.

Theorem 8 If conditions (ii) and (iii) in Theorem 7 hold, then Algorithm 3 guarantees

E[RegT ] = O


√√√√(K lnT )E

[
T∑
t=1

K∑
i=1

w2
t,i(

ˆ̀
t,i −mt,i)2

]
+K0K lnT

 .

In the following subsections, we instantiate Theorem 7 or 8 with different mt and ˆ̀
t. Again, for

simplicity we only focus on the MAB setting.

4.1. Another Path-length Bound

If we configure BROAD-OMD with Option II in the same way as in Section 3.2, that is, mt,i =

`αi(t),i and ˆ̀
t,i =

(`t,i−mt,i)1{it=i}
wt,i

+mt,i. Then the key term in Eq. (7) can be bounded as follows:

T∑
t=1

K∑
i=1

w2
t,i(

ˆ̀
t,i −mt,i)

2 =

T∑
t=1

K∑
i=1

(`t,i − `αi(t),i)
2
1{it = i} =

K∑
i=1

∑
t:it=i

(`t,i − `αi(t),i)
2

≤ 2

K∑
i=1

∑
t:it=i

|`t,i − `αi(t),i| ≤ 2

K∑
i=1

∑
t:it=i

t∑
s=αi(t)+1

|`s,i − `s−1,i| ≤ 2

K∑
i=1

VT,i. (8)

10
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Unlike Eq. (6), this is bounded even without the help of negative regret, but the price is that now the
regret depends on the sum of all arms’ path-length. With this calculation, we obtain the following
corollary.

Corollary 9 BROAD-OMD with at,i = 0, mt,i = `αi(t),i, ˆ̀
t,i =

(`t,i−mt,i)1{it=i}
wt,i

+ mt,i, and

ηt,i = η ≤ 1
162 guarantees

E [RegT ] ≤ O
(
K lnT

η

)
+ 6η

K∑
i=1

VT,i − E

[
T∑
t=2

K∑
i=1

(wt,i − wt−1,i)
2

48ηw2
t−1,i

]
≤ O

(
K lnT

η
+ η

K∑
i=1

VT,i

)
.

Using the doubling trick (Algorithm 3), we achieve expected regret Õ
(√

K
∑K

i=1 VT,i +K

)
.

This new path-length bound could be
√
K times better than the one in Section 3.2 in some cases,

but
√
T times larger in others. The extra advantage, however, is the negative term in the regret,6

explicitly spelled out in Corollary 9, which we discuss next.

4.1.1. FAST CONVERGENCE IN BANDIT GAMES

It is well-known that in a repeated two-player zero-sum game, if both players play according to
some no-regret algorithms, then their average strategies converge to a Nash equilibrium (Freund
and Schapire, 1999). Similar results for general multi-player games have also been discovered.
The convergence rate of these results is governed by the regret bounds of the learning algorithms,
and several recent works (such as those mentioned in the introduction) have developed adaptive
algorithms with regret much smaller than the worst case O(

√
T ) by exploiting the special structure

in this setup, which translates to convergence rates faster than 1/
√
T in computing equilibriums.

One way to obtain such fast rates is exactly via path-length regret bounds as shown in (Rakhlin
and Sridharan, 2013b; Syrgkanis et al., 2015). In these works, the convergence rate 1/T is achieved
when the players have full-information feedback. We generalize their results to the bandit setting,
and show that convergence rate of 1/T

3
4 can be obtained. Though faster than 1/

√
T , it is still slower

than 1/T compared to the full-information setting, which is due to the fact that in bandit we only
have first-order instead of second-order path-length bound. We detail the proofs and the remaining
open problems in Appendix I.

4.2. Adapting to Stochastic Bandits

Our last application is to obtain an algorithm that simultaneously enjoys near optimal regret in both
adversarial and stochastic setting. Specifically, the stochastic setting we consider here is as follows:
there exists an arm a∗ and some fixed gap ∆ > 0 such that E`t [`t,i − `t,a∗ |`1, . . . , `t−1] ≥ ∆ for
all i 6= a∗ and t ∈ [T ]. In other words, arm a∗’s expected loss is always smaller than those of other
arms by a fixed amount. The classic i.i.d. MAB (Lai and Robbins, 1985) is clearly a special case of
ours. Unlike the i.i.d. setting, however, we require neither independence nor identical distributions.

6. In fact, similar negative term, coming from the term At in Lemma 1, also exists (but is omitted) in the bound of
Theorem 5. However, it is not clear to us how to utilize it in the same way as in Section 4.1.1 if we also want to
exploit the other negative term coming from increasing learning rates.

11
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Note that a∗ can be different from the empirically best arm i∗ defined in Section 2. The expected
regret in this setting is still with respect to i∗ and further takes into consideration the randomness
over losses. In other words, we care about E`1,...,`T [Ei1,...,iT [RegT ]], abbreviated as E[RegT ] still.

We invoke BROAD-OMD with at = 0, ˆ̀
t,i =

`t,i1{it=i}
wt,i

being the typical importance-weighted
unbiased estimator, and a somewhat special choice of mt: mt,i = `t,it for all i. This choice
of mt is seemingly invalid since it depends on it, which is drawn after we have constructed wt
based on mt itself. However, note that because mt now has identical coordinates, we have wt =
argminw∈∆K

{
〈w,mt〉 + Dψt(w,w

′
t)
}

= argminw∈∆K

{
Dψt(w,w

′
t)
}

= w′t, independent of the
actual value of mt. Therefore, the algorithm is still valid and is in fact equivalent to the vanilla
log-barrier OMD of (Foster et al., 2016). Also note that we cannot define ˆ̀

t as in previous sections
(in terms of mt) since it is not an unbiased estimator of `t anymore (due to the randomness of mt).

Although the algorithm is the same, using our analysis framework we actually derive a tighter
bound in terms of the following quantity based on Theorem 7:

∑T
t=1

∑K
i=1w

2
t,i(

ˆ̀
t,i − `t,it)

2 =∑T
t=1

∑K
i=1(`t,i1{it = i}−wt,i`t,it)2. It turns out that based on this quantity alone, one can derive

both a “small-loss” bound for the adversarial setting and a logarithmic bound for the stochastic
setting as shown below. We emphasize that the doubling trick of Algorithm 3 is essential to make
the algorithm parameter-free, which is another key difference from (Foster et al., 2016).

Theorem 10 BROAD-OMD with at = 0, mt,i = `t,it , ˆ̀
t,i =

`t,i1{it=i}
wt,i

, and the doubling trick
(Algorithm 3), guarantees

E [RegT ] = O


√√√√(K lnT )E

[
T∑
t=1

K∑
i=1

(`t,i1{it = i} − wt,i`t,it)2

]
+K lnT

 . (9)

This bound implies that in the stochastic setting, we have E [RegT ] = O
(
K lnT

∆

)
, while in the ad-

versarial setting, we have E [RegT ] = O
(√

KLT,i∗ lnT +K lnT
)

assuming non-negative losses.

5. Conclusions and Discussions

In this work we develop and analyze a general bandit algorithm using techniques such as optimistic
mirror descent, log-barrier regularizer, increasing learning rate, and so on. We show various appli-
cations of this general framework, obtaining several more adaptive algorithms that improve previous
works. Future directions include 1) improving the dependence on K for the path-length results; 2)
obtaining second-order path-length bounds; 3) generalizing the results to the linear bandit problem.

Acknowledgement. CYW is grateful for the support of NSF Grant #1755781. The authors would
like to thank Chi-Jen Lu for posing the problem of bandit path-length, and to thank Chi-Jen Lu and
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Yevgeny Seldin and Gábor Lugosi. An improved parametrization and analysis of the exp3++ algo-
rithm for stochastic and adversarial bandits. In Conference on Learning Theory, 2017.

14



MORE ADAPTIVE ALGORITHMS FOR ADVERSARIAL BANDITS

Yevgeny Seldin and Aleksandrs Slivkins. One practical algorithm for both stochastic and adversarial
bandits. In International Conference on Machine Learning, pages 1287–1295, 2014.

Jacob Steinhardt and Percy Liang. Adaptivity and optimism: An improved exponentiated gradient
algorithm. In International Conference on Machine Learning, pages 1593–1601, 2014.

Vasilis Syrgkanis, Alekh Agarwal, Haipeng Luo, and Robert E Schapire. Fast convergence of
regularized learning in games. In Advances in Neural Information Processing Systems, pages
2989–2997, 2015.

Tim van Erven and Wouter M Koolen. Metagrad: Multiple learning rates in online learning. In
Advances in Neural Information Processing Systems, pages 3666–3674, 2016.

Appendix A. Proof of Lemma 1

Proof of Lemma 1. We first state a useful property used in typical OMD analysis. Let Ω be a
convex compact set in RK , ψ be a convex function on Ω, w′ be an arbitrary point in Ω, and x ∈ RK .
If w∗ = argminw∈Ω{〈w, x〉+Dψ(w,w′)}, then for any u ∈ Ω,

〈w∗ − u, x〉 ≤ Dψ(u,w′)−Dψ(u,w∗)−Dψ(w∗, w′).

This is by the first-order optimality condition of w∗ and direct calculations. Applying this to update
rule (2) we have

〈w′t+1 − u, ˆ̀
t + at〉 ≤ Dψt(u,w

′
t)−Dψt(u,w

′
t+1)−Dψt(w

′
t+1, w

′
t); (10)

while applying it to update rule (1) and picking u = w′t+1 we have

〈wt − w′t+1,mt〉 ≤ Dψt(w
′
t+1, w

′
t)−Dψt(w

′
t+1, wt)−Dψt(wt, w

′
t). (11)

Now we bound the instantaneous regret as follows:

〈wt − u, ˆ̀
t〉

= 〈wt − u, ˆ̀
t + at〉 − 〈wt, at〉+ 〈u, at〉

= 〈wt − w′t+1,
ˆ̀
t + at〉 − 〈wt, at〉+ 〈w′t+1 − u, ˆ̀

t + at〉+ 〈u, at〉
= 〈wt − w′t+1,

ˆ̀
t + at −mt〉 − 〈wt, at〉+ 〈w′t+1 − u, ˆ̀

t + at〉+ 〈wt − w′t+1,mt〉+ 〈u, at〉
≤ Dψt(u,w

′
t)−Dψt(u,w

′
t+1)−Dψt(w

′
t+1, wt)−Dψt(wt, w

′
t) + 〈u, at〉, (12)

where last inequality is by the condition 〈wt − w′t+1,
ˆ̀
t + at −mt〉 − 〈wt, at〉 ≤ 0, Eq. (10), and

Eq. (11).
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Appendix B. Lemmas for Log-barrier OMD

In this section we establish some useful lemmas for update rules (1) and (2) with log-barrier regu-
larizer, which are used in the proofs of other theorems. We start with some definitions.

Definition 11 For any h ∈ RK , define norm ‖h‖t,w =
√
h>∇2ψt(w)h =

√∑K
i=1

1
ηt,i

h2i
w2
i

and

its dual norm ‖h‖∗t,w =
√
h>∇−2ψt(w)h =

√∑K
i=1 ηt,iw

2
i h

2
i . For some radius r > 0, define

ellipsoid Et,w(r) =
{
u ∈ RK : ‖u− w‖t,w ≤ r

}
.

Lemma 12 If w′ ∈ Et,w(1) and ηt,i ≤ 1
81 for all i, then w′i ∈

[
1
2wi,

3
2wi
]

for all i, and also
0.9 ‖h‖t,w ≤ ‖h‖t,w′ ≤ 1.2 ‖h‖t,w for any h ∈ RK .

Proof w′ ∈ Et,w(1) implies
∑K

i=1
1
ηt,i

(w′i−wi)2
w2
i

≤ 1. Thus for every i, we have |w
′
i−wi|
wi

≤

√
ηt,i ≤ 1

9 , implying w′i ∈
[

8
9wi,

10
9 wi

]
⊂
[

1
2wi,

3
2wi
]
. Therefore, ‖h‖t,w′ =

√∑K
i=1

1
ηt,i

h2i
w′2i
≥√∑K

i=1
1
ηt,i

h2i

( 10
9
wi)

2 = 0.9 ‖h‖t,w. Similarly, we have ‖h‖t,w′ ≤ 1.2 ‖h‖t,w.

Lemma 13 Let wt, w′t+1 follow (1) and (2) where ψt is the log-barrier with ηt,i ≤ 1
81 for all i. If∥∥∥ˆ̀

t −mt + at

∥∥∥∗
t,wt
≤ 1

3 , then w′t+1 ∈ Et,wt(1).

Proof Define Ft(w) = 〈w,mt〉 + Dψt(w,w
′
t) and F ′t+1(w) = 〈w, ˆ̀

t + at〉 + Dψt(w,w
′
t). Then

by definition we have wt = argminw∈Ω Ft(w) and w′t+1 = argminw∈Ω F
′
t+1(w). To show w′t+1 ∈

Et,wt(1), it suffices to show that for all u on the boundary of Et,wt(1), F ′t+1(u) ≥ F ′t+1(wt).
Indeed, using Taylor’s theorem, for any u ∈ ∂Et,wt(1), there is an ξ on the line segment between

wt and u such that (let h , u− wt)

F ′t+1(u) = F ′t+1(wt) +∇F ′t+1(wt)
>h+

1

2
h>∇2F ′t+1(ξ)h

= F ′t+1(wt) + (ˆ̀
t −mt + at)

>h+∇Ft(wt)>h+
1

2
h>∇2ψt(ξ)h

≥ F ′t+1(wt) + (ˆ̀
t −mt + at)

>h+
1

2
‖h‖2t,ξ (by the optimality of wt)

≥ F ′t+1(wt) + (ˆ̀
t −mt + at)

>h+
1

2
× 0.92 ‖h‖2t,wt (by Lemma 12)

≥ F ′t+1(wt)−
∥∥∥ˆ̀
t −mt + at

∥∥∥∗
t,wt
‖h‖t,wt +

1

3
‖h‖2t,wt

= F ′t+1(wt)−
∥∥∥ˆ̀
t −mt + at

∥∥∥∗
t,wt

+
1

3
(‖h‖t,wt = 1)

≥ F ′t+1(wt). (by the assumption)

16
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Lemma 14 Let wt, w′t+1 follow (1) and (2) where ψt is the log-barrier with ηt,i ≤ 1
81 for all i. If∥∥∥ˆ̀

t −mt + at

∥∥∥∗
t,wt
≤ 1

3 , then
∥∥w′t+1 − wt

∥∥
t,wt
≤ 3

∥∥∥ˆ̀
t −mt + at

∥∥∥∗
t,wt

.

Proof Define Ft(w) and F ′t+1(w) to be the same as in Lemma 13. Then we have

F ′t+1(wt)− F ′t+1(w′t+1) = (wt − w′t+1)>(ˆ̀
t −mt + at) + Ft(wt)− Ft(w′t+1)

≤ (wt − w′t+1)>(ˆ̀
t −mt + at) (optimality of wt)

≤
∥∥wt − w′t+1

∥∥
t,wt

∥∥∥ˆ̀
t −mt + at

∥∥∥∗
t,wt

. (13)

On the other hand, for some ξ on the line segment between wt and w′t+1, we have by Taylor’s
theorem and the optimality of w′t+1,

F ′t+1(wt)− F ′t+1(w′t+1) = ∇F ′t+1(w′t+1)>(wt − w′t+1) +
1

2
(wt − w′t+1)>∇2F ′t+1(ξ)(wt − w′t+1)

≥ 1

2

∥∥wt − w′t+1

∥∥2

t,ξ
. (14)

Since the condition in Lemma 13 holds, w′t+1 ∈ Et,wt(1), and thus ξ ∈ Et,wt(1). Using again
Lemma 12, we have

1

2

∥∥wt − w′t+1

∥∥2

t,ξ
≥ 1

3

∥∥wt − w′t+1

∥∥2

t,wt
. (15)

Combining (13), (14), and (15), we have
∥∥wt − w′t+1

∥∥
t,wt

∥∥∥ˆ̀
t −mt + at

∥∥∥∗
t,wt
≥ 1

3

∥∥wt − w′t+1

∥∥2

t,wt
,

which leads to the stated inequality.

Lemma 15 When the three conditions in Theorem 2 hold, we have
∥∥∥ˆ̀
t −mt + at

∥∥∥∗
t,wt
≤ 1

3 for

either at,i = 6ηt,iwt,i(ˆ̀
t,i −mt,i)

2 or at,i = 0.

Proof For at,i = 6ηt,iwt,i(ˆ̀
t,i −mt,i)

2, we have

∥∥∥ˆ̀
t −mt + at

∥∥∥∗2
t,wt

=

K∑
i=1

ηt,iw
2
t,i

(
ˆ̀
t,i −mt,i + 6ηt,iwt,i(ˆ̀

t,i −mt,i)
2
)2

=

K∑
i=1

ηt,iw
2
t,i(

ˆ̀
t,i −mt,i)

2 + 12η2
t,iw

3
t,i(

ˆ̀
t,i −mt,i)

3 + 36η3
t,iw

4
t,i(

ˆ̀
t,i −mt,i)

4

≤
K∑
i=1

ηt,iw
2
t,i(

ˆ̀
t,i −mt,i)

2(1 + 36ηt,i + 324η2
t,i) (condition (ii))

≤ 2

K∑
i=1

ηt,iw
2
t,i(

ˆ̀
t,i −mt,i)

2 (condition (i))

≤ 2× 1

18
=

1

9
. (condition (iii))

17
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For at,i = 0, we have

∥∥∥ˆ̀
t −mt + at

∥∥∥∗2
t,wt

=
∥∥∥ˆ̀
t −mt

∥∥∥∗2
t,wt

=

K∑
i=1

ηt,iw
2
t,i(

ˆ̀
t,i −mt,i)

2 ≤ 1

18
<

1

9
. (condition (iii))

Lemma 16 If the three conditions in Theorem 2 hold, BROAD-OMD (with either Option I or II)
satisfies 1

2wt,i ≤ w
′
t+1,i ≤ 3

2wt,i.

Proof This is a direct application of Lemmas 15, 13, and 12.

Lemma 17 For the MAB problem, if the three conditions in Theorem 2 hold, BROAD-OMD (with
either Option I or II) satisfies 1

2wt,i ≤ w
′
t,i ≤ 3

2wt,i.

Proof It suffices to prove w′t ∈ Et,wt(1) by Lemma 12. Since we assume that the three conditions

in Theorem 2 hold and wt ∈ ∆K , we have ‖mt‖∗t,wt =
√∑K

i=1 ηt,iw
2
t,im

2
t,i ≤

√
1

162

∑K
i=1w

2
t,i ≤√

1
162 <

1
3 . This implies w′t ∈ Et,wt(1) by a similar arguments as in the proof of Lemma 13 (one

only needs to replaceF ′t+1(w) there byG(w) , Dψt(w,w
′
t) and note thatw′t = argminw∈∆K

G(w)).

Appendix C. Proof of Theorem 2 and Corollary 3

Proof of Theorem 2. We first prove Eq. (3) holds: by Lemmas 15 and 14, we have

〈wt − w′t+1,
ˆ̀
t −mt + at〉 ≤

∥∥wt − w′t+1

∥∥
t,wt

∥∥∥ˆ̀
t −mt + at

∥∥∥∗
t,wt

≤ 3
∥∥∥ˆ̀
t −mt + at

∥∥∥∗2
t,wt

≤ 3

K∑
i=1

ηt,iw
2
t,i(

ˆ̀
t,i −mt,i)

2(1 + 36ηt,i + 324η2
t,i)

≤ 6

K∑
i=1

ηt,iw
2
t,i(

ˆ̀
t,i −mt,i)

2 = 〈wt, at〉,

where the last two inequalities are by the same calculations done in the proof of Lemma 15.
Since Eq. (3) holds, using Lemma 1 we have (ignoring non-positive terms −At’s),

T∑
t=1

〈wt − u, ˆ̀
t〉 ≤

T∑
t=1

(
Dψt(u,w

′
t)−Dψt(u,w

′
t+1)

)
+

T∑
t=1

〈u, at〉

18
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≤ Dψ1(u,w′1) +
T∑
t=1

(
Dψt+1(u,w′t+1)−Dψt(u,w

′
t+1)

)
+

T∑
t=1

〈u, at〉. (16)

In the last inequality, we add a term DψT+1
(u,w′T+1) ≥ 0 artificially. As mentioned, ψT+1, defined

in terms of ηT+1,i, never appears in the BROAD-OMD algorithm. We can simply pick any ηT+1,i >
0 for all i here. This is just to simplify some analysis later.

The first term in (16) can be bounded by the optimality of w′1:

Dψ1(u,w′1) = ψ1(u)− ψ1(w′1)− 〈∇ψ1(w′1), u− w′1〉

≤ ψ1(u)− ψ1(w′1) =

K∑
i=1

1

η1,i
ln
w′1,i
ui

.

The second term, by definition, is

T∑
t=1

K∑
i=1

(
1

ηt+1,i
− 1

ηt,i

)
h

(
ui

w′t+1,i

)
.

Plugging the above two terms into (16) finishes the proof.

Proof of Corollary 3. We first check the three conditions in Theorem 2 under our choice of
ηt,i and ˆ̀

t,i: ηt,i = η = 1
162K0

≤ 1
162 ; wt,i|ˆ̀t,i −mt,i| = |`t,i −mt,i|1{i ∈ bt} ≤ 2 < 3;∑K

i=1 ηt,iw
2
t,i(

ˆ̀
t,i − mt,i)

2 = 1
162K0

∑K
i=1(`t,i − mt,i)

2
1{i ∈ bt} ≤ 4

162 < 1
18 . Applying Theo-

rem 2 we then have

T∑
t=1

〈wt − u, ˆ̀
t〉 ≤

K∑
i=1

ln
w′1,i
ui

η
+

T∑
t=1

〈u, at〉.

As mentioned, if we let u = b∗, then ln
w′1,i
ui

becomes infinity for those i /∈ b∗. Instead, we let

u =
(
1− 1

T

)
b∗ + 1

T w
′
1. With this choice of u, we have

w′1,i
ui
≤ w′1,i

1
T
w′1,i

= T . Plugging u into the

above inequality and rearranging, we get

T∑
t=1

〈wt − b∗, ˆ̀
t〉 ≤

K lnT

η
+

T∑
t=1

〈b∗, at〉+B, (17)

where B , 1
T

∑T
t=1〈−b∗ + w′1,

ˆ̀
t + at〉.

Now note that Ebt [at,i] = 6η(`t,i −mt,i)
2 = O(η) and Ebt [ˆ̀t,i] = `t,i = O(1) for all i. Thus,

E[B] = E
[

1
T

∑T
t=1〈−b∗ + w′1,Ebt [ˆ̀t + at]〉

]
≤ E

[
1
T

∑T
t=1 ‖−b∗ + w′1‖1

∥∥∥Ebt [ˆ̀t + at]
∥∥∥
∞

]
=

O(K0). Taking expectation on both sides of (17), we have

E

[
T∑
t=1

b>t `t −
T∑
t=1

b∗>`t

]
≤ K lnT

η
+ 6ηE

[
T∑
t=1

K∑
i∈b∗

(`t,i −mt,i)
2

]
+O(K0).
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Appendix D. Proof of Theorem 4

Proof of Theorem 4. As in Hazan and Kale (2011a), for the rounds we perform uniform sampling
we do not update w′t. Let S be the set of rounds of uniform sampling. Then for the other rounds we
can apply Corollary 3 to arrive at

E

 ∑
t∈[T ]\S

`t,it − `t,i∗

 ≤ K lnT

η
+ 6ηE

 ∑
t∈[T ]\S

(`t,i∗ − µ̃t−1,i∗)
2

+O(1). (18)

The second term can be bounded as follows:

E

 ∑
t∈[T ]\S

(`t,i∗ − µ̃t−1,i∗)
2

 ≤ E

[
T∑
t=2

(`t,i∗ − µ̃t−1,i∗)
2

]

≤ 3
T∑
t=2

(`t,i∗ − µt,i∗)2 + 3
T∑
t=2

(µt,i∗ − µt−1,i∗)
2 + 3E

[
T∑
t=2

(µt−1,i∗ − µ̃t−1,i∗)
2

]
. (19)

The first and the third terms in (19) can be bounded using Lemma 10 and 11 of (Hazan and Kale,
2011a) respectively, and they are both of order O(QT,i∗ + 1) if we pick M = Θ(lnT ). The second
term in (19) can be bounded by a constant by Lemma 18. Thus second term in (18) can be bounded
byO (η(QT,i∗ + 1)). Finally, note that E

[∑T
t=1 `t,it − `t,i∗

]
≤ E

[∑
t∈[T ]\S `t,it − `t,i∗

]
+2E[|S|]

and that E[|S|] = O
(∑T

t=1
MK
t

)
= O (MK lnT ) = O

(
K(lnT )2

)
. Combining everything, we

get

E

[
T∑
t=1

`t,it − `t,i∗
]

= O
(
K lnT

η
+ ηQT,i∗ +K(lnT )2

)
.

Lemma 18 For any i,
∑T

t=2(µt,i − µt−1,i)
2 = O(1).

Proof By definition, |µt,i − µt−1,i| =
∣∣∣1t ∑t

s=1 `s,i −
1
t−1

∑t−1
s=1 `s,i

∣∣∣ =∣∣∣1t `t,i − 1
t(t−1)

∑t−1
s=1 `s,i

∣∣∣ ≤ ∣∣1t `t,i∣∣ +
∣∣∣ 1
t(t−1)

∑t−1
s=1 `s,i

∣∣∣ ≤ 2
t . Therefore,

∑T
t=2(µt,i − µt−1,i)

2 ≤∑T
t=2

4
t2

= O(1).

Appendix E. Proof of Theorem 5

We first state a useful lemma.

Lemma 19 Let ni be such that ηT+1,i = κniη1,i, i.e., the number of times the learning rate of arm
i changes in BROAD-OMD+. Then ni ≤ log2 T , and ηt,i ≤ 5η1,i for all t, i.
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Proof Let t1, t2, . . . , tni ∈ [T ] be the rounds the learning rate for arm i changes (i.e., ηt+1,i = κηt,i
for t = t1, . . . , tni). By the algorithm, we have

KT ≥ 1

w̄tni ,i
> ρtni ,i > 2ρtni−1,i > · · · > 2ni−1ρt1,i = 2niK.

Therefore, ni ≤ log2 T . And we have ηt,i ≤ κlog2 T η1,i = e
log2 T
lnT η1,i ≤ 5η1,i.

Proof of Theorem 5. Again, we verify the three conditions stated in Theorem 2. By Lemma 19,

ηt,i ≤ 5η ≤ 5× 1
810 = 1

162 ; also, wt,j
∣∣∣ˆ̀t,j −mt,j

∣∣∣ = wt,j

∣∣∣ (`t,j−mt,j)1{it=j}w̄t,j

∣∣∣ ≤ wt,j ∣∣∣∣ 2
wt,j(1− 1

T )

∣∣∣∣ ≤
3 because we assume T ≥ 3; finally,

∑K
j=1 ηt,jw

2
t,j(

ˆ̀
t,j − mt,j)

2 = ηt,itw
2
t,it

(ˆ̀
t,it − mt,it)

2 ≤
1

162 × 32 = 1
18 .

Let τj denote the last round the learning rate for arm j is updated, that is, τj , max{t ∈
[T ] : ηt+1,j = κηt,j}. We assume that the learning rate is updated at least once so that τj is well
defined, otherwise one can verify that the bound is trivial. For any arm i to compete with, let

u =
(
1− 1

T

)
ei + 1

T w
′
1 =

(
1− 1

T

)
ei + 1

KT 1, which guarantees
w′1,i
ui
≤ T . Applying Theorem 2,

with B , 1
T

∑T
t=1〈−ei + w′1,

ˆ̀
t + at〉 we have

T∑
t=1

〈wt, ˆ̀
t〉 − ˆ̀

t,i ≤
K lnT

η
+

T∑
t=1

K∑
j=1

(
1

ηt+1,j
− 1

ηt,j

)
h

(
uj

w′t+1,j

)
+

T∑
t=1

at,i +B

≤ K lnT

η
+

(
1

ητi+1,i
− 1

ητi,i

)
h

(
ui

w′τi+1,i

)
+

T∑
t=1

at,i +B

≤ K lnT

η
+

1− κ
ητi+1,i

h

(
ui

w′τi+1,i

)
+

T∑
t=1

at,i +B

≤ K lnT

η
− 1

5η lnT
h

(
ui

w′τi+1,i

)
+

T∑
t=1

at,i +B, (20)

where the last inequality is by Lemma 19 and the fact κ− 1 ≥ 1
lnT . Now we bound the second and

the third term in (20) separately.

1. For the second term, by Lemma 16 and T ≥ 3 we have

ui
w′τi+1,i

≥
1− 1

T
3
2wτi,i

≥
(
1− 1

T

)2
3
2 w̄τi,i

=

(
1− 1

T

)2
3
2

×
ρT+1,i

2
≥
ρT+1,i

8
≥ 4K

8
≥ 1.

Noting that h(y) is an increasing function when y ≥ 1, we thus have

h

(
ui

w′τi+1,i

)
≥ h

(ρT+1,i

8

)
=
ρT+1,i

8
− 1− ln

(ρT+1,i

8

)
≥
ρT+1,i

8
− 1− ln

(
KT

4

)
.

(21)
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2. For the third term, we proceed as

T∑
t=1

at,i = 6

T∑
t=1

ηt,iwt,i(ˆ̀
t,i −mt,i)

2 ≤ 90η

T∑
t=1

|ˆ̀t,i −mt,i|

≤ 90η

(
max
t∈[T ]

1

w̄t,i

) T∑
t=1

|`t,i − `t−1,i| ≤ 90ηρT+1,iVT,i, (22)

where in the first inequality, we use wt,i|ˆ̀t,i −mt,i| ≤ 3 and ηt,i ≤ 5η; in the second in-
equality, we do a similar calculation as in Eq. (6) (only replacing wt,i by w̄t,i); and in the last
inequality, we use the fact 1

w̄t,i
≤ ρT+1,i for all t ∈ [T ] by the algorithm.

Combining Eq. (21) and Eq. (22) and using the fact
1+ln(KT4 )

5 lnT ≤ K lnT , we continue from Eq. (20)
to arrive at

T∑
t=1

〈wt, ˆ̀
t〉 − ˆ̀

t,i ≤
2K lnT

η
+ ρT+1,i

(
−1

40η lnT
+ 90ηVT,i

)
+B, (23)

We are almost done here, but note that the left-hand side of (23) is not the desired regret. What we
would like to bound is

T∑
t=1

〈w̄t, ˆ̀
t〉 −

T∑
t=1

ˆ̀
t,i =

T∑
t=1

〈w̄t − wt, ˆ̀
t〉+

T∑
t=1

(
〈wt, ˆ̀

t〉 − ˆ̀
t,i

)
, (24)

where the second summation on the right-hand side is bounded by Eq. (23). The first term can
be written as

∑T
t=1〈−

1
T wt + 1

KT 1,
ˆ̀
t〉. Note that 1

T

∑T
t=1〈−wt, ˆ̀

t〉 ≤ 1
T

∑T
t=1|〈wt, ˆ̀

t −mt〉| +
1
T

∑T
t=1|〈wt,mt〉| ≤ 3 + 1 = 4, and E

[
1
T

∑T
t=1〈

1
K1, ˆ̀

t〉
]

= 1
T

∑T
t=1〈

1
K1, `t〉 ≤ 1. Therefore,

taking expectation on both sides of (24), we get

E

[
T∑
t=1

`t,it

]
−

T∑
t=1

`t,i ≤
2K lnT

η
+ E[ρT+1,i]

(
−1

40η lnT
+ 90ηVT,i

)
+O(1),

because E[B] is also O(1) as proved in Corollary 3.

Appendix F. Proofs of Lemma 6 and Theorem 7

Proof of Lemma 6. By the same arguments as in the proof of Lemma 1, we have

〈w′t+1 − u, ˆ̀
t〉 ≤ Dψt(u,w

′
t)−Dψt(u,w

′
t+1)−Dψt(w

′
t+1, w

′
t);

and

〈wt − w′t+1,mt〉 ≤ Dψt(w
′
t+1, w

′
t)−Dψt(w

′
t+1, wt)−Dψt(wt, w

′
t).

Therefore, by expanding the instantaneous regret, we have

〈wt − u, ˆ̀
t〉
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= 〈wt − w′t+1,
ˆ̀
t −mt〉+ 〈w′t+1 − u, ˆ̀

t〉+ 〈wt − w′t+1,mt〉
≤ 〈wt − w′t+1,

ˆ̀
t −mt〉+Dψt(u,w

′
t)−Dψt(u,w

′
t+1)−Dψt(w

′
t+1, wt)−Dψt(wt, w

′
t).

Proof of Theorem 7. Applying Lemma 6, we have

T∑
t=1

〈wt − u, ˆ̀
t〉 ≤

T∑
t=1

(
Dψt(u,w

′
t)−Dψt(u,w

′
t+1) + 〈wt − w′t+1,

ˆ̀
t −mt〉 −At

)

≤
K∑
i=1

ln
w′1,i
ui

η
+

T∑
t=1

〈wt − w′t+1,
ˆ̀
t −mt〉 −At.

For the second term, using Lemma 15 and 14 we bound 〈wt − w′t+1,
ˆ̀
t −mt〉 by

∥∥wt − w′t+1

∥∥
t,wt

∥∥∥ˆ̀
t −mt

∥∥∥∗
t,wt
≤ 3

∥∥∥ˆ̀
t −mt

∥∥∥∗2
t,wt

= 3η

K∑
i=1

w2
t,i(

ˆ̀
t,i −mt,i)

2

Finally we lower boundAt for the MAB case. Note h(y) = y−1− ln y ≥ (y−1)2

6 for y ∈ [1
2 , 2].

By Lemma 16 and 17,
w′t+1,i

wt,i
and wt,i

w′t,i
both belong to [1

2 , 2]. Therefore,

At = Dψt(w
′
t+1, wt) +Dψt(wt, w

′
t) =

1

η

K∑
i=1

(
h

(
w′t+1,i

wt,i

)
+ h

(
wt,i
w′t,i

))

≥ 1

6η

K∑
i=1

(
(w′t+1,i − wt,i)2

w2
t,i

+
(wt,i − w′t,i)2

w′2t,i

)

≥ 1

24η

K∑
i=1

(
(w′t+1,i − wt,i)2

w2
t,i

+
(wt,i − w′t,i)2

w2
t−1,i

)
,

and
T∑
t=1

At ≥
1

24η

T∑
t=2

K∑
i=1

(w′t,i − wt−1,i)
2

w2
t−1,i

+
T∑
t=2

K∑
i=1

(wt,i − w′t,i)2

w2
t−1,i

≥ 1

48η

T∑
t=2

K∑
i=1

(wt,i − wt−1,i)
2

w2
t−1,i

.

Appendix G. Doubling Trick

We include the version of our algorithm with the doubling trick in Algorithm 3. For simplicity we
still assume the time horizon T is known; the extension to unknown horizon is straightforward.

Proof of Theorem 8. Let u =
(
1− 1

T

)
b∗ + 1

T w
′
1 so that ln

w′1,i
ui
≤ lnT . At some epoch β, by

Theorem 7, the break condition, and condition (iii) we have with ηβ , 2−β

162K0
,

Tβ+1∑
t=Tβ+1

〈wt − u, ˆ̀
t〉 ≤

K lnT

ηβ
+ 3ηβ

Tβ+1∑
t=Tβ+1

K∑
i=1

w2
t,i(

ˆ̀
t,i −mt,i)

2
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Algorithm 3 Doubling trick for BROAD-OMD with at = 0

Initialize: η = 1
162K0

, T0 = 0, t = 1.

for β = 0, 1, . . . do
w′t = argminw∈Ω ψ1(w) (restart BROAD-OMD).
while t ≤ T do

Update wt, sample bt ∼ wt, and update w′t+1 as in BROAD-OMD with Option II.
if
∑t

s=Tβ+1

∑K
i=1w

2
s,i(

ˆ̀
s,i −ms,i)

2 ≥ K lnT
3η2

then
η ← η/2, Tβ+1 ← t, t← t+ 1.
break.

end
t← t+ 1.

end
end

≤ 2K lnT

ηβ
+ 3ηβ

K∑
i=1

w2
Tβ+1,i

(ˆ̀
Tβ+1,i −mTβ+1,i)

2 = O
(
K lnT

ηβ

)
.

Suppose that at time T , the algorithm is at epoch β = β∗. Then we have

T∑
t=1

〈wt − u, ˆ̀
t〉 ≤

β∗∑
β=0

O
(
K lnT

ηβ

)
≤

β∗∑
β=0

O
(

2βK0K lnT
)
≤ O

(
2β
∗
K0K lnT

)
.

It remains to bound β∗. If β∗ = 0 (no restart ever happened), then trivially
∑T

t=1〈wt − u, ˆ̀
t〉 =

O(K0K lnT ). Otherwise, because epoch β∗ − 1 finishes, we have

Tβ∗∑
t=Tβ∗−1+1

K∑
i=1

w2
t,i(

ˆ̀
t,i −mt,i)

2 ≥ K lnT

3(ηβ∗−1)2
= Ω(22β∗K2

0K lnT ).

Combining them, we have

T∑
t=1

〈wt − u, ˆ̀
t〉 ≤ O

(
2β
∗
K0K lnT

)
≤ O


√√√√√(K lnT )

Tβ∗∑
t=Tβ∗−1+1

K∑
i=1

w2
t,i(

ˆ̀
t,i −mt,i)2


≤ O


√√√√(K lnT )

T∑
t=1

K∑
i=1

w2
t,i(

ˆ̀
t,i −mt,i)2

 , (25)

Combining both cases we have

T∑
t=1

〈wt − u, ˆ̀
t〉 ≤ O


√√√√K lnT

T∑
t=1

K∑
i=1

w2
t,i(

ˆ̀
t,i −mt,i)2 +K0K lnT

 . (26)
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Now substituting u by its definition and taking expectations, with B , 1
T

∑T
t=1〈−b∗ + w′1,

ˆ̀
t〉 we

arrive at

E

[
T∑
t=1

〈bt − b∗, `t〉

]
≤ O

E


√√√√K lnT

T∑
t=1

K∑
i=1

w2
t,i(

ˆ̀
t,i −mt,i)2

+K0K lnT

+ E[B]

≤ O


√√√√K lnTE

[
T∑
t=1

K∑
i=1

w2
t,i(

ˆ̀
t,i −mt,i)2

]
+K0K lnT

 ,

where the last inequality uses the fact E[B] = O(K) and Jensen’s inequality.

Appendix H. Proofs of Corollary 9 and Theorem 20

Proof of Corollary 9. We first verify the three conditions in Theorem 7: η ≤ 1
162 by assumption;

wt,i

∣∣∣ˆ̀t,i −mt,i

∣∣∣ =
∣∣(`t,i − `αi(t),i)1{it = i}

∣∣ ≤ 2 < 3; η
∑K

i=1w
2
t,i(

ˆ̀
t,i −mt,i)

2 = ηw2
t,it

(ˆ̀
t,it −

mt,it)
2 ≤ 9

162 = 1
18 . Let u =

(
1− 1

T

)
ei∗ + 1

T w
′
1, which guarantees

w′1,i
ui
≤ T . By Theorem 7 and

some rearrangement, we have
T∑
t=1

〈wt − ei∗ , ˆ̀
t〉 ≤

K lnT

η
+ 3η

T∑
t=1

K∑
i=1

w2
t,i(

ˆ̀
t,i −mt,i)

2 −
T∑
t=1

At +B,

where B , 1
T

∑T
t=1〈−ei∗ + w′1,

ˆ̀
t〉. To get the stated bound, just note that E[B] = O(1), and

replace
∑T

t=1

∑K
i=1w

2
t,i(

ˆ̀
t,i − mt,i)

2 by the upper bound at (8) and At by the lower bound in
Theorem 7.

Appendix I. Omitted Details in Section 4.1.1

Although the generalization to multi-player games is straightforward, for simplicity we only con-
sider two-player zero-sum games.

We first describe the protocol of the game. The game is defined by an unknown matrix G ∈
[−1, 1]M×N where entry G(i, j) specifies the loss (or reward) for Player 1 (or Player 2) if Player
1 picks row i while Player 2 picks column j. The players play the game repeatedly for T rounds.
At round t, Player 1 randomly picks a row it ∼ xt for some xt ∈ ∆M while Player 2 randomly
picks a column jt ∼ yt for some yt ∈ ∆N . In (Syrgkanis et al., 2015), the feedbacks they receive
are the vectors Gyt and x>t G respectively. As a natural extension to the bandit setting, we consider
a setting where the feedbacks are the scalar values e>itGyt and x>t Gejt respectively, that is, the
expected loss/reward for the players’ own realized actions (over the opponent’s randomness).

It is clear that each player is essentially facing an MAB problem and thus can employ an MAB
algorithm. Specifically, if both players apply Exp3 for example, their expected average strategies
converge to a Nash equilibrium at rate 1/

√
T . However, if instead Player 1 applies BROAD-OMD

configured as in Corollary 9, then her regret has a path-length term that can be bounded as follows:
K∑
i=1

T∑
t=2

∣∣∣e>i Gyt − e>i Gyt−1

∣∣∣ ≤ K∑
i=1

T∑
t=2

∥∥∥e>i G∥∥∥∞ ‖yt − yt−1‖1 ≤ K
T∑
t=2

‖yt − yt−1‖1,
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which is closely related to the negative regret term in Corollary 9 for Player 2 if she also employs
the same BROAD-OMD. The cancellation of these terms then lead to faster convergence rate.

Theorem 20 For the setting described above, if both players run BROAD-OMD configured as
in Corollary 9 except that ηt,i = η = (M + N)−

1
4T−

1
4 , then their expected average strategies

converge to Nash equilibriums at the rate of Õ
(

(M +N)
5
4 /T

3
4

)
, that is,

max
y∈∆N

E[x̄]>Gy ≤ Val + Õ((M +N)
5
4 /T

3
4 ) and min

x∈∆M

x>GE[ȳ] ≥ Val− Õ((M +N)
5
4 /T

3
4 ),

where x̄ = 1
T

∑T
t=1 xt, ȳ = 1

T

∑T
t=1 yt and Val = min

x∈∆M

max
y∈∆N

x>Gy = max
y∈∆N

min
x∈∆M

x>Gy.

Proof As mentioned, Player 1’s VT,i is

T∑
t=1

|`t,i − `t−1,i| =
T∑
t=1

|e>i Gyt − e>i Gyt−1| ≤
T∑
t=1

∥∥∥e>i G∥∥∥∞ ‖yt − yt−1‖1 ≤
T∑
t=1

‖yt − yt−1‖1

due to the assumption |G(i, j)| ≤ 1. Therefore, by Corollary 9, Player 1’s (pseudo) regret is

max
x∈∆M

E

[
T∑
t=1

x>t Gyt −
T∑
t=1

x>Gyt

]

≤ O
(
M lnT

η

)
+ E

[
6ηM

T∑
t=1

‖yt − yt−1‖1 −
1

48η

T∑
t=2

M∑
i=1

(xt,i − xt−1,i)
2

x2
t−1,i

]
,

while Player 2’s (pseudo) regret is

max
y∈∆N

E

[
T∑
t=1

x>TGy −
T∑
t=1

x>t Gyt

]

≤ O
(
N lnT

η

)
+ E

[
6ηN

T∑
t=1

‖xt − xt−1‖1 −
1

48η

T∑
t=2

N∑
i=1

(yt,i − yt−1,i)
2

y2
t−1,i

]
.

Summing up the above two bounds, and using the following fact (by the inequality a− b ≤ a2

4b ):

N∑
i=1

(
6ηM |yt,i − yt−1,i| −

(yt,i − yt−1,i)
2

48ηy2
t−1,i

)
≤ 432η3M2

N∑
i=1

y2
t−1,i ≤ 432η3M2,

we get

max
y∈∆N

E[x̄]>Gy − min
x∈∆M

x>GE[ȳ] = O
(

(M +N) lnT

Tη
+ η3(M2 +N2)

)
.

With η = Θ̃
(

(M +N)−
1
4T−

1
4

)
the above bound becomes Õ

(
(M +N)

5
4T−

3
4

)
. Rearranging

then gives

max
y∈∆N

E[x̄]>Gy ≤ min
x∈∆M

x>GE[ȳ] + Õ((M +N)
5
4T−

3
4 ),
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≤ min
x∈∆M

max
y∈∆N

x>Gy + Õ((M +N)
5
4T−

3
4 ) = Val + Õ((M +N)

5
4T−

3
4 ),

and similarly

min
x∈∆M

x>GE[ȳ] ≥ max
y∈∆N

E[x̄]>Gy − Õ((M +N)
5
4T−

3
4 )

≥ max
y∈∆N

min
x∈∆M

x>Gy − Õ((M +N)
5
4T−

3
4 ) = Val− Õ((M +N)

5
4T−

3
4 ),

completing the proof.

As shown by the theorem, we obtain convergence rate faster than 1/
√
T , but still slower than

the 1/T rate compared to the full-information setup of (Rakhlin and Sridharan, 2013b; Syrgkanis
et al., 2015), due to the fact that we only have first-order instead of second-order path-length bound.

Note that Rakhlin and Sridharan (2013b) also studies two-player zero-sum games with bandit
feedback but with an unnatural restriction that in each round the players play the same strategy for
four times. Foster et al. (2016) greatly weakened the restriction, but their algorithm only converges
to some approximation of Val. For further comparisons, the readers are referred to the comparisons
to (Syrgkanis et al., 2015) in (Foster et al., 2016). We also point out that the question raised in
(Rakhlin and Sridharan, 2013b) remains open: if the players only receive the realized loss/reward
e>itGejt as feedback (a more natural setup), can the convergence rate to Val be faster than 1/

√
T ?

Appendix J. Proof of Theorem 10

Proof of Theorem 10. We first verify conditions (ii) and (iii) in Theorem 8 hold for ˆ̀
t,i =

`t,i1{it=i}
wt,i

and mt,i = `t,it . Indeed, condition (ii) holds since wt,i|ˆ̀t,i −mt,i| = |`t,i1{it = i} − wt,i`t,it | ≤
2 < 3. Other the other hand, condition (iii) also holds because

η
K∑
i=1

w2
t,i(

ˆ̀
t,i −mt,i)

2 = η
K∑
i=1

(`t,i1{it = i} − wt,i`t,it)2

= η
K∑
i=1

(`2t,i1{it = i} − 2`t,iwt,i`t,it1{it = i}+ w2
t,i`

2
t,it)

≤ 1

162

(
`2t,it − 2wt,it`

2
t,it +

(
K∑
i=1

w2
t,i

)
`2t,it

)

≤ 1

162
(1 + 0 + 1) <

1

18
.

Thus, by Theorem 8, we have

E

[
T∑
t=1

`t,it − `t,i∗
]

= O


√√√√(K lnT )E

[
T∑
t=1

K∑
i=1

w2
t,i(

ˆ̀
t,i − `t,it)2

]
+K lnT

 . (27)

Now we consider the stochastic setting. In this case, we further take expectations over `1, . . . , `T
on both sides of (27). The left-hand side of (27) can be lower bounded by

E

[
T∑
t=1

`t,it − `t,i∗
]

= E

[
T∑
t=1

`t,it −min
j

T∑
t=1

`t,j

]
≥ E

[
T∑
t=1

`t,it −
T∑
t=1

`t,a∗

]
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= E

[
T∑
t=1

K∑
i=1

wt,i(`t,i − `t,a∗)

]
≥ E

 T∑
t=1

∑
i 6=a∗

wt,i∆

 = ∆E

[
T∑
t=1

(1− wt,a∗)

]
.

(28)

On the other hand,

Eit∼wt

[
K∑
i=1

w2
t,i(

ˆ̀
t,i − `t,it)2

]
= Eit∼wt

[
K∑
i=1

w2
t,i

(
`t,i1{it = i}

wt,i
− `t,it

)2
]

= Eit∼wt

[
K∑
i=1

(`t,i1{it = i} − wt,i`t,it)
2

]

=

K∑
i=1

wt,i (`t,i − wt,i`t,i)2 +
∑
j 6=i

wt,j(wt,i`t,j)
2


≤

K∑
i=1

wt,i (1− wt,i)2 +
∑
j 6=i

wt,jw
2
t,i

 =
K∑
i=1

wt,i(1− wt,i)

≤ (1− wt,a∗) +
∑
i 6=a∗

wt,i = 2(1− wt,a∗). (29)

Therefore, the first term on the right-hand side of (27) can be upper bounded by√√√√(K lnT )E

[
T∑
t=1

K∑
i=1

w2
t,i(

ˆ̀
t,i − `t,it)2

]
≤

√√√√(K lnT )E

[
T∑
t=1

2(1− wt,a∗)

]
. (30)

Let H = E
[∑T

t=1(1− wt,a∗)
]
. Combining (28), (30), and (27), we have

H∆ ≤ O
(√

(K lnT )H +K lnT
)
,

which implies H = O
(
K lnT

∆2

)
. Therefore, the expected regret is upper bounded by

O
(√

(K lnT )H +K lnT
)

= O
(
K lnT

∆

)
.

For the adversarial setting, we continue from an intermediate step of (29):

Eit∼wt

[
K∑
i=1

w2
t,i(

ˆ̀
t,i − `t,it)2

]
=

K∑
i=1

wt,i(1− wt,i)2`2t,i +
∑
j 6=i

wt,jw
2
t,i`

2
t,j


≤

K∑
i=1

wt,i`
2
t,i +

K∑
j=1

∑
i 6=j

wt,jw
2
t,i`

2
t,j ≤

K∑
i=1

wt,i`
2
t,i +

K∑
j=1

wt,j`
2
t,j = 2Eit∼wt

[
`2t,it
]
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Assuming `t,i ∈ [0, 1], we thus have `2t,it ≤ `t,it and

E

[
T∑
t=1

`t,it

]
−

T∑
t=1

`t,i∗ = O


√√√√(K lnT )E

[
T∑
t=1

`t,it

]
+K lnT

 .

Solving for
√
E
[∑T

t=1 `t,it

]
and rearranging then give

E

[
T∑
t=1

`t,it

]
−

T∑
t=1

`t,i∗ = O


√√√√(K lnT )

T∑
t=1

`t,i∗ +K lnT

 = O
(√

KLT,i∗ lnT +K lnT
)
.
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