Hierarchical Clustering with Structural Constraints

Vaggos Chatziafratis*! Rad Niazadeh ™! Moses Charikar '

Abstract

Hierarchical clustering is a popular unsupervised
data analysis method. For many real-world ap-
plications, we would like to exploit prior infor-
mation about the data that imposes constraints
on the clustering hierarchy, and is not captured
by the set of features available to the algorithm.
This gives rise to the problem of hierarchical
clustering with structural constraints. Structural
constraints pose major challenges for bottom-up
approaches like average/single linkage and even
though they can be naturally incorporated into
top-down divisive algorithms, no formal guaran-
tees exist on the quality of their output. In this
paper, we provide provable approximation guar-
antees for two simple top-down algorithms, us-
ing a recently introduced optimization viewpoint
of hierarchical clustering with pairwise similar-
ity information (Dasgupta, 2016). We show how
to find good solutions even in the presence of
conflicting prior information, by formulating a
constraint-based regularization of the objective.
Furthermore, we explore a variation of this objec-
tive for dissimilarity information (Cohen-Addad
et al., 2018) and improve upon current techniques.
Finally, we demonstrate our approach on a real
dataset for the taxonomy application.

1. Introduction

Hierarchical clustering (HC) is a widely used data analysis
tool, ubiquitous in information retrieval, data mining, and
machine learning (see a survey by (Berkhin, 2006)). This
clustering technique represents a given dataset as a binary
tree; each leaf represents an individual data point and each
internal node represents a cluster on the leaves of its de-
scendants. HC has become the most popular method for

"Department of Computer Science, Stanford Univer-
sity, Stanford, CA, USA. Correspondence to: Moses
Charikar <moses@cs.stanford.edu >, Vaggos Chatziafratis <vag-
gos@stanford.edu >, Rad Niazadeh <rad@cs.stanford.edu>.

Proceedings of the 35" International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

gene expression data analysis (Eisen et al., 1998), and also
has been used in the analysis of social networks (Leskovec
et al., 2014; Mann et al., 2008), bioinformatics (Diez et al.,
2015), image and text classification (Steinbach et al., 2000),
and even in analysis of financial markets (Tumminello et al.,
2010). It is attractive because it provides richer information
at all levels of granularity simultaneously, compared to more
traditional flat clustering approaches like k-means.

Recently, (Dasgupta, 2016) formulated HC as a combinato-
rial optimization problem, giving a principled way to com-
pare the performance of different HC algorithms. This opti-
mization viewpoint has since received a lot of attention (Roy
& Pokutta, 2016; Charikar & Chatziafratis, 2017; Cohen-
Addad et al., 2017; Moseley & Wang, 2017; Cohen-Addad
et al., 2018) that has led not only to the development of new
algorithms but also to theoretical justifications for the ob-
served success of popular algorithms (e.g. average-linkage).

However, in real applications of clustering, the user of-
ten has background knowledge about the data that may
not be captured by the input to the clustering algorithm.
There is a rich body of work on constrained (flat) clus-
tering formulations that take into account such user in-
put in the form of “cannot link” and “must link” con-
straints (Wagstaff & Cardie, 2000; Wagstaff et al., 2001;
Bilenko et al., 2004; Rangapuram & Hein, 2012). Very re-
cently, “semi-supervised” versions of HC that incorporate
additional constraints have been studied (Vikram & Das-
gupta, 2016), where the natural form of such constraints
is triplet (or “must link before”) constraints ab|c': these
require that valid solutions contain a sub-cluster with a, b
together and c previously separated from them.? Such triplet
constraints, as we show later, can encode more general struc-
tural constraints in the form of rooted subtrees. Surprisingly,
such simple triplet constraints already pose significant chal-
lenges for bottom-up linkage methods. (Figure 1).

Our work is motivated by applying the optimization lens to
study the interaction of hierarchical clustering algorithms
with structural constraints. Constraints can be fairly natu-

"Hierarchies on data imply that all datapoints are linked at the
highest level and all are separated at the lowest level, hence “cannot
link” and “must link” constraints are not directly meaningful.

2For a concrete example from taxonomy of species, a triplet
constraint may look like (TUNA, SALMON|LION).

Hierarchical Clustering with Structural Constraints

>

DN AN

Figure 1. (Left) Example of a triplet constraint uv|w and more
general rooted tree constraints on 4 points u, v, w, z. (Right) Ex-
ample with only two constraints ab|c, a’b’|c’ demonstrating that
popular distance-based linkage algorithms may fail to produce
valid HC. Here they get stuck after 3 merging steps (green edges).

rally incorporated into top-down (i.e. divisive) algorithms
for hierarchical clustering; but can we establish guarantees
on the quality of the solution they produce? Another issue
is that incorporating constraints from multiple experts may
lead to a conflicting set of constraints; can the optimization
viewpoint of hierarchical clustering still help us obtain good
solutions even in the presence of infeasible constraints? Fi-
nally, different objective functions for HC have been studied
in the literature; do algorithms designed for these objectives
behave similarly in the presence of constraints? To the best
of our knowledge, this is the first work to propose a unified
approach for constrained HC through the lens of optimiza-
tion and to give provable approximation guarantees for a
collection of fast and simple top-down algorithms that have
been used for unconstrained HC in practice (e.g. community
detection in social networks (Mann et al., 2008)).

Background on Optimization View of HC. (Dasgupta,
2016) introduced a natural optimization framework for HC.
Given a weighted graph G(V, E, w) and pairwise similari-
ties w;; > 0 between the n data points 7, j € V, the goal is
to find a hierarchical tree T such that

T* = argmin E wij - | Ty (D
all trees T° L
(i,J)EE

where T;; is the subtree rooted at the lowest common ances-
tor of 4, 7 in T and |T};] is the number of leaves it contains.’

We denote (1) as similarity-HC. For applications where
the geometry of the data is given by dissimilarities, again
denoted by {w;; }(; jyer. (Cohen-Addad et al., 2018) pro-
posed an analogous approach, where the goal is to find a
hierarchical tree 7™ such that

T* = arg max Z wsj - | Ty 2)

11 T L
all trees (i.j)€E

We denote (2) as dissimlarity-HC. A comprehensive list of
desirable properties of the aformentioned objectives can be
found in (Dasgupta, 2016; Cohen-Addad et al., 2018). In

3Observe that in HC, all edges get cut eventually. Therefore it
is better to postpone cutting “heavy” edges to when the clusters
become small, i.e .as far down the tree as possible.

particular, if there is an underlying ground-truth hierarchical
structure in the data, then 7T can recover the ground-truth.
Also, both objectives are NP-hard to optimize, so the focus
is on approximation algorithms.

Our Results. i) We design algorithms that take into ac-
count both the geometry of the data, in the form of similari-
ties, and the structural constraints imposed by the users. Our
algorithms emerge as the natural extensions of Dasgupta’s
original recursive sparsest cut algorithm and the recursive
balanced cut suggested in (Charikar & Chatziafratis, 2017).
We generalize previous analyses to handle constraints and
we prove an O(ka,,)-approximation guarantee®, thus sur-
prisingly matching the best approximation guarantee of the
unconstrained HC problem for constantly many constraints.

ii) In the case of infeasible constraints, we extend the
similarity-HC optimization framework, and we measure
the quality of a possible tree T' by a constraint-based reg-
ularized objective. The regularization naturally favors so-
lutions with as few constraint violations as possible and as
far down the tree as possible (similar to the motivation be-
hind similarity-HC objective). For this problem, we provide
a top-down O(ka,)-approximation algorithm by drawing
an interesting connection to an instance of the hypergraph
sparsest cut problem.

iii) We then change gears and study the dissimilarity-HC
objective. Surprisingly, we show that known top-down tech-
niques do not cope well with constraints, drawing a contrast
with the situation for similarity-HC. Specifically, the (lo-
cally) densest cut heuristic performs poorly even if there
is only one triplet constraint, blowing up its approximation
factor to O(n). Moreover, we improve upon the state-of-
the-art in (Cohen-Addad et al., 2018), by showing a simple
randomized partitioning is a %—approximation algorithm.
We also give a deterministic local-search algorithm with the
same worst-case guarantee. Furthermore, we show that our
randomized algorithm is robust under constraints, mainly
because of its “exploration” behavior. In fact, besides the
number of constraints, we propose an inherent notion of
dependency measure among constraints to capture this be-
havior quantitatively. This helps us not only to explain why
“non-exploring” algorithms may perform poorly, but also
gives tight guarantees for our randomized algorithm.

Experimental results. We run experiments on the Zoo
dataset (Lichman, 2013) to demonstrate our approach and
the performance of our algorithms for a taxonomy applica-
tion. Due to lack of space, we present these results in the
full online version of our paper (Chatziafratis et al., 2018).

Constrained HC work-flow in Practice. Throughout
this paper, we develop different tools to handle user-defined

*For n data points, o, = O(+/logn) is the best approximation
factor for the sparsest cut and k is the number of constraints.

Hierarchical Clustering with Structural Constraints

structural constraints for hierarchical clustering. Here we
describe a recipe on how to use our framework in practice.

(1) Preprocessing constraints to form triplets. User-defined
structural constraints as rooted binary subtrees are conve-
nient for the user and hence for the usability of our algo-
rithm. The following proposition (whose proof is in the
supplement) allows us to focus on studying HC with just
triplet constraints.

Proposition 1. Given constraints as a rooted binary subtree
T on k data points (k > 3), there is linear time algorithm
that returns an equivalent set of at most k triplet constraints.

(2) Detecting feasibility. The next step is to see if the set of
triplet constraints is consistent, i.e. whether there exists a
HC satisfying all the constraints. For this, we use a simple
linear time algorithm called BUILD (Aho et al., 1981).

(3) Hard constraints vs. regularization. BUILD can cre-
ate a hierarchical decomposition that satisfies triplet con-
straints, but ignores the geometry of the data, whereas our
goal here is to consider both simultaneously. Moreover, in
the case that the constraints are infeasible, we aim to output
a clustering that minimizes the cost of violating constraints
combined with the cost of the clustering itself.

o Feasible instance: to output a feasible HC, we propose
using Constrained Recursive Sparsest Cut (CRSC) or Con-
strained Recursive Balanced Cut (CRBC): two simple top-
down algorithms which are natural adaptations of recursive
sparsest cut (Mann et al., 2008; Dasgupta, 2016) or recur-
sive balanced cut (Charikar & Chatziafratis, 2017) to respect
constraints (Section 2).

e Infeasible instance: in this case, we turn our attention
to a regularized version of HC, where the cost of violating
constraints is added to the tree cost. We then propose an
adaptation of CRSC, namely Hypergraph Recursive Sparsest
Cut (HRSC) for the regularized problem (Section 3).

See the supplementary materials for a real-world application
examples, demonstrating our proposed HC work-flow.

Further related work. Similar to (Vikram & Dasgupta,
2016), constraints in the form of triplet queries have been
used in an (adaptive) active learning framework by (Tamuz
et al., 2011; Emamjomeh-Zadeh & Kempe, 2018), showing
that approximately O(nlogn) triplet queries are enough
to learn an underlying HC. Other forms of user interaction
in order to improve the quality of the produced clusterings
have been used in (Balcan & Blum, 2008; Awasthi et al.,
2014) where they prove that interactive feedback in the
form of cluster split/merge requests can lead to significant
improvements. Robust algorithms for HC in the presence of
noise were studied in (Balcan et al., 2014) and a variety of
sufficient conditions on the similarity function that would
allow linkage-style methods to produce good clusters was

explored in (Balcan et al., 2008). On a different setting, the
notion of triplets has been used as a measure of distance
between hierarchical decomposition trees on the same data
points (Brodal et al., 2013). More technically distant analogs
of how to use relations among triplets points have recently
been proposed in (Kleindessner & von Luxburg, 2017) for
defining kernel functions corresponding to high-dimensional
embeddings.

2. Constrained Sparsest (Balanced) Cut

Given an instance of the constrained hierarchical clus-
tering, our proposed CRSC algorithm uses a blackbox
ap-approximation algorithm for the sparsest cut problem
(the best-known approximation factor for this problem is
O(y/logn) due to (Arora et al., 2009)). Moreover, it also
maintains the feasibility of the solution in a top-down ap-
proach by recursive partitioning of what we call the super-
graph G'. Informally speaking, the supergraph is a simple
data structure to track the progress of the algorithm and the
resolved constraints.

More formally, for every constraint ab|c we merge the nodes
a and b into a supernode {a, b} while maintaining the edges
in G (now connecting to their corresponding supernodes).
Note that G’ may have parallel edges, but this can easily
be handled by grouping edges together and replacing them
with the sum of their weights. We repeatedly continue
this merging procedure until there are no more constraints.
Observe that any feasible solution needs to start splitting
the original graph G by using a cut that is also present in G'.
When cutting the graph G’ = (G4, G3), if a constraint ab|c
is resolved,’ then we can safely unpack the supernode {a, b}
into two nodes again (unless there is another constraint ab|c’
in which case we should keep the supernode). By continuing
and recursively finding approximate sparsest cuts on the
supergraph GG; and G2, we can find a feasible hierarchical
decomposition of GG respecting all triplet constraints. Next,
we show the approximation guarantees for our algorithm.

Algorithm 1 CRSC

1: Given G and the triplet constraints ab
create the supergraph G
2. Use a blackbox access to an «,,-approximation oracle

¢, run BUILD to

for the sparsest cut problem, i.e. arg mingcy, %
(|S| = total size of supernodes in S)

3: Given the output cut (S, S), separate the graph G’ into
two pieces G1(S, E1) and G2(V'\ S, Es).

4: Recursively compute a HC T3 for G using only G1’s
active constraints. Similarly compute 75 for Ga.

5: Output T' = (T3, T3).

Analysis of CRSC Algorithm. The main result of this
section is the following theorem:

> A constraint ab|c is resolved, if c gets separated from a, b.

Hierarchical Clustering with Structural Constraints

Theorem 1. Given a weighted graph G(V, E,w) with k
triplet constraints ab|c for a,b,c € V, the CRSC algo-
rithm outputs a HC respecting all triplet constraints and is
O(kaw,)-approximation for the HC-similarity objective (1).

Notations and Definitions. We slightly abuse notation by
having OPT denote the optimum hierarchical decomposi-
tion or its optimum value as measured by (1). Similarly for
CRSC. For t € [n], OPT(t) denotes the maximal clusters
in OPT of size at most ¢. Note that OPT(t) induces a parti-
tioning of V. We use OPT () to denote edges cut by OPT(¢)
(i.e. edges with endpoints in different clusters in OPT(t)) or
their total weight; the meaning will be clear from context.
For convenience, we define OPT(0) = >_; ;e p wij. For
a cluster A created by CRSC, a constraint ab|c is active if
a,b, c € A, otherwise ab|c is resolved and can be discarded.

Overview of the Analysis. There are three main ingredi-
ents: The first is to view a HC of n datapoints as a collection
of partitions, one for each level t = n — 1,...,1, as in
(Charikar & Chatziafratis, 2017). For a level ¢, the partition
consists of maximal clusters of size at most ¢. The total cost
incurred by OPT is then a combination of costs incurred at
each level of this partition. This is useful for comparing
our CRSC cost with OPT. The second idea is in handling
constraints and it is the main obstacle where previous anal-
yses (Charikar & Chatziafratis, 2017; Cohen-Addad et al.,
2018) break down: constraints inevitably limit the possible
cuts that are feasible at any level, and since the set of active
constraints® differ for CRSC and OPT, a direct comparison
between them is impossible. If we have no constraints, we
can charge the cost of partitioning a cluster A to lower levels
of the OPT decomposition. However, when we have triplet
constraints, the partition induced by the lower levels of OPT
in a cluster A will not be feasible in general (Figure 2). The
natural way to overcome this obstacle is merging pieces of
this partition so as to respect constraints and using higher
levels of OPT, but it still may be impossible to compare
CRSC with OPT if all pieces are merged. We overcome this
difficulty by an indirect comparison between the CRSC cost
and lower levels 61;1 of OPT, where k4 is the number of
active constraints in A. Finally, after a cluster-by-cluster
analysis bounding the CRSC cost for each cluster, we ex-
ploit disjointness of clusters of the same level in the CRSC
partition allowing us to combine their costs.

Proof of Theorem 1. We start by borrowing the follow-
ing facts from (Charikar & Chatziafratis, 2017), modified
slightly for the purpose of our analysis (proofs are provided
in the supplementary materials).

Fact 1 (Decomposition of OPT). The total cost paid by
OPT can be decomposed into costs of the different levels in

S All constraints are active in the beginning of CRSC.

the OPT partition, i.e. OPT =y, w(OPT(t)).

Fact 2 (OPT at scaled levels). Let k < & be the number of
constraints. Then, OPT > & - >"1" Jw(0PT([&])).

Figure 2. The main obstacle in the constrained HC problem is that
our algorithm has different active constraints compared to OPT.
Both ab|c, de| f constraints are resolved by the cut OPT (t) .

Given the above facts, we look at any cluster A of size r pro-
duced by the algorithm. Here is the main technical lemma
that allows us to bound the cost of CRSC for partitioning A.

Lemma 1. Suppose CRSC partitions a cluster A (|A| =)
in two clusters (By, B2) (w.lo.g. |Bi| = s,|Ba| = r —
5,8 < | 5| <r —s). Let the size r > 6k and let | = 6k 4,
where k4 denotes the number of active constraints for A.
Then: r - w(B1, By) < 4oy, - s-w(OPT([7]) N A).

Proof. The cost incurred by CRSC for partitioning A is
r - w(B1, Bz). Now consider OPT([7]). This induces a
partitioning of A into pieces {A;}ic[m), Where by design
|A;| = Al v < 1,Vi € [m]. Now, consider the cuts
{(4;, A\ A;)}. Even though all m cuts are allowed for
OPT, for CRSC some of them are forbidden: for example,
in Figure 2, the constraints ab|c, de|f render 4 out of the 6
cuts infeasible. But how many of them can become infea-
sible with k4 active constraints? Since every constraint is
involved in at most 2 cuts, we may have at most 2k 4 infeasi-
ble cuts. Let F' C [m] denote the index set of feasible cuts,
ie. ifi € F, the cut (A;, A\ A;) is feasible for CRSC. To
cut A, we use an «v,-approximation of sparsest cut, whose
sparsity is upper bounded by any feasible cut:

w(A;, A\ Ay)

U)(Bl, Bg)
|Ail[AN\ Al

< a, - SPCUT(A) < a;, min
s(r—s) i€F
Dier W(Ai, A\ A

" Yier [AillA\ A

where for the last inequality we used the standard fact that
min; ’Ij— < % for pi; > 0 and v; > 0. We also have the
following series of inequalities:

. Tiep (A A\ 4)
" Vier HAIAN A

<«

2w(OPT([7]) N A)
r2 ZieF 72’(1 - 72')
w(OPT(|7])NA)

S Qp

<ay,
,

Hierarchical Clustering with Structural Constraints

where the first inequality holds because we double count
some (potentially all) edges of OPT (| 7]) N A (these are the
edges cut by OPT([7 |) that are also present in cluster A, i.e.
they have both endpoints in A) and the second inequality

holds because 7; < & — 1—, > %L ang
71 1 - ’Y’L > ’77/ 1 — ’72 i
€ 6k
ier i€[m]\F
6k‘ 1 & 2 4k -1
i = >1/2
F 2 Ty

Finally, we are ready to prove the lemma by combining the
above inequalities (’”;S <1):

w(By,By) =1-5(r—s)- W
<r-s(r—s)- 4anw(OPT(§J) nA4)
< day -5 - w(0PT([7]) N A). 0

It is clear that we exploited the charging to lower levels of
OPT, since otherwise if all pieces in A were merged, the
denominator with the |4;|’s would become 0. The next
lemma lets us combine the costs incurred by CRSC for
different clusters A (proof is in the supplementary materials)

Lemma 2 (Combining the costs of clusters in CRSC).
The total CRSC cost for partitioning all clusters A into
(B1, Ba) (with |A| = ra,|B1| = sa) is bounded by:

n

(1) > ra-w(Bi,By) <O0(an)- Y w(0oPT(|&]))
A:| A[>6k t=0

(2)) raw(Bi,By) < 6k-OPT
A:|A|<6E

Combining Fact 2 and Lemma 2 finishes the proof. O

Remark 1. In the supplementary material, we prove how
one can use balanced cut, i.e. finding a cut S such that

wG/(S, S) (3)

arg min
SCV:|S|>n/3,|S|2n/3

instead of sparsest cut, and using approximation algorithms
for this problem achieves the same approximation factor as
in Theorem 1, but with better running time.

Theorem 2 (The divisive algorithm using balanced cut).
Given a weighted graph G(V, E,w) with k triplet con-
straints ablc for a,b,c € V, the constrained recursive
balanced cut algorithm CRBC (same as CRSC, but using
balanced cut instead of sparsest cut) outputs a HC re-
specting all triplet constraints and achieves an O(ka,)-
approximation for Dasgupta’s HC objective. Moreover, the
running time is almost linear time.

3. Constraints and Regularization

Previously, we assumed that constraints were feasible. How-
ever, in many practical applications, users/experts may dis-
agree, hence our algorithm may receive conflicting con-
straints as input. Here we want to explore how to still output
a satisfying HC that is a good in terms of objective (1)
(similarity-HC) and also respects the constraints as much
as possible. To this end, we propose a regularized version
of Dasgupta’s objective, where the regularizer measures
quantitatively the degree by which constraints get violated.

Informally, the idea is to penalize a constraint more if it
is violated at top levels of the decomposition compared
to lower levels. We also allow having different violation
weights for different constraints (potentially depending on
the expertise of the users providing the constraints). More
concretely, inspired by the Dasgupta’s original objective
function, we consider the following optimization problem:

> wy|Tyl
(i,5)EE

+ A Y capjelTup| - 1{ablc s violated}), 4)
ablce

min
TeT

where 7 is the set of all possible binary HC trees for the
given data points, X is the set of the k triplet constraints,
T.p 1s the size of the subtree rooted at the least common
ancestor of a,b, and cqp). is defined as the base cost of
violating triplet constraint ab|c. Note that the regularization
parameter A > 0 allows us to interpolate between satisfying
the constraints or respecting the geometry of the data.

Hypergraph Recursive Sparsest Cut In order to design
approximation algorithms for the regularized objective, we
draw an interesting connection to a different problem, which
we call 3-Hypergraph Hierarchical Clustering (3HHC). An
instance of this problem consists of a hypergraph G* =
(V, E, E™) with edges E, and hyperedges of size 3, E*,
together with similarity weights for edges, {wi;} (i j)ep»
and similarity weights for 3-hyperedges,” {w;i } (i.j.k)epr-
We now think of HC on the hypergraph G*, where for every
binary tree 1" we define the cost to be the natural extension
of Dasgupta’s objective:

Z wi;| 5] +

(i,5)€E

2.

(i,,k)EE™

wle Tijil)

where wgk is either equal to w;j|x, Wjk|; OF Wg4|;> and Tijp
is either the subtree rooted at LCA(i, 1), LCAG, k) or
LCA(k, 7), all depending on how T cuts the 3-hyperedge

"We have 3 different weights corresponding to the 3 possible
ways of partitioning {7, , k} in two parts: Wik Wiik|s and W) ;.
8LCA(, j) denotes the lowest common ancestor of 4, j € 7.

Hierarchical Clustering with Structural Constraints

{i, 4, k}. The goal is to find a hierarchical clustering of this
hypergraph, so as to minimize the cost (5) of the tree.

Reduction from Regularization to 3HHC. Given an in-
stance of HC with constraints (with their costs of violations)
and a parameter)\, we create a hypergraph G'* so that the
total cost of any binary clustering tree in the 3HHC problem
(5) corresponds to the regularized objective of the same tree
as in (4). G* has exactly the same set of vertices, (normal)
edges and (normal) edge weights as in the original instance
of the HC problem. Moreover, for every constraint ablc
(with cost cqp).) it has a hyperedge {a, b, c}, to which we
assign three weights wapjc = 0, Waclp = Whela = A+ Cap|c-
Therefore, we ensure that any divisive algorithm for the
3HHC problem avoids the cost |Topc| - A - cap|e oOnly if it
chops {a,b,c} into {a,b} and {c} at some level, which
matches the regularized objective.

Reduction from 3HHC to Hypergraph Sparsest Cut.
A natural generalization of the sparsest cut problem for
our hypergraphs, which we call Hyper Sparsest Cut (HSC),
is the following problem:

w(S,8) + X s s e rn Wik
SIS ’

arg min
Scv

where w (.S, S) is the weight of the cut (5, S) and wfjk is ei-
ther equal to w; |1, W;|; OF Wy;);, depending on how (S, S)
chops the hyperedge {4, j, k}. Now, similar to (Charikar &
Chatziafratis, 2017; Dasgupta, 2016), we can recursively
run a blackbox approximation algorithm for HSC to solve
3HHC. The main result of this section is the following
technical proposition, whose proof is analogous to that of
Theorem 1 (provided in the supplementary materials).

Proposition 2. Given the hypergraph G™ with k hyper-
edges, and given access an o, -approximation algorithm
for HSC, the Recursive Hypergraph Sparsest Cut (R—HSC)
algorithm achieves an Ok,)-approximation.

Reduction from HSC back to Sparsest Cut. We now
show how to get an «,,-approximation oracle for our in-
stance of the HSC problem by a general reduction to spars-
est cut. Our reduction is simple: given a hypergraph G7* and
all the weights, create an instance of sparsest cut with the
same vertices, (normal) edges and (normal) edge weights.
Moreover, for every 3-hyperedge {a, b, ¢} consider adding
a triangle to the graph, i.e. three weighted edges connecting
{a, b, c}, where:

’ Whe|a + Waclp — Wablce
Wap = B =X Cablc>
/ Whe|a + Waple — Waclb
- —0
Wae = 9 - Y%
/ Waclb + Wable — Whcla
Wy, = =0
be 2 °

This construction can be seen in Figure 3. The important
observation is that w/, + W}, = Wye|q» Wiy, + Wh, = Waelp
and wy, + w),, = Wap|c, Which are exactly the weights
associated with the corresponding splits of the 3-hyperedge
{a,b,c}. So, correctness of the reduction® follows as the
weight of each cut is preserved between the hypergraph and
the graph after adding the triangles. For a discussion on
extending this gadget more generally, see the supplement.

' a
a b 1 ¢

eel — U\
i ¢ 5 b

Figure 3. Transforming a 3-hyperedge to a triangle.

4. Variations on a Theme

In this section we study dissimilarity-HC, and we look into
the problem of designing approximation algorithms for both
unconstrained and constrained hierarchical clustering. In
(Cohen-Addad et al., 2017), they show that average linkage
isa %-approximation for this problem and they propose a
top-down approach based on locally densest cut achieving

a (% — €)-approximation in time O (M) Notably,
when e gets small the running time blows up.

Here, we prove that the most natural randomized algorithm
for this problem, i.e. recursive random cutting, is a %—
approximation with expected running time O(nlogn). We
further derandomize this algorithm to get a simple determin-

istic local-search style %—approximation algorithm.

If we also have structural constraints for the dissimilarity-
HC, we show that the existing approaches fail. In fact we
show that they lead to an Q(n)-approximation factor due to
the lack of “exploration” (e.g. recursive densest cut). We
then show that recursive random cutting is robust to adding
user constraints, and indeed it preserves a constant approxi-
mation factor when there are, roughly speaking, constantly
many user constraints.

Randomized %-approximation. Consider the most nat-
ural randomized algorithm for hierarchical clustering, i.e.
recursively partition each cluster into two, where each point
in the current cluster independently flips an unbiased coin
and based on the outcome, it is put in one of the two parts.

Theorem 3. Recursive-Random—Cutting is a %—

approximation for maximizing dissimilarity-HC objective.

Proof sketch. An alternative view of Dasgupta’s objective
is to divide the reward of the clustering tree between all
possible triples {i, j, k}, where (i, j) € E and k is another
point (possibly equal to ¢ or j). Now, in any hierarchical
clustering tree, if at the moment right before 7 and 7 become
separated the vertex k has still been in the same cluster as

°Since all weights in the final graph are non-negative, standard
techniques for Sparsest Cut can be used.

Hierarchical Clustering with Structural Constraints

{4, 7}, then this triple contributes w;; to the objective func-
tion. We claim this event happens with probability exactly
%. To see this, consider an infinite independent sequence of
coin flips for ¢, 7, and k. Without loss of generality, condi-
tion on ¢’s sequence to be all heads. The aforementioned
event happens only if j’s first tales in its sequence happens
no later than k’s first tales in its sequence. This happens
with probability Y°,-, 5(3)"' = 2. Therefore, the algo-
rithm gets the total reward % 2(7 fer Wij in expectation.
Moreover, the total reward of any hierarchical clustering
is upper-bounded by n Z(l fer Wij» which completes the

proof of the 2-approximation. O

Remark 2. This algorithm runs in time O(nlogn) in ex-
pectation, due to the fact that the binary clustering tree has
expected depth O(log n) (see for example (Cormen et al.,
2009)) and at each level we only perform n operations.

We now derandomize the recursive random cutting algo-
rithm using the method of conditional expectations. At
every recursion, we go over the points in the current cluster
one by one, and decide whether to put them in the “left”
partition or “right” partition for the next recursion. Once we
make a decision for a point, we fix that point and go to the
next one. Roughly speaking, these local improvements can
be done in polynomial time, which will result in a simple
local-search style deterministic algorithm.

Theorem 4. There is a deterministic local-search style %—
approximation algorithm for maximizing dissimilarity-HC
objective that runs in time O(n?(n +m)).

Maximizing the Objective with User Constraints
From a practical point of view, one can think of many set-
tings in which the output of the hierarchical clustering al-
gorithm should satisfy user-defined hard constraints. Now,
combining the new perspective of maximizing Dasgupta’s
objective with this practical consideration raises a natu-
ral question: which algorithms are robust to adding user
constraints, in the sense that a simple variation of these
algorithms still achieve a decent approximation factor?

o Failure of ‘“Non-exploring” Approaches. Surprisingly
enough, there are convincing reasons that adapting exist-
ing algorithms for maximizing Dasgupta’s objective (e.g.
those proposed in (Cohen-Addad et al., 2018)) to handle
user constraints is either challenging or hopeless. First,
bottom-up algorithms, e.g. average-linkage, fail to output
a feasible outcome if they only consider each constraint
separately and not all the constraints jointly (as we saw in
Figure 1). Second, maybe more surprisingly, the natural ex-
tension of (locally) Recursive-Densest-Cut!? algo-
rithm proposed in (Cohen-Addad et al., 2018) to handle user
constraints performs poorly in the worst-case, even when we

While a locally densest cut can be found in poly-time, desnest
cut is NP-hard, making our negative result stronger.

have only one constraint. Recursive-Densest-Cut
proceeds by repeatedly picking the cut that has maximum
density, i.e. argmax ng% and making two clusters.
To handle the user constraints, we run it recursively on the
supergraph generated by the constraints, similar to the ap-
proach in Section 2. Note that once the algorithm resolves a

triplet constraint, it also breaks its corresponding supernode.

Now consider the following example in Figure 4, in which
there is just one triplet constraint ab|c. The weight W should
be thought of as large and € as small. By choosing appropri-
ate weights on the edges of the clique K,,, we can fool the
algorithm into cutting the dense parts in the clique, without
ever resolving the ab|c constraint until it is too late. The
algorithm gets a gain of O(n® + W) whereas OPT gets
Q(nW) by starting with the removal of the edge (b, ¢) and
then removing (a, b), thus enjoying a gain of ~ nIV.

Figure 4. Q(n)-approximation lower bound instance for the con-
strained Recursive-Densest—Cut algorithm.

e Constrained Recursive Random Cutting. The exam-
ple in Figure 4, although a bit pathological, suggests that
a meaningful algorithm for this problem should explore
cutting low-weight edges that might lead to resolving con-
straints, maybe randomly, with the hope of unlocking re-
warding edges that were hidden before this exploration.

Formally, our approach is showing that the natural extension
of recursive random cutting for the constrained problem, i.e.
by running it on the supergraph generated by constraints
and unpacking supernodes as we resolve the constraints
(in a similar fashion to CSC), achieves a constant factor
approximation when the constraints have bounded depen-
dency. In the remaining of this section, we define an ap-
propriate notion of dependency between the constraints,
under the name of dependency measure and analyze the ap-
proximation factor of constrained recursive random cutting
(Constrained-RRC) based on this notion.

Suppose we are given an instance of hierarchical clus-
tering with triplet constraints {ci,...,cx}, where ¢; =
xtly’2*,Vi € [k]. For any triplet constraint c;, lets call
the pair {y, 2°} the base, and 2* the key of the constraint.
We first partition our constraints into equivalence classes
Ci,...,Cy, where C; C {c1,...,c,}. Forevery i, j, the
constraints c; and c; belong to the same class C if they share

Hierarchical Clustering with Structural Constraints

Class C

s ‘e N
/ Je 1 ® \
H N by v
! Ny ‘
' Moy 1
\ . o178, !
Y *——@ y ,
\

Figure 6. Classes {C;, C; }, and two situations for having C; — C;.

the same base (see Figure 5).

Definition 1 (Dependency digraph). The Dependency di-
graph is a directed graph with vertex set {Cy,...,Cr}. For
every 1,7, there is a directed edge C; — C; if 3 ¢ =
zlyz, ¢ = 2'|y’2’, such that ¢ € C;,¢ € Cj, and either
{z,z} ={y', 2’} or {z,y} = {y, 2’} (see Figure 6).

The dependency digraph captures how groups of constraints
impact each other. Formally, the existence of the edge
C; — C; implies that all the constraints in C; should be
resolved before one can separate the two endpoints of the
(common) base edge of the constraints in C;.

Remark 3. If the constraints {c1, ..., ¢y} are feasible, i.e.
there exists a hierarchical clustering that can respect all the
constraints, the dependency digraph is clearly acyclic.

Definition 2 (Layered dependency subgraph). Given any
class C, the layered dependency subgraph of C is the induced
subgraph in the dependency digraph by all the classes that
are reachable from C. Moreover, the vertex set of this sub-
graph can be partitioned into layers {Zy, Z1, . .., Zr, }, where
L is the maximum length of any directed path leaving C and
7, is a subset of classes where the length of the longest path
from C to each of them is exactly equal to ! (see Figure 7).

We are now ready to define a crisp quantity for every depen-
dency graph. This will later help us give a more meaningful
and refined beyond-worst-case guarantee for the approxima-
tion factor of the Constrained-RRC algorithm.

Definition 3 (Dependency measure). Given any class C,

a

Figure 7. Layered dependency subgraph of class C.

the dependency measure of C is defined as

L

pM(C) £ [T+ D ICD,

=0 C'eL;

where Zy, . .., Zy, are the layers of the dependency subgraph
of C, as in Definition 2. Moreover, the dependency measure
of a set of constraints DMC({cy,...,c}) is defined as
maxe DM(C), where the maximum is taken over all the
classes generated by {cy, ..., ¢k}

Intuitively speaking, the notion of the dependency mea-
sure quantitatively expresses how “deeply” the base of
a constraint is protected by the other constraints, i.e.
how many constraints need to be resolved first before
the base of a particular constraint is unpacked and the
Constrained-RRC algorithm can enjoy its weight. This
intuition is formalized through the following theorem,
whose proof is deferred to the supplementary materials.

Theorem 5. The constrained recursive random cutting
(Constrained-RRC) algorithm is an a-approximation
algorithm for maximizing dissimilarity-HC objective objec-

tive given a set of feasible constraints {c, . .., cy}, where
2(1 —k/n) 2(1 —k/n)
o =
3-DMC({cy,...,ck}) — 3-maxe DM(C)

Corollary 1. Constrained-RRC is an O(1)-
approximation for maximizing dissimilarity-HC objective,
given feasible constraints of constant dependency measure.
5. Conclusion

We studied the problem of hierarchical clustering when we
have structural constraints on the feasible hierarchies. We
followed the optimization viewpoint that was recently devel-
oped in (Dasgupta, 2016; Cohen-Addad et al., 2018) and we
analyzed two natural top-down algorithms giving provable
approximation guarantees. In the case where the constraints
are infeasible, we proposed and analyzed a regularized ver-
sion of the HC objective by using the hypergraph version
of the sparsest cut. Finally, we explored a variation of Das-
gupta’s objective and improved upon previous techniques,
both in the unconstrained and in the constrained setting.

Hierarchical Clustering with Structural Constraints

Acknowledgements

Vaggos Chatziafratis was partially supported by ONR grant
N00014-17-1-2562. Rad Niazadeh was supported by Stan-
ford Motwani fellowship. Moses Charikar was supported by
NSF grant CCF-1617577 and a Simons Investigator Award.
We would also like to thank Leo Keselman, Aditi Raghu-
nathan and Yang Yuan for providing comments on an earlier
draft of the paper. We also thank the anonymous reviewers
for their helpful comments and suggestions.

References

Aho, A. V., Sagiv, Y., Szymanski, T. G., and Ullman, J. D.
Inferring a tree from lowest common ancestors with an
application to the optimization of relational expressions.
SIAM Journal on Computing, 10(3):405-421, 1981.

Arora, S., Rao, S., and Vazirani, U. Expander flows, geo-
metric embeddings and graph partitioning. Journal of the
ACM (JACM), 56(2):5, 2009.

Awasthi, P., Balcan, M., and Voevodski, K. Local algorithms
for interactive clustering. In International Conference on
Machine Learning, pp. 550-558, 2014.

Balcan, M.-F. and Blum, A. Clustering with interactive
feedback. In International Conference on Algorithmic
Learning Theory, pp. 316-328. Springer, 2008.

Balcan, M.-F., Blum, A., and Vempala, S. A discriminative
framework for clustering via similarity functions. In
Proceedings of the fortieth annual ACM symposium on
Theory of computing, pp. 671-680. ACM, 2008.

Balcan, M.-F,, Liang, Y., and Gupta, P. Robust hierarchical
clustering. The Journal of Machine Learning Research,
15(1):3831-3871, 2014.

Berkhin, P. A survey of clustering data mining techniques.
In Grouping multidimensional data, pp. 25-71. Springer,
2006.

Bilenko, M., Basu, S., and Mooney, R. J. Integrating con-
straints and metric learning in semi-supervised clustering.
In Proceedings of the twenty-first international confer-
ence on Machine learning, pp. 11. ACM, 2004.

Brodal, G. S., Fagerberg, R., Mailund, T., Pedersen, C. N.,
and Sand, A. Efficient algorithms for computing the
triplet and quartet distance between trees of arbitrary
degree. In Proceedings of the twenty-fourth annual ACM-
SIAM symposium on Discrete algorithms, pp. 1814-1832.
Society for Industrial and Applied Mathematics, 2013.

Charikar, M. and Chatziafratis, V. Approximate hierarchical
clustering via sparsest cut and spreading metrics. In
Proceedings of the Twenty-Eighth Annual ACM-SIAM

Symposium on Discrete Algorithms, pp. 841-854. Society
for Industrial and Applied Mathematics, 2017.

Chatziafratis, V., Niazadeh, R., and Charikar, M. Hier-
archical clustering with structural constraints. arXiv
preprint arXiv:1805.09476, 2018. URL https://
arxiv.org/abs/1805.09476.

Cohen-Addad, V., Kanade, V., and Mallmann-Trenn, F. Hier-
archical clustering beyond the worst-case. In Advances in
Neural Information Processing Systems, pp. 62026210,
2017.

Cohen-Addad, V., Kanade, V., Mallmann-Trenn, F., and
Mathieu, C. Hierarchical clustering: Objective functions
and algorithms. In Proceedings of the Twenty-Ninth An-
nual ACM-SIAM Symposium on Discrete Algorithms, pp.
378-397. SIAM, 2018.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C.
Introduction to Algorithms, Third Edition. The MIT Press,
3rd edition, 2009. ISBN 0262033844, 9780262033848.

Dasgupta, S. A cost function for similarity-based hierarchi-
cal clustering. In Proceedings of the forty-eighth annual
ACM symposium on Theory of Computing, pp. 118—127.
ACM, 2016.

Diez, 1., Bonifazi, P., Escudero, 1., Mateos, B., Mufoz,
M. A., Stramaglia, S., and Cortes, J. M. A novel brain
partition highlights the modular skeleton shared by struc-
ture and function. Scientific reports, 5:10532, 2015.

Eisen, M. B., Spellman, P. T., Brown, P. O., and Botstein,
D. Cluster analysis and display of genome-wide expres-
sion patterns. Proceedings of the National Academy of
Sciences, 95(25):14863-14868, 1998.

Emamjomeh-Zadeh, E. and Kempe, D. Adaptive hierarchi-
cal clustering using ordinal queries. In Proceedings of the
Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 415-429. SIAM, 2018.

Kleindessner, M. and von Luxburg, U. Kernel functions
based on triplet comparisons. In Advances in Neural
Information Processing Systems, pp. 6810-6820, 2017.

Leskovec, J., Rajaraman, A., and Ullman, J. D. Mining of
massive datasets. Cambridge university press, 2014.

Lichman, M. Uci machine learning repository, zoo dataset,
2013. URL http://archive.ics.uci.edu/ml/
datasets/zoo.

Mann, C. F., Matula, D. W., and Olinick, E. V. The use of
sparsest cuts to reveal the hierarchical community struc-
ture of social networks. Social Networks, 30(3):223-234,
2008.

https://arxiv.org/abs/1805.09476
https://arxiv.org/abs/1805.09476
http://archive.ics.uci.edu/ml/datasets/zoo
http://archive.ics.uci.edu/ml/datasets/zoo

Hierarchical Clustering with Structural Constraints

Moseley, B. and Wang, J. Approximation bounds for hier-
archical clustering: Average linkage, bisecting k-means,
and local search. In Advances in Neural Information
Processing Systems, pp. 3097-3106, 2017.

Patané, J. S., Martins, J., and Setubal, J. C. Phylogenomics.
In Comparative Genomics, pp. 103—187. Springer, 2018.

Rangapuram, S. S. and Hein, M. Constrained 1-spectral
clustering. In Artificial Intelligence and Statistics, pp.
1143-1151, 2012.

Roy, A. and Pokutta, S. Hierarchical clustering via spread-
ing metrics. In Advances in Neural Information Process-
ing Systems, pp. 2316-2324, 2016.

Steinbach, M., Karypis, G., Kumar, V., et al. A comparison
of document clustering techniques. In KDD workshop on
text mining, volume 400, pp. 525-526. Boston, 2000.

Tamuz, O., Liu, C., Belongie, S., Shamir, O., and Kalai, A. T.
Adaptively learning the crowd kernel. In Proceedings of
the 28th International Conference on International Con-
ference on Machine Learning, pp. 673—680. Omnipress,
2011.

Tumminello, M., Lillo, F., and Mantegna, R. N. Correlation,
hierarchies, and networks in financial markets. Journal of
Economic Behavior & Organization, 75(1):40-58, 2010.

Vikram, S. and Dasgupta, S. Interactive bayesian hierarchi-
cal clustering. In International Conference on Machine
Learning, pp. 2081-2090, 2016.

Wagstaff, K. and Cardie, C. Clustering with instance-level
constraints. AAAI/IAAI, 1097:577-584, 2000.

Wagstaff, K., Cardie, C., Rogers, S., Schradl, S., et al. Con-
strained k-means clustering with background knowledge.
In ICML, volume 1, pp. 577-584, 2001.

	Introduction
	Constrained Sparsest (Balanced) Cut
	Constraints and Regularization
	Variations on a Theme
	Conclusion

