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Abstract
We study the implicit bias of generic optimiza-
tion methods—mirror descent, natural gradient
descent, and steepest descent with respect to
different potentials and norms—when optimiz-
ing underdetermined linear regression or separa-
ble linear classification problems. We explore
the question of whether the specific global mini-
mum (among the many possible global minima)
reached by an algorithm can be characterized in
terms of the potential or norm of the optimization
geometry, and independently of hyperparameter
choices such as step–size and momentum.

1. Introduction
Implicit bias from the optimization algorithm plays a crucial
role in learning deep neural networks as it introduces effec-
tive capacity control not directly specified in the objective
(Neyshabur et al., 2015b;a; Zhang et al., 2017; Keskar et al.,
2016; Wilson et al., 2017; Neyshabur et al., 2017). In over-
parameterized models where the training objective has many
global minima, optimizing using a specific algorithm, such
as gradient descent, implicitly biases the solutions to some
special global minima. The properties of the learned model,
including its generalization performance, are thus crucially
influenced by the choice of optimization algorithm used.
In neural networks especially, characterizing these special
global minima for common algorithms such as stochastic
gradient descent (SGD) is essential for understanding what
the inductive bias of the learned model is and why such large
capacity networks often show remarkably good generaliza-
tion even in the absence of explicit regularization (Zhang
et al., 2017) or early stopping (Hoffer et al., 2017).

Implicit bias from optimization depends on the choice of
algorithm, and changing the algorithm, or even changing

1TTI Chicago, USA 2USC Los Angeles, USA 3Technion, Is-
rael. Correspondence to: Suriya Gunasekar <suriya@ttic.edu>,
Jason Lee <jasonlee@marshall.usc.edu>, Daniel Soudry
<daniel.soudry@gmail.com>, Nathan Srebro <nati@ttic.edu>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

associated hyperparameter can change the implicit bias. For
example, Wilson et al. (2017) showed that for some stan-
dard deep learning architectures, variants of SGD algorithm
with different choices of momentum and adaptive gradient
updates (AdaGrad and Adam) exhibit different biases and
thus have different generalization performance; Keskar et al.
(2016), Hoffer et al. (2017) and Smith (2018) study how the
size of the mini-batches used in SGD influences general-
ization; and Neyshabur et al. (2015a) compare the bias of
path-SGD (steepest descent with respect to a scale invariant
path-norm) to standard SGD.

It is therefore important to explicitly relate different op-
timization algorithms to their implicit biases. Can we
precisely characterize which global minima different al-
gorithms converge to? How does this depend on the loss
function? What other choices including initialization, step–
size, momentum, stochasticity, and adaptivity, does the im-
plicit bias depend on? In this paper, we provide answers to
some of these questions for simple linear models for regres-
sion and classification. While neural networks are certainly
more complicated than these simple linear models, the re-
sults here provide a segue into understanding such biases
for more complex models.

For linear models, we already have an understanding of
the implicit bias of gradient descent. For underdetermined
least squares objective, gradient descent can be shown to
converge to the minimum Euclidean norm solution. Re-
cently, Soudry et al. (2017) studied gradient descent for
linear logistic regression. The logistic loss is fundamentally
different from the squared loss in that the loss function has
no attainable global minima. Gradient descent iterates there-
fore diverge (the norm goes to infinity), but Soudry et al.
showed that they diverge in the direction of the hard margin
support vector machine solution, and therefore the decision
boundary converges to this max margin solution.

Can we extend such characterization to other optimization
methods that work under different (non-Euclidean) geome-
tries, such as mirror descent with respect to some potential,
natural gradient descent with respect to a Riemannian met-
ric, and steepest descent with respect to a generic norm?
Can we relate the implicit bias to these geometries?

As we shall see, the answer depends on whether the loss
function is similar to a squared loss or to a logistic loss.
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This difference is captured by two family of losses: (a) loss
functions that have a unique finite root, like the squared
loss and (b) strictly monotone loss functions where the
infimum is unattainable, like the logistic loss. For losses
with a unique finite root, we study the limit point of the
optimization iterates, w∞ = limt→∞ w(t). For monotone
losses, we study the limit direction w̄∞ = limt→∞

w(t)

‖w(t)‖
.

In Section 2 we study linear models with loss functions that
have unique finite roots. We obtain a robust characteriza-
tion of the limit point for mirror descent, and discuss how
it is independent of step–size and momentum. For natural
gradient descent, we show that the step–size does play a
role, but get a characterization for infinitesimal step–size.
For steepest descent, we show that not only does step–size
affects the limit point, but even with infinitesimal step–size,
the expected characterization does not hold. The situation
is fundamentally different for strictly monotone losses such
as the logistic loss (Section 3) where we do get a precise
characterization of the limit direction for generic steepest
descent. We also study the adaptive gradient descent method
(AdaGrad) (Duchi et al., 2011) and optimization over matrix
factorization. Recent studies considered the bias of such
methods for least squares problems (Wilson et al., 2017; Gu-
nasekar et al., 2017), and here we study these algorithms for
monotone loss functions, obtaining a more robust character-
ization for matrix factorization problems, while concluding
that the implicit bias of AdaGrad depends on initial condi-
tions including step–size even for strict monotone losses.

2. Losses with a Unique Finite Root
We first consider learning linear models using losses with
a unique finite root, such as the squared loss, where loss
function `(f(x), y) between a predictor f(x) and label y is
minimized at a unique and finite value of f(x).

Property 1 (Losses with a unique finite root). For any y
and sequence ŷt, `(ŷt, y)→ inf ŷ `(ŷ, y) = 0 if and only if
ŷt → y. Here we assumed without loss of generality that
inf ŷ `(ŷ, y) = 0 and the root of `(ŷ, y) is at ŷ = y.

Denote the training dataset {(xn, yn) : n = 1, 2, . . . , N}
with features xn ∈ Rd and labels yn ∈ R. The empirical
loss (or risk) minimizer of a linear model f(x) = 〈w, x〉
with parameters w ∈ Rd is given by,

min
w
L(w) :=

N∑
n=1

`(〈w, xn〉 , yn). (1)

We are particularly interested in the case when N < d
and the observations are realizable, i.e., minw L(w) = 0.
In this case L(w) is underdetermined and has multiple
global minima denoted by G = {w : L(w) = 0} = {w :
∀n, 〈w, xn〉 = yn}. Note that the set of global minima G is
the same for any loss ` with unique finite root (Property 1),
including, e.g., the Huber loss, the truncated squared loss.

The question is which specific global minima w ∈ G do
different optimization algorithms reach when minimizing
the empirical loss objective L(w).

2.1. Gradient descent

Consider gradient descent updates for minimizing L(w)
with step–size sequence {ηt} and initialization w(0),

w(t+1) = w(t) − ηt∇L(w(t)).

If w(t) minimizes the empirical loss in eq. (1), then the iter-
ates converge to the unique global minimum that is closest to
initialization w(0) in `2 distance, w(t) → argminw∈G ‖w −
w(0)‖2. This can be easily seen as at any w, the gradients
∇L(w) =

∑
n `
′(〈w, xn〉 , yn)xn are always constrained to

the fixed subspace spanned by the data {xn}n, and thus the
iteratesw(t) are confined to the low dimensional affine mani-
fold w(0) + span({xn}n). Within this low dimensional man-
ifold, there is a unique global minimizer w that satisfies the
linear constraints in G = {w : 〈w, xn〉 = yn,∀n ∈ [N ]}.

The same argument also extends for updates with instance-
wise stochastic gradients defined below, where we use a
stochastic estimate ∇̃L(w(t)) of the full gradient∇L(w(t))
computed from a random subset of instances St ⊆ [N ],

∇̃L(w(t)) =
∑

n∈St⊂[n]
∇w`(

〈
w(t), xnt

〉
, ynt

). (2)

Moreover, when initialized with w(0) = 0, the implicit
bias characterization also extends to the following generic
momentum and acceleration based updates:

w(t+1) =w(t)+βt∆w(t−1)−ηt∇L
(
w(t)+γt∆w(t−1)

)
, (3)

where ∆w(t−1) = w(t) − w(t−1). This includes Nesterov’s
acceleration (βt = γt) (Nesterov, 1983) and Polyak’s heavy
ball momentum (γt = 0) (Polyak, 1964).

For losses with a unique finite root, the implicit bias of gradi-
ent descent therefore depends only on the initialization and
not on the step–size or momentum or mini-batch size. Can
we get such succinct characterization for other optimization
algorithms? That is, characterize the bias in terms of the
optimization geometry and initialization, but independent
of choices of step–sizes, momentum, and stochasticity.

2.2. Mirror descent

Mirror descent (MD) (Beck & Teboulle, 2003; Nemirovskii
& Yudin, 1983) was introduced as a generalization of gra-
dient descent for optimization over geometries beyond the
Euclidean geometry of gradient descent. In particular, mir-
ror descent updates are defined for any strongly convex and
differentiable potential ψ as,

w(t+1) = argmin
w∈W

ηt
〈
w,∇L(w(t))

〉
+Dψ(w,w(t)), (4)

where Dψ(w,w′)=ψ(w)− ψ(w′)− 〈∇ψ(w′), w − w′〉 is
the Bregman divergence (Bregman, 1967) w.r.t. ψ, andW
is some constraint set for parameters w.
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We first look at unconstrained optimization whereW = Rd
and the update in eq. (4) can be equivalently written as:

∇ψ(w(t+1)) = ∇ψ(w(t))− ηt∇L(w(t)). (5)

For a strongly convex potential ψ, ∇ψ is called the link
function and is invertible. Hence, the above updates are
uniquely defined. Also, w and∇ψ(w) are refered as primal
and dual variables, respectively. Examples of strongly con-
vex potentials ψ for mirror descent include, the squared `2
norm ψ(w) = 1/2‖w‖22, which leads to gradient descent; the
entropy potential ψ(w) =

∑
i w[i] logw[i]−w[i]; the spec-

tral entropy for matrix valued w, where ψ(w) is the entropy
potential on the singular values of w; general quadratic po-
tentials ψ(w) = 1/2‖w‖2D = 1/2w>Dw for any positive
definite matrix D; and the squared `p norm for p ∈ (1, 2].

From eq. (5), we see that rather than the primal iter-
ates w(t), it is the dual iterates ∇ψ(w(t)) that are con-
strained to the low dimensional data manifold ∇ψ(w(0)) +
span({xn}n∈[N ]). The arguments for gradient descent can
now be generalized to get the following result.

Theorem 1. For any loss ` with a unique finite root
(Property 1), any realizable dataset {xn, yn}Nn=1, and any
strongly convex potential ψ, consider the mirror descent
iterates w(t) from eq. (5). For all initializations w(0), if the
step–size sequence {ηt} is chosen such that the limit point
of the iterates w∞ = limt→∞ w(t) is a global minimizer of
L, i.e., L(w∞) = 0, then w∞ is given by

w∞ = argmin
w:∀n,〈w,xn〉=yn

Dψ(w,w(0)). (6)

In particular, if we start at w(0) = argminw ψ(w), then we
get to w∞ = argminw∈G ψ(w), where recall that G = {w :
∀n, 〈w, xn〉 = yn} is the set of global minima for L(w).

The analysis of Theorem 1 can also be extended for special
cases of constrained mirror descent (eq. (4)) when L(w) is
minimized over realizable affine equality constraints.

Theorem 1a. Under the conditions of Theorem 1, consider
constrained mirror descent updates w(t) from eq. (4) with
realizable affine equality constraints: W = {w : Gw = h}
for some G ∈ Rd′×d and h ∈ Rd′ and additionally, ∃w ∈
W with L(w) = 0. For all initializations w(0), if the step–
size sequence {ηt} is chosen such that the limit point of the
iterates is a global minimizer of L, i.e., L(w∞) = 0, then
w∞ = argminw∈G∩W Dψ(w,w(0)).

For example, in exponentiated gradient descent (Kivi-
nen & Warmuth, 1997), which is MD w.r.t ψ(w) =∑
i w[i] logw[i]−w[i] under the explicit simplex constraint

W = {w :
∑
i w[i] = 1}, Theorem 1a shows that using

uniform initialization w(0) = 1
d1 will return the maximum

entropy solution w∞ = argminw∈G
∑
i w[i] logw[i].

Let us now consider momentum for mirror descent. There
are two possible generalizations of the gradient descent
momentum in eq. (3): adding momentum either to primal
variables w(t), or to dual variables∇ψ(w(t)),

Dual momentum: ∇ψ(w(t+1)) = ∇ψ(w(t)) + βt∆z(t−1)

− ηt∇L
(
w(t) + γt∆w(t−1)

)
(7)

Primal momentum:∇ψ(w(t+1)) = ∇ψ
(
w(t) + βt∆w(t−1)

)
− ηt∇L

(
w(t) + γt∆w(t−1)

)
(8)

where ∆z(−1) = ∆w(−1) = 0, and for t ≥ 1, ∆z(t−1) =
∇ψ(w(t))−∇ψ(w(t−1)) and ∆w(t−1) = w(t)−w(t−1) are
the momentum terms in the primal and dual space, respec-
tively; and {βt ≥ 0, γt ≥ 0} are the momentum parameters.

If we initialize to w(0) = argminw ψ(w), then even with
dual momentum,∇ψ(w(t)) continues to remain in the data
manifold, leading to the following extension of Theorem 1.

Theorem 1b. Under the conditions in Theorem 1, if ini-
tialized at w(0) = argminw ψ(w), then the mirror descent
updates with dual momentum also converges to (6), i.e., for
all {ηt}t, {βt}t, {γt}t, if w(t) from eq. (7) converges to
w∞ ∈ G, then w∞ = argminw∈G ψ(w).

Remark 1. Theorem 1–1b also hold when stochastic gradi-
ents defined in eq. (2) are used in place of ∇L(w(t)).

Let us now look at primal momentum. For general potentials
ψ, the dual iterates ∇ψ(w(t)) from the primal momentum
can fall off the data manifold and the additional components
influence the final solution. Thus, the specific global mini-
mum that the iterates w(t) converge to depend on the values
of momentum parameters {βt, γt} and step–sizes {ηt}.
Example 2. Consider optimizing L(w) with dataset
{(x1 = [1, 2], y1 = 1)} and squared loss `(u, y) = (u−y)2

using primal momentum updates from eq. (8) for MD w.r.t.
the entropy potential ψ(w) =

∑
i w[i] logw[i] − w[i] and

initialization w(0) = argminw ψ(w). Figure 1a shows how
different choices of momentum {βt, γt} change the limit
point w∞. Additionally, we show the following:

Proposition 2a. In Example 2, consider the case where
primal momentum is used only in the first step, but γt = 0
and βt = 0 for all t ≥ 2. For any β1 > 0, there exists {ηt}t,
such that w(t) from (8) converges to a global minimum, but
not to argminw∈G ψ(w).

2.3. Natural gradient descent

Natural gradient descent (NGD) was introduced by Amari
(1998) as a modification of gradient descent, wherein the
updates are chosen to be the steepest descent direction w.r.t
a Riemannian metric tensor H that maps w to a positive
definite local metric H(w). The updates are given by,

w(t+1) = w(t) − ηtH
(
w(t)

)−1∇L(w(t)) (9)
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Figure 1: Dependence of implicit bias on step–size and momentum: In (a)–(c), the blue line denotes the set G of global minima
for the respective examples. In (a) and (b), ψ is the entropy potential and all algorithms are initialized with w(0) = [1, 1] so that
ψ(w(0)) = argminw ψ(w) and w∗ψ = argminψ∈G ψ(w) denotes the minimum potential global minima we expect to converge to. (a)
Mirror descent with primal momentum (Example 2): the global minimum that eq. (8) converges to depends on the momentum
parameters—the sub-plots contain the trajectories of eq. (8) for different choices of βt = β and γt = γ; (b) Natural gradient descent
(Example 3): for different step–sizes ηt = η, eq. (9) converges to different global minima. Here, η was chosen to be small enough to
ensure w(t) ∈ dom(ψ). (c) Steepest descent w.r.t ‖.‖4/3 (Example 4): the global minimum to which eq. (11) converges depends on
η. Here w(0) = [0, 0, 0], w∗‖.‖ = argminψ∈G ‖w‖4/3 denotes the minimum norm global minimum, and w∞η→0 denotes the solution of
infinitesimal SD with η → 0. Note that even as η → 0, the expected characterization does not hold, i.e., w∞η→0 6= w∗‖.‖.

In many instances, the metric tensor H is specified by the
Hessian∇2ψ of a strongly convex potential ψ. For example,
when the metric over the Riemannian manifold is the KL
divergence between distributions Pw and Pw′ parameterized
by w, the metric tensor is given by H(w) = ∇2ψ(Pw)
where the potential ψ is the entropy potential over Pw.

Connection to mirror descent When H(w) = ∇ψ2(w)
for a strongly convex potential ψ, as the step–size η goes to
zero, the iterates w(t) from natural gradient descent in eq.
(9) and mirror descent w.r.t ψ in eq. (4) converge to each
other, and the common dynamics in the limit is given by:

d∇ψ(w(t))

dt
= −∇L(w(t))

=⇒
dw(t)

dt
= −∇2ψ(w(t))

−1∇L(w(t))

(10)

Thus, as the step–sizes are made infinitesimal, the limit
point of natural gradient descentw∞ = limt→∞ w(t) is also
the limit point of mirror descent and hence will be biased
towards solutions with minimum divergence to the initial-
ization, i.e., as η → 0, w∞ = argminw∈G Dψ(w,w(0)).

For general step–sizes {ηt}, if the potential ψ is quadratic,
ψ(w) = 1/2‖w‖2D for some positive definite D, we get
linear link functions ∇ψ(w) = Dw and constant metric
tensors ∇2ψ(w) = H(w) = D, and the natural gradient
descent updates (9) are the same as the mirror descent (5).
Otherwise the updates in eq. (9) is only an approximation of
the mirror descent update∇ψ−1(∇ψ(w(t))−ηt∇L(w(t))).

For natural gradient descent with finite step–size and non-
quadratic potentials ψ, the characterization in eq. (6) gen-

erally does not hold. We can see this as, for any initial-
ization w(0), a finite η1 > 0 will lead to w(1) for which
the dual variable ∇ψ(w(1)) is no longer in the data mani-
fold span({xn}) +∇ψ(w(0)), and hence will converge to a
different global minimum dependent on the step–sizes {ηt}.
Example 3. Consider optimizing L(w) with squared loss
over dataset {(x1 = [1, 2], y1 = 1)} using the natu-
ral gradient descent w.r.t. the metric tensor given by,
H(w) = ∇2ψ(w), where ψ(w) =

∑
i w[i] logw[i]− w[i],

and initialization w(0) = [1, 1]. Figure 1b shows that NGD
with different step–sizes η converges to different global min-
ima. For a simple analytical example: take one finite step
η1 > 0 and then follow the continuous time path in eq. (10).
Proposition 3a. For almost all η1 > 0, limt→∞ w(t) =
argminw∈G Dψ(w,w(1)) 6= argminw∈G Dψ(w,w(0)).

2.4. Steepest Descent

Gradient descent is also a special case of steepest descent
(SD) w.r.t a generic norm ‖.‖ (Boyd & Vandenberghe, 2004)
with updates given by,

w(t+1) = w(t) + ηt∆w(t),

where ∆w(t) = argmin
v

〈
∇L(w(t)), v

〉
+

1

2
‖v‖2.

(11)

The optimality of ∆w(t) in eq. (11) requires −∇L(w(t)) ∈
∂‖∆w(t)‖2, which is equivalent to,

〈∆w(t),−∇L(w(t))〉=‖∆w(t)‖2 =‖∇L(w(t))‖2?. (12)

Examples of steepest descent include gradient descent,
which is steepest descent w.r.t `2 norm and coordinate de-
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scent, which is steepest descent w.r.t `1 norm. In general,
the update ∆w(t) in eq. (11) is not uniquely defined and
there could be multiple direction ∆w(t) that minimize eq.
(11). In such cases, any minimizer of eq. (11) is a valid
steepest descent update and satisfies eq. (12).

Generalizing gradient descent, we might expect the limit
point w∞ of steepest descent w.r.t an arbitrary norm ‖.‖.
to be the solution closest to initialization in corresponding
norm, argminw∈G ‖w − w(0)‖. This is indeed the case for
quadratic norms ‖v‖D =

√
v>Dv when eq. 11 is equivalent

to mirror descent with ψ(w) = 1/2‖w‖2D. Unfortunately,
this does not hold for general norms.

Example 4. Consider minimizing L(w) with dataset
{(x1 = [1, 1, 1], y1 = 1), (x1 = [1, 2, 0], y1 = 10)} and
loss `(u, y) = (u− y)2 using steepest descent updates w.r.t.
the `4/3 norm. The empirical results for this problem in Fig-
ure 1c clearly show that even for `p norms where the ‖.‖2p
is smooth and strongly convex, the corresponding steepest
descent converges to a global minimum that depends on the
step–size. Further, even in the continuous step–size limit of
η → 0, w(t) does not converge to argminw∈G ‖w − w(0)‖.

Coordinate descent Steepest descent w.r.t. the `1 norm
is called the coordinate descent algorithm, with updates:

∆w(t+1) ∈ conv
{
−ηt

∂L(w)

∂w[jt]
ejt :jt=argmax

j

∣∣∂L(w)

∂w[j]

∣∣},
where conv(S) denotes the convex hull of the set S, and
{ej} are the standard basis, i.e., when multiple partial deriva-
tives are maximal, we can choose any convex combination
of the maximizing coordinates, leading to many possible
coordinate descent optimization paths.

The connection between optimization paths of coordinate
descent and the `1 regularization path given by, ŵ(λ) =
argminw L(w) + λ‖w‖1, has been studied by Efron et al.
(2004). The specific coordinate descent path where updates
are along the average of all optimal coordinates and the
step–sizes are infinitesimal is equivalent to forward stage-
wise selection, a.k.a. ε-boosting (Friedman, 2001). When
the `1 regularization path ŵ(λ) is monotone in each of the
coordinates, it is identical to this stage-wise selection path,
i.e., to a coordinate descent optimization path (and also to
the related LARS path) (Efron et al., 2004). In this case,
at the limit of λ → 0 and t → ∞, the optimization and
regularization paths, both converge to the minimum `1 norm
solution. However, when the regularization path ŵ(λ) is
not monotone, which can and does happen, the optimization
and regularization paths diverge, and forward stage-wise
can converge to solutions with sub-optimal `1 norm. This
matches our understanding that steepest descent w.r.t. a
norm ‖.‖, in this case the `1 norm, might converge to a
solution that is not the minimum ‖.‖ norm solution.

2.5. Summary for losses with a unique finite root

For losses with a unique finite root, we characterized the
implicit bias of generic mirror descent algorithm in terms
of the potential function and initialization. This characteri-
zation extends for momentum in the dual space as well as
to natural gradient descent in the limit of infinitesimal step–
size. We also saw that the characterization breaks for mirror
descent with primal momentum and natural gradient descent
with finite step–sizes. Moreover, for steepest descent with
general norms, we were unable to get a useful characteriza-
tion even in the infinitesimal step size limit. In the following
section, we will see that for strictly monotone losses, we
can get a characterization also for steepest descent.

3. Strictly Monotone Losses
We now turn to strictly monotone loss functions ` where the
behavior of the implicit bias is fundamentally different, and
as are the situations when the implicit bias can be charac-
terized. Such losses are common in classification problems
where y = {−1, 1} and `(f(x), y) is typically a continuous
surrogate of the 0-1 loss. Examples of such losses include
logistic loss, exponential loss, and probit loss.

Property 2 (Strict monotone losses). `(ŷ, y) is bounded
from below, and ∀y, `(ŷ, y) is strictly monotonically de-
creasing in ŷ. Without loss of generality, ∀y, inf ŷ `(ŷ, y) =

0 and `(ŷ, y)
ŷy→∞−→ 0.

We look at classification models that fit the training data
{xn, yn}n with linear decision boundaries f(x) = 〈w, x〉
with decision rule given by ŷ(x) = sign(f(x)). In many
instances of the proofs, we also assume without loss of
generality that yn = 1 for all n, since for linear models, the
sign of yn can equivalently be absorbed into xn.

When the training data {xn, yn}n is not linearly separable,
the empirical objective L(w) in eq. (1) can have a finite
global minimum. However, if the dataset is linearly separa-
ble, i.e., ∃w : ∀n, yn 〈w, xn〉 > 0, the empirical loss L(w)
in eq. (1) is again ill-posed, and moreover L(w) does not
have any finite minimizer, i.e, L(w)→ 0 only as ‖w‖ → ∞.
Thus, if L(w(t)) → 0 for any sequence w(t), then w(t) di-
verges to infinity rather than converge and hence, we cannot
talk about limt→∞ w(t). Instead, we look at the limit direc-
tion w̄∞ = limt→∞

w(t)

‖w(t)‖
whenever the limit exists. We

refer to existence of this limit as convergence in direction.
Note that, the limit direction fully specifies the decision rule
of the classifier that we care about.

We focus on the exponential loss `(u, y) = exp(−uy).
However, our results can be extended to loss functions with
tight exponential tails, including logistic and sigmoid losses,
along the lines of Soudry et al. (2017) and Telgarsky (2013).
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3.1. Gradient descent

Soudry et al. (2017) showed that for almost all linearly sep-
arable datasets, gradient descent with any initialization and
any bounded step–size converges in direction to maximum
margin separator with unit `2 norm, i.e., the hard margin
support vector machine classifier,

w̄∞ = lim
t→∞

w(t)

‖w(t)‖2
= w∗‖.‖2 := argmax

‖w(t)‖2≤1
min
n
yn 〈w, xn〉 .

This characterization of the implicit bias is independent of
both the step–size as well as the initialization. We already
see a fundamentally difference from the implicit bias of gra-
dient descent for losses with a unique finite root (Section 2.1)
where the characterization depended on the initialization.

Can we similarly characterize the implicit bias of differ-
ent algorithms establishing w(t) converges in direction and
calculating w̄∞? Can we do this even when we could not
characterize the limit point w∞ = limt→∞ w(t) for losses
with unique finite roots? As we will see in the following
section, we can indeed answer these questions for steepest
descent w.r.t arbitrary norms.

3.2. Steepest Descent

Recall that for the squared loss, the limit point of steepest
descent could depend strongly on the step–size, and we were
unable obtain a useful characterization even for infinitesi-
mal step–size. In contrast, the following theorem provides
a crisp characterization of the limit direction of steepest
descent as a maximum margin solution, independent of step–
size (as long as it is small enough) and initialization. Let
‖.‖? denote the dual norm of ‖.‖.
Theorem 5. For any separable dataset {xn, yn}Nn=1 and
any norm ‖·‖, consider the steepest descent updates from eq.
(12) for minimizingL(w) in eq. (1) with the exponential loss
`(u, y) = exp(−uy). For all initializations w(0), and all
bounded step–sizes satisfying ηt ≤ max{η+, 1

B2L(w(t))
},

where B := maxn ‖xn‖? and η+ <∞ is any finite upper
bound, the iterates w(t) satisfy the following,

lim
t→∞

min
n

yn
〈
w(t), xn

〉
‖w(t)‖

= max
w:‖w‖≤1

min
n
yn 〈w, xn〉.

In particular, if there is a unique maximum-‖.‖ margin so-
lution w?‖.‖ = argmaxw:‖w‖≤1 minn yn 〈w, xn〉, then the
limit direction is given by w̄∞ = lim

t→∞
w(t)

‖w(t)‖
= w?‖.‖.

A special case of Theorem 5 is for steepest descent w.r.t. the
`1 norm, which as we already saw corresponds to coordinate
descent. More specifically, coordinate descent on the expo-
nential loss can be thought of as an alternative presentation
of AdaBoost (Schapire & Freund, 2012), where each coor-
dinate represents the output of one “weak learner”. Indeed,

initially mysterious generalization properties of boosting
have been understood in terms of implicit `1 regularization
(Schapire & Freund, 2012), and later on AdaBoost with
small enough step–size was shown to converge in direction
precisely to the maximum `1 margin solution (Zhang et al.,
2005; Shalev-Shwartz & Singer, 2010; Telgarsky, 2013),
just as guaranteed by Theorem 5. In fact, Telgarsky (2013)
generalized the result to a richer variety of exponential tailed
loss functions including logistic loss, and a broad class of
non-constant step–size rules. Interestingly, coordinate de-
scent with exact line search can result in infinite step–sizes,
leading the iterates to converge in a different direction that
is not a max-`1-margin direction (Rudin et al., 2004), hence
the maximum step–size bound in Theorem 5.

Theorem 5 is a generalization of the result of Telgarsky to
steepest descent with respect to other norms, and our proof
follows the same strategy as Telgarsky. We first prove a
generalization of the duality result of Shalev-Shwartz &
Singer (2010): if there is a unit norm linear separator that
achieves margin γ, then ‖∇L(w)‖? ≥ γL(w) for all w. By
using this lower bound on the dual norm of the gradient,
we are able to show that the loss decreases faster than the
increase in the norm of the iterates, establishing convergence
in a margin maximizing direction.

In relating the optimization path to the regularization path,
it is also relevant to relate Theorem 5 to the result by Rosset
et al. (2004) that for monotone loss functions and `p norms,
the `p regularization path ŵ(c) = argminw:‖w‖p≤c L(w(t))
also converges in direction to the maximum margin sepa-
rator, i.e., lim

c→∞
ŵ(c) = w?‖.‖p . Although the optimization

path and regularization path are not the same, they both
converge to the same max-margin separator in the limits of
c→∞ and t→∞, for the regularization path and steepest
descent optimization path, respectively.

3.3. Adaptive Gradient Descent (AdaGrad)

Adaptive gradient methods, such as AdaGrad (Duchi et al.,
2011) or Adam (Kingma & Adam, 2015) are very popular
for neural network training. We look at the implicit bias of
the basic (diagonal) AdaGrad in this section.

w(t+1) = w(t) − ηG
−1/2
(t) ∇L

(
w(t)

)
, (13)

where G(t) ∈ Rd×d is a diagonal matrix such that,

∀i : G(t)[i, i] =

t∑
u=0

(
∇L

(
w(u)

)
[i]
)2
. (14)

AdaGrad updates described above correspond to a pre-
conditioned gradient descent, where the pre-conditioning
matrix G(t) adapts across iterations. It was observed by
Wilson et al. (2017) that for neural networks with squared
loss, adaptive methods tend to degrade generalization perfor-
mance in comparison to non-adaptive methods (e.g., SGD
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with momentum), even when both methods are used to train
the network until convergence to a global minimum of train-
ing loss. This suggests that adaptivity does indeed affect the
implicit bias. For squared loss, by inspection the updates in
eq. (13), we do not expect to get a characterization of the
limit point w∞ that is independent of the step–sizes.

However, we might hope that, like for steepest descent, the
situation might be different for strictly monotone losses,
where the asymptotic behavior could potentially nullify the
initial conditions. Examining the updates in eq. (13), we can
see that the robustness to initialization and initial updates
depend on whether the matrices G(t) diverge or converge:
if G(t) diverges, then we expect the asymptotic effects to
dominate, but if it converges, then the limit direction will
necessarily depend on the initial conditions.

Unfortunately, the following theorem shows that, the com-
ponents of G(t) matrix are bounded, and hence even for
strict monotone losses, the initial conditions w(0),G(0) and
step–size η will have a non-vanishing contribution to the
asymptotic behavior of G(t) and hence to the limit direction
w̄∞ = lim

t→∞
w(t)

‖w(t)‖
, whenever it exists. In other words, the

implicit bias of AdaGrad does indeed depend on the initial
conditions, including initialization and step–size.
Theorem 6. For any linearly separable training data
{xn, yn}Nn=1, consider the AdaGrad iterates w(t) from
eq. (13) for minimizing L (w) with exponential loss
`(u, y) = exp(−uy). For any fixed and bounded step–
size η < ∞, and any initialization of w(0) and G(0),

such that η2L
(
w(0)

)
< 1, and

∥∥∥G−1/4(0) xn

∥∥∥
2
≤ 1, ∀i,∀t :

G(t)[i, i] <∞.

4. Gradient descent on the factorized
parameterization

Consider the empirical risk minimization in eq. (1) for
matrix valued Xn ∈ Rd×d, W ∈ Rd×d

min
W
L(W ) = `(〈W,Xn〉 , yn). (15)

This is the exact same setting as eq. (1) obtained by ar-
ranging w and xn as matrices. We can now study another
class of optimization algorithms for learning linear mod-
els based on matrix factorization where we reparameter-
ize W as W = UV > with unconstrained U ∈ Rd×d and
V ∈ Rd×d to get the following equivalent objective,

min
U,V
L(UV >)=

N∑
n=1

`(
〈
UV >, Xn

〉
, yn) (16)

Note that although non-convex eq. (16) is equivalent to
eq. (15) with the exact same set of global minima over
W = UV >. Gunasekar et al. (2017) studied this problem
for squared loss `(u, y) = (u − y)2 and noted that gradi-
ent descent on the factorization yields radically different

implicit bias compared to gradient descent on W . In par-
ticular, gradient descent on U, V is often observed to be
biased towards low nuclear norm solutions, which in turns
ensures generalization (Srebro et al., 2005) and low rank
matrix recovery (Recht et al., 2010; Candes & Recht, 2009).
Since the matrix factorization objective in eq. (16) can be
viewed as a two-layer neural network with linear activation,
understanding the implicit bias here could provide direct in-
sights into characterizing the implicit bias in more complex
neural networks with non-linear activations.

Gunasekar et al. (2017) noted that, the optimization problem
in eq. (16) over factorizationW =UV >can be cast as a spe-
cial case of optimization over p.s.d. matrices parameterized
with unconstrained symmetric factorization W =UU>:

min
U∈Rd×d

L(U)=L(UU>)=

N∑
n=1

`
(〈
UU>, Xn

〉
, yn
)

(17)

Specifically, both the objective as well as gradient descent
updates of eq. (16) are equivalent to the problem in eq. (17)
with larger data matrices X̃n =

[
0 Xn

X>n 0

]
and loss opti-

mized over larger p.s.d. matrix W̃ = Ũ Ũ> =
[
A1 W

W> A2

]
.

Henceforth, we will also consider the symmetric matrix
factorization in (17). Let U(0) ∈ Rd×d be any full rank
initialization, gradient descent updates in U are given by,

U(t+1)= U(t)− ηt∇L(U(t)), (18)

with corresponding updates in W(t) = U(t)U(t)
> given by,

W(t+1) = W(t)− ηt
[
∇L(W(t))W(t) +W(t)∇L(W(t))

]
+ η2t∇L(W(t))W(t)∇L(W(t)) (19)

Losses with a unique finite root For squared loss, Gu-
nasekar et al. (2017) showed that the implicit bias of iterates
in eq. (19) crucially depended on both the initialization U(0)

as well as the step–size η. Gunasekar et al. conjectured,
and provided theoretical and empirical evidence that gradi-
ent descent on the factorization converges to the minimum
nuclear norm global minimum, but only if the initializa-
tion is infinitesimally close to zero and the step-sizes are
infinitesimally small. Li et al. (2017), later proved the con-
jecture under additional assumption that the measurements
Xn satisfy certain restricted isometry property (RIP).

In the case of squared loss, it is evident that for finite step–
sizes and finite initialization, the implicit bias towards the
minimum nuclear norm global minima is not exact. In
practice, not only do we need η > 0, but we also cannot
initialize very close to zero since zero is a saddle point for
eq. (17). The natural question motivated by the results in
Section 3 is: for strictly monotone losses, can we get a
characterization of the implicit bias of gradient descent for
the factorized objective in eq. (17) that is more robust to
initialization and step–size?
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Strict monotone losses In the following theorem, we
again see that the characterization of the implicit bias of
gradient descent for factorized objective is more robust in
the case of strict monotone losses.

Theorem 7. For almost all datasets {Xn, yn}Nn=1 separa-
ble by a p.s.d. linear classifier, consider the gradient descent
iterates U(t) in eq. (18) for minimizing L̄(U) with the ex-
ponential loss `(u, y) = exp(−uy) and the corresponding
sequence of linear predictors W(t) in eq. (19). For any full
rank initialization U(0) and any sufficiently small step–size
sequences {ηt} such that ηt <∞ is smaller than the local
Lipschitz at W(t), if W(t) asymptotically minimizes L, i.e.,
L(W(t)) → 0, and additionally the incremental updates
W(t+1) −W(t) and the gradients∇L(W(t)) converge in di-

rection, then the limit direction W̄∞ = lim
t→∞

W(t)

‖W(t)‖∗
exists,

and is given by the maximum margin separator with unit
nuclear norm ‖.‖∗,

W̄∞ = argmax
W<0

min
n
yn 〈W,Xn〉 s.t., ‖W‖∗ ≤ 1.

Here we note that convergence of W(t) in direction is nec-
essary for the characterization of implicit bias to be rele-
vant, but in Theorem 7 we require stronger conditions that
the incremental updates W(t+1) −W(t) and the gradients
∇L(W(t)) converge in direction. Relaxing this condition is
of interest for future work.

Key property Let us look at exponential loss when
W(t) converges in direction to, say W̄∞ as W(t) =
W̄∞g(t) + ρ(t) for some scalar g(t) → ∞ and
ρ(t)
g(t) → 0. Consequently, the gradients ∇L(W(t)) =∑
n e−g(t)yn〈W∞,Xn〉e−yn〈ρ(t),Xn〉 ynXn will asymptoti-

cally be dominated by linear combinations of examples
Xn that have the smallest distance to the decision boundary,
i.e., the support vectors of W∞. This behavior can be used
to show optimality of W∞ to the maximum margin solution
subject to nuclear norm constraint in Theorem 7.

This idea formalized in the following lemma, which is of
interest beyond the results in this paper.

Lemma 8. For almost all linearly separable datasets
{xn, yn}Nn=1, consider any sequence w(t) that minimizes
L(w) in eq. (1) with exponential loss, i.e., L(w(t))→ 0. If
w(t)

‖w(t)‖
converges, then for every accumulation point z∞ of{

−∇L(w(t))

‖∇L(w(t))‖
}
t
, ∃{αn ≥ 0}n∈S s.t., z∞ =

∑
n∈S

αnynxn,

where w̄∞ = lim
t→∞

w(t)

‖w(t)‖
and S = {n : yn 〈w̄∞, xn〉 =

minn yn 〈w̄∞, xn〉} are the indices of the data points with
smallest margin to w̄∞.

5. Summary
We studied the implicit bias of different optimization al-
gorithms for two families of losses, losses with a unique
finite root and strict monotone losses, where the biases are
fundamentally different. In the case of losses with a unique
finite root, we have a simple characterization of the limit
point w∞ = limt→∞ w(t) for mirror descent, but for this
family of losses, such a succinct characterization does not
extend to steepest descent with respect to general norms.
On the other hand, for strict monotone losses, we noticed
that the initial updates of the algorithm, including initializa-
tion and initial step–sizes are nullified when we analyze the
asymptotic limit direction w̄∞ = limt→∞

w(t)

‖w(t)‖
. We show

that for steepest descent, the limit direction is a maximum
margin separator within the unit ball of the corresponding
norm. We also looked at other optimization algorithms for
strictly monotone losses. For matrix factorization, we again
get a more robust characterization of the implicit bias as the
maximum margin separator with unit nuclear norm. This
again, in contrast to squared loss Gunasekar et al. (2017), is
independent of the initialization and step–size. However, for
AdaGrad, we show that even for strict monotone losses, the
limit direction w̄∞ could depend on the initial conditions.

In our results, we characterize the implicit bias for linear
models as minimum norm (potential) or maximum margin
solutions. These are indeed very special among all the
solutions that fit the training data, and in particular, their
generalization performance can in turn be understood from
standard analyses (Bartlett & Mendelson, 2003).

For more complicated non-linear models, especially neural
networks, further work is required in order to get a more
complete understanding of the implicit bias. The prelim-
inary result for matrix factorization provides us tools to
attempt extensions to multi-layer linear models, and even-
tually to non-linear networks. Even for linear models, the
question of what is the implicit bias is when L(w) is opti-
mized with explicitly constraintsw ∈ W is an open problem.
We believe similar characterizations can be obtained when
there are multiple feasible solutions with L(w) = 0. We
also believe, the results for single outputs considered in this
paper can also be extended for multi-output loss functions.

Finally, we would like a more fine grained analysis con-
necting the iterates w(t) along the optimization path of
various algorithms to the regularization path, ŵ(c) =
argminR(w)≤c L(w), where an explicit regularization is
added to the optimization objective. In particular, our pos-
itive characterizations show that the optimization and reg-
ularization paths meet at the limit of t → ∞ and c → ∞,
respectively. It would be desirable to further understand the
relations between the entire optimization and regularization
paths, which will help us understand the non-asymptotic
effects from early stopping.
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