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A. Proof to Lemma 1

Proof: Because the gradient of f(w) is Lipschitz continuous in Assumption 1, the following inequality holds that:

f(wt+1) < f(wt) + vf(wt)T (wt+1 . wt) + g Hwt+1 . thE (1)

From the update rule in Algorithm 1, we take expectation on both sides and obtain:
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where the second inequality follows from the unbiased gradient E [V f,, (w)] =
1{ly||3, we have the upper bound of @ and @ as follows:
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As per the equation regarding variance E||¢ — E[¢]]|3 = E||£]13 — ||E[¢] |3, we can bound Q3 as follows:
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where the equality follows from the definition of V fg 1) (w) such that [V fg )
is from Assumption 2. We can also get the upper bound of Q4:
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(w)]; =0, Vj ¢ G(k) and the last inequality
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where the second inequality is from Assumption 1, the fourth inequality follows from that L+; < 1 and the last inequality
follows from ||z1 + ... + 2|2 < r(||21]|3 + ... + || 2+]|%), Assumption 2 and o := max; w Integrating the upper
bound of Q1, Q2, Q3 and Q4 in (2), we have: 4
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where we let My = KM + o K*M.

B. Proof to Theorem 1

Proof: When ~; is constant and y; = -, taking total expectation of (12) in Lemma 1, we obtain:
2
E [f(w'™)] - E [f(w')] < —%]E IV f(wh)|[3 +~* LMk, (8)
where 0 = 1l and Mx = KM + K*M. Summing (8) from ¢ = 0 to T" — 1, we have:
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Suppose w* is the optimal solution for f(w), therefore f(w*) — f(w®) < E [f(w?)] — f(w?). Above all, the following
inequality is guaranteed that:

|2 <2 D) = F@D) o pase. (10)
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C. Proof to Theorem 2

Proof: {7} is a diminishing sequence and y; = 1%, such that 0 < K and Mx = KM + K 5 M. Taking total expectation

of (12) in Lemma 1 and summing it from ¢ = 0 to 7" — 1, we obtain:
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Suppose w* is the optimal solution for f(w), therefore f(w*) — f(w°) < E [f(w”)] — f(w®). Letting I'r = Til Y, We
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We complete the proof.



