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Abstract

The computer science field Affective Computing, which studies and develops emotional
intelligent systems, has been active for almost two decades now with limited results. Arousal
as the dimension that represents the intensity of the emotions, represents similar recognition
problems. This is the first study that analyzes six publicly available datasets for arousal
recognition from physiological signals and proposes a method capable of combining them.
The novel method, an inter-domain Deep Neural Network (DNN) ensemble, is compared
to classical machine learning (ML). For both methods, the raw data from Galvanic Skin
Response (GSR), Electrocardiography ECG, and Blood Volume Pulse (BVP) sensors is
processed and transformed into a common spectro-temporal space of R-R intervals and
GSR data. For the classical ML algorithms, features are extracted, and for the DNN
algorithms, two different approaches were taken: a fully connected DNN trained with the
same features as the classical ML algorithms (DNN-Features) and a Convolutional Neural
Network (CNN) trained with the temporal representation of the GSR signal (CNN-GSR).
Finally, a fully connected DNN meta learner is trained to utilize the knowledge from the
two different DNNs and to tune the DNN models for the target dataset. The experimental
results showed that the novel DNN ensemble method outperforms the classical ML methods
and the non-ensemble DNN methods. Additionally, the CNN-GSR model learned that the
peaks of the GSR signal contain the most information regarding the arousal, thus the
network developed filters to emphasize those parts.

Keywords: Affective computing, affect recognition, deep learning, convolutional networks,
ensembles

1. Introduction

Emotions are paramount in the human communication. They serve as a medium to enrich
the communication, to express preferences, to communicate subjective cues, and even to
manipulate others. The book ”Affective Computing” from Picard (1997) is considered as the
birth of the scientific field that studies and develops emotion aware computer systems. Two
decades afterwards with Affective Computing as a well-established research field, modeling
emotional states still remains a challenging task.

With the advancement of the technology and the penetration of the information systems
into our everyday life, the need for emotion-aware systems is becoming increasingly more
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evident. For example, in the domain of human-computer interaction (HCI), an emotion-
aware system would enable a more natural interaction and better user experience. In the
healthcare domain, a system for monitoring emotion can contribute to the timely detection
and treatment of emotional and mental disorders such as depression, bipolar disorders
and posttraumatic stress disorder (PTSD). From an economical point of view, emotion
monitoring system may help to decrease the cost of work-related depression. The cost in
2013 in Europe was estimated to 617 billion annually 1.

One popular approach for modeling emotions in psychology, is to represent the emotions
in a 2D or 3D space of arousal, valance and dominance Russell (1980). This approach takes
into account the vague definitions and fuzzy boundaries of the emotional states, and has
been widely used in affective studies for annotating data Koelstra et al. (2012); Subrama-
nian et al. (2017). The use of the same psychological approaches for annotating data across
multiple computer-science studies related to emotion recognition allows for an inter-domain
analysis. More specifically, we analyze six publicly available datasets for affect recognition
with 142 hours of arousal-labelled data that belongs to 191 subjects (70 females and 121
males). We focus on arousal recognition from physiological data captured via chest-worn
Electrocardiography (ECG) sensors, finger-worn wrist-worn blood volume pulse (BVP) sen-
sors, and chest-worn and wrist-worn Galvanic Skin Response (GSR) sensor.

Even though the same type of data were recorded in the six datasets, different sensors
were used for each of them, resulting in variations in the data collected. For example,
the GSR sensor is different for each dataset. To overcome this problem, we exploit a
four-step solution. First, the data from the ECG and BVP sensors is preprocessed and
transformed into a common spectro-temporal space of R-R intervals and Lomb-Scargle
periodogram Lomb (1976), regardless of the sensor. Second, the data from the GSR sensors
is normalized and transformed into the same unit (micro Siemens). Third, we propose a
meta-learner which is specifically tuned for each dataset. Finally, to exploit the knowledge
from all six datasets we used DNN techniques for learning arousal-recognition models, since
DNN approaches are known to scale much better than classical flat ML algorithms on
large datasets. More specifically, we trained DNN models in the feature space of R-R and
GSR features, and CNN models directly on the raw GSR data to capture some additional
information that may have diminished in the feature extraction phase.

Highlights of the study: (i) Preprocessing methods for translating different datasets
into a common spectro-temporal space, paving the way for further inter-domain studies
exploiting the data accumulated by the ubiquitous computing community; (ii) A novel
DNN ensemble method for arousal recognition that benefits from large amounts of data
even when the data are heterogeneous (i.e., 191 different subjects, twelve different sensors,
six different datasets and three different placements), which outperforms flat classical ML
and meta-ML approaches; (iii) Comparison of classical ML and deep ML approaches for
arousal recognition on six different datasets; (iv) New insights from the CNN-GSR model.
The CNN-GSR model discovered that the peaks of the GSR signal are the parts that
contain the most information regarding the arousal, thus the network developed filters to
stress those parts of the signals.

1. http://ec.europa.eu/health//sites/health/files/mental_health/docs/matrix_economic_
analysis_mh_promotion_en.pdf
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2. Related Work

Affect recognition is an established computer-science field, but one with many challenges
remaining. There has been many studies confirming that affect recognition can be performed
using speech analysis Trigeorgis et al. (2016), video analysis Subramanian et al. (2017),
or physiological sensors in combination with ML. The majority of the methods that use
physiological signals use data from ECG, electroencephalogram (EEG), functional magnetic
resonance imaging (fMRI), galvanic skin response (GSR), electrooculography (EOG) and/or
BVP sensors. In general, the methods based on EEG data outperform the methods based
on other data Subramanian et al. (2017), probably beacuse the EEG provides a more direct
channel to one’s mind. However, even though EEG achieves the best results, it is not
applicable in normal everyday life. In contrast, affect recognition from R-R intervals may
be much more unobtrusive since R-R intervals can be extracted from ECG sensors or BVP
sensors, including sensors in a wrist device (e.g., Empatica Garbarino et al. (2014) and
Microsoft Band 2). Regarding the typical ML approaches for affect recognition, Iacoviello
et al. (2015) have combined discrete wavelet transformation, principal component analysis
and support vector machine (SVM) to build a hybrid classification framework using EEG.
Khezri et al. (2015) used EEG combined with GSR to recognize six basic emotions via
K-nearest neighbors (KNN) classifiers. Verma and Tiwary (2014) developed an ensemble
approach using EEG, electromyography (EMG), ECG, GSR, and EOG. Mehmood and Lee
(2016) used independent component analysis to extract emotional indicators from EEG,
EMG, GSR and ECG .

Recently, the use of deep learning for affect recognition has become popular, too. Liu
et al. (2016) presented a deep learning approach for emotion recognition using EEG data
and eye blink data. Similarly, Bashivan et al. (2015) presented an approach for learning
representations from EEG signal with deep recurrent-convolutional neural networks. Yin
et al. (2017) presented an approach for the recognition of emotions using multimodal physi-
ological signals and an ensemble deep learning model using EEG, EMG, ECG, GSR, EOG,
BVP, respiration rate and skin temperature. In contrast to the EEG-based methods for
affect recognition, Martinez et al. (2013) presented a DNN method for affect recognition
from GSR and BVP data.

The related work shows that – similarly to many other fields – deep learning has the
potential to outperform classical ML in affect recognition. However, the work done so far
could not take full advantage of deep learning because training a DNN model requires a
large amount of data, and yet, most of the studies in the related work analyze small datasets
(10 - 50 subjects). The size of these datasets is far from the size of the datasets used in
other fields (e.g. ImageNet contains 1.2 million images). To overcome this challenge, we
explore inter-dataset meta DNN approach.

3. DATA

The data is presented Table 1. It consists of six publicly available datasets for affect
recognition: Ascertain - Subramanian et al. (2017), Deap - Koelstra et al. (2012), Driving
workload dataset - Schneegass et al. (2013), Cognitive load dataset - Gjoreski et al. (2017)

2. https://www.microsoft.com/microsoft-band/en-us
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Table 1: Description of the datasets in the study

dataset # subjects age # trials trial[s] subject[min] dataset[h]

Ascertain 58 31 36 80 48 46.4
DEAP 32 26.9 40 60 40 21.3
Driving 10 35.6 1 1800 30 5
Cognitive 21 28 2 2400 80 28
Mahnob 30 26 40 80 53.3 26.7
Amigos 40 28 16 86 22.9 15.3

Overall 191 29.25 135 884 251.3 142.7

, Mahnob - Soleymani et al. (2012), and Amigos - Abdon Miranda-Correa et al. (2017).
Overall, 142 hours of arousal-labelled data is presented belonging to 191 subjects. The rest
of the columns present: the number of subjects per dataset, the mean age, the number of
trials per subject, the mean duration of each trial, the duration of the data per subject,
and the overall duration.

Our goal was to recognize the arousal. Four datasets (Ascertain, Deap, Mahnob and
Amigos) were already labeled with the subjective arousal level. In these studies (datasets),
the subjects were watching affective videos with an average duration of 60-80 seconds. After
each video, the subjects took a rest and filled questionnaires that include subjective arousal
ratings. The ratings are used as labels for the physiological data. However, these datasets
use different arousal scale for annotating. For example, the Ascertain dataset used a 7-point
arousal scale, whereas the Deap dataset used a 9-point arousal scale (1 is very low, and 9
is very high, and the mean value is 5). Since the problem of arousal recognition is difficult,
we decided to formulate it as a binary classification problem. From both scales, we thus
split the labels in two classes using the mean value with respect to the original scales. This
is the same split used in the original studies. A similar step was performed for the Mahnob
and the Amigos dataset.

In the Driving workload dataset, the subjects had a 30-minute driving session which
included highway and city driving. Each subject rated their own driving session post-
driving by watching a video recording of their driving session. For this dataset, we presume
that increased workload corresponds to increased arousal. Thus, we used the workload
ratings as arousal ratings. Same as with the previous datasets, the mean workload value
was used to split the labels in two classes, high and low arousal.

The Cognitive load dataset was labelled for subjective stress level during stress inducing
cognitive load tasks. A series of randomly generated equations were presented to subjects,
who provide answers verbally. The time given per equation was dynamically changing. Each
session consisted of three series of equations with increasing difficulty: easy, medium and
hard. After each session, the subjects took a short rest and filled questionnaires that include
subjective stress rating. The subjective scale was from 0 to 3 (no stress, low, medium and
high stress). Same as with the previous datasets, the mean value was used to split the labels
in two classes, high and low arousal. Figure 1 depicts the distribution of each dataset after
the binary split.
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Figure 1: Histograms for each dataset in the study. Green – low arousal, red – high arousal.

4. METHODS

The novel DNN ensemble method is depicted in Figure 2. The method utilizes six dif-
ferent AC datasets which contain data from GSR, and ECG or BVP. First, the datasets
are processed and transformed into a common spectro-temporal space of R-R intervals (ex-
tracted from the ECG and BVP data) and GSR data. After the preprocessing, two different
approaches were utilized:

1. DNN-Features approach, which includes feature extraction and application of DNN.
The feature extraction process extracts two types of features: (i) from the R-R in-
tervals using heartrate variability (HRV) analysis, (ii) from the GSR signals using
peak analysis and decomposition of the GSR signal into a slow-acting and a fast-
acting component. The extracted features are then fed into a fully connected DNN
(DNN-Features) to build models for arousal recognition.

2. CNN-GSR approach, which uses the processed GSR signals as input into a CNN. The
CNN-GSR contains 2 convolutional layers, which serve as a feature extractor for two
fully connected layers placed at the end of the CNN-GSR network.

Finally, a fully connected DNN meta learner is trained to utilize the knowledge from the
two different DNNs (DNN-Features and CNN-GSR). The technical details for each step are
explained in the following subsections.

4.1. Preprocessing and Feature extraction

4.1.1. R-R data

The preprocessing is the first essential step. It addresses the variations in the sensor data
across the different datasets and allows us to merge the six datasets. For the heart-related
data, it transforms the physiological signals (ECG or BVP) to R-R intervals and performs
temporal and spectral analysis. The first preprocessing step is the removing of the trend
of the ECG and the BVP signals. Trend is the change of the mean of the signal over time.
The left graph in Figure 3 presents a BVP signal with changing trend over time, and the
middle graph in Figure 3 presents the same BVP signal after the detrending.

Next, Negri’s peak detection algorithm 3 is applied to detect the R-R peaks. The right
graph in Figure 3 presents the BVP signal with the detected R-R peaks. After the R-

3. http://pythonhosted.org/PeakUtils/
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Figure 2: The proposed DNN ensemble method for arousal recognition.

R detection, each R-R signal filtered by removing the R-R intervals that are outside of
the interval [0.7*median, 1.3*median]. Next, a person-specific winsorization is performed
by removing the outliers outside the range [3rd, 97th] percentile. From the filtered R-
R signals, a spectral representation is calculated using the Lomb-Scargle algorithm. The
detailed information about the algorithms and their parameters can be found in our previous
publication Gjoreski et al. (2018). Finally, based on the related work Castaldo et al. (2015),
the following HRV features were calculated from the time and spectral representation of the
R-R signals: the mean heart rate, the mean of the R-R intervals, the standard deviation of
the R-R intervals, the standard deviation of the differences between adjacent R-R intervals,
the square root of the mean of the squares of the successive differences between adjacent
R-R intervals, the percentage of the differences between adjacent R-R intervals that are
greater than 20 ms, the percentage of the differences between adjacent R-R intervals that
are greater than 50 ms, Poincaré plot indicies, the total spectral power of all R-R samples
between 0.003 and 0.04 Hz (lf - low frequencies) and between 0.15 and 0.4 Hz (hf high
frequencies), and the ratio of low to high frequency power.

4.1.2. GSR data

To merge the GSR data from the six datasets, several problems were addressed. Each
dataset is recorded with different GSR hardware, thus the data is presented in different
units and different scales. To address this problem, each GSR signal was converted to S.
Next, the GSR signal was filtered using a lowpass filter with a cut-off frequency of 1 Hz.
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Figure 3: (left) Raw BVP signal over time. (middle) BVP signal after detrending. (right)
BVP signal with RR-peaks detected.

To address the inter-participant variability each signal was scaled to [0, 1] using person-
specific winsorized minimum and maximum values. Finally, the fast-acting component
(GSR responses) and the slow acting component (tonic component) were extracted from the
filtered GSR signals. Based on the related work Soleymani et al. (2012), the preprocessed
GSR signal was used to calculate GSR features: mean, standard deviation, 1st and 3rd
quartile (25th and 75th percentile), quartile deviation, derivative of the signal, sum of the
signal, number of responses in the signal, responses per minute in the signal, sum of the
responses, sum of positive derivative, proportion of positive derivative, derivative of the
tonic component of the signal, difference between the tonic component and the overall
signal. One additional problem that we addressed to train the CNN-DNN network is the
fact that each GSR sensor had its own sampling frequency (some had 128 Hz, some 256
Hz) and trials are of varying lengths. For example, one trial in which the subjects watch a
scary video may last 60 seconds and another may last 80 seconds. Thus, the recorded GSR
data is of varying lengths also. For this reason, we used an undersampling algorithm which
takes into account the length and the frequency of the data and transforms it into a vector
of 100 samples. Thus, the GSR data of each trial (instance) is represented by a vector of
100 samples. These vectors are used as input to the CNN-DNN.

4.2. Deep ML

4.2.1. DNN-Features

The input to the DNN-Features models was the same as the input for the classical flat ML
models, i.e., the extracted features from the R-R and the GSR signals. For training the
models we used five fully connected DNN layers and one highway layer placed after the
second fully connected layer. Each layer employed rectified linear units (ReLUs). To avoid
overfitting, L2 regularization and dropout methods were used. The dropout probability
was set to 0.25 and the L2 regularization rate was set to 10-3. After each layer, batch
normalization was used to avoid internal covariance shift Ioffe and Szegedy (2015). The
batch normalization step normalizes the activations of the previous layer at each batch, i.e.,
applies a transformation that maintains the mean activation close to 0 and the activation
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standard deviation close to 1. The training was performed by backpropagating the gradients
through all layers. The parameters were optimized by minimizing the crossentropy loss
function using the ADAM optimizer Kingma and Ba (2014). Learning rate of 10-3 and a
decay rate of 10-2 was used. The batch size was set to 256 and the maximum number of
training epochs was set to 256. The output of the model is obtained from the final layer
with a softmax activation function yielding a class probability distribution.

4.2.2. CNN-GSR

We used two convolutional layers separated by one average pooling layer. Each convolu-
tional layer contained 32 kernels with kernel-size set to 5 and stride-size set to 1. For the
pooling layer, the pool size was set to 3 and the stride size was set to 1. The output of the
second convolutional layer was input to a highway layer. After the highway layer, a batch
normalization was performed, and the normalized outputs were input to a fully-connected
layer with size of 64 kernels. Each layer employed ReLUs. To avoid overfitting, L2 regu-
larization and dropout methods were used for the non-convolutional layers. The dropout
probability was set to 0.25 and the L2 regularization rate was set to 10-3. Gradient back-
propagation and ADAM optimizer with a learning rate of 10-4 and a decay rate of 10-4 were
used for training the models. The batch size was set to 256 and the maximum number of
training epochs was set to 256. The output of the model is obtained from the final layer
with a softmax activation function yielding a class probability distribution.

4.2.3. DNN-Meta

The outputs of the DNN-Features and CNN-GSR models were used ‘as input to the DNN-
Meta model. We used a DNN with two hidden layers. Each layer employed ReLUs with
L2 regularization rate of 10-3. Between each layer, batch normalization was used. Gradient
backpropagation and ADAM optimizer with a learning rate of 10-3. The batch size was
set to 128 and the maximum number of training epochs was set to 100. The output of the
model is obtained from the final layer with a softmax activation function. The output of
this model is presented as the final prediction of the algorithm. All neural networks were
implemented using Tensorflow 4 and Keras 5.

5. Experiments

We compared our novel DNN-based method to classical ML methods. That is, once the fea-
tures were extracted we applied classical ML methods in order to create models for arousal
recognition. Models were built using seven different ML algorithms: Random Forest, Sup-
port Vector Machine, Gradient Boosting Classifier, AdaBoost Classifier (with a Decision
Tree as the base classifier), KNN Classifier, Gaussian Naive Bayes and Decision Tree Clas-
sifier. The algorithms were used as implemented in Scikitlearn Python ML library 6. For
each algorithm, a randomized search on hyper parameters was performed on the training
data using 2-fold cross-validation.

4. https://www.tensorflow.org/
5. https://keras.io/
6. http://scikit-learn.org/
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In addition to the classical ML algorithms, we experimented with a stack of ML classifiers
in order to provide a fair comparison to the novel DNN meta learning approach. The details
for the optimization of the stack’s parameters are thoroughly explained in our previous
publication where it is experimentally shown that when all datasets are merged into one
and used to train and evaluate the models, the stacking scheme improved upon the results
of the “flat” models.

5.1. Evaluation results

The models were evaluated using trial-specific 10-fold cross-validation, i.e., the data seg-
ments that belong to one trial (e.g., one affective stimulus) can either belong only to the
training set or only to the test set. In addition, 10% of the training data was kept as a
holdout set. The holdout set is a subset of the training data which has not been seen by
the base learners, is used to train the meta learners, and it is excluded from the final eval-
uation of the models. Depending on the target dataset, the best performing meta model
on a dataset-specific holdout set was selected for the final evaluation. The results are pre-
sented in Table 2. The column “Merged” shows the accuracy of the algorithms when they
are trained on the overall (merged) data. The other columns represent the accuracy of
dataset-specific models.

Table 2: Accuracy for binary arousal recognition (high vs. low).

Algorithm Merged Ascertain DEAP Driving Cog. Load Mahnob Amigos

RF 59.3 65.5 55.6 78.5 73.9 58.0 53.6
SVM 60.2 66.4 51.3 79.5 69.1 62.3 50.6
GB 59.0 64.4 53.3 75.5 76.1 60.9 54.2
AdaB 57.5 62.3 52.6 75.5 76.6 61.0 56.0
KNN 60.6 60.0 49.0 75.0 77.0 60.1 53.3
NB 60.8 59.1 53.5 66.5 80.4 62.4 45.4
DT 58.0 65.0 52.0 61.5 70.4 58.1 55.1
ML-Meta 63.0 59.0 52.5 74.4 76.3 61.8 53.8

DNN-Feat 66.2
CNN-GSR 66.3
DNN-Ens 70.3 64.10 52.05 78.67 76.12 83.98 66.62

From the results it can be seen that the novel DNN-ensemble method has achieved
average accuracy of 70%, which is four percentage points better than the other DNN-
based methods and at least seven percentage points better than the non-DNN methods.
Regarding the results per dataset, on the Mahnob dataset, the DNN-ensemble method has
achieved accuracy of twenty percentage points more than other methods. On the Amigos
dataset, DNN-ensemble method has achieved accuracy of ten percentage points more than
other methods. On th other four datasets, the DNN-ensemble method has achieved similar
results as the rest of the methods.
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5.2. Model analysis

The main difference between the classical ML approaches and the novel DNN ensemble
was the CNN-GSR model. The DNN-Feature was trained with the same input as the
classical ML approaches. For that reason, we further examined the output of the CNN-
GSR network. For example, the top left graph in Figure 4 shows the normalized GSR input
for the network. It can be seen that the maximum value of the signal is 0.6 which means it

Figure 4: Example input and example output for the DNN-GSR for a low arousal (left
graphs) and for high arousal (right graphs)

is near the average of the person. Also, the signal is dropping continuously, which may be
a sign that the person is relaxing (low arousal). The middle left graph shows the output of
the second (final) convolutional layer for the given input. This layer contains 32 different
filters, thus each filter produces different representation of the signal marked with different
colors on the graph. From the 32 different representations it can be seen that the CNN-GSR
is emphasizing the peaks of the signal and that some of the representations are delayed, i.e.,
the signal’s peaks are shifted in time. The bottom left grapg represents the input to the
fully connected layers of the CNN-GSR. It contains 2912 input values, which correspond to
the 32 different representations (CNN filters) multiplied by 91 – which is the length of the
input signal after the convolutions. The bottom arrow represents the output probabilities
of the CNN-GSR for the given input. In this case, the prediction is that the signal is a
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“low arousal” signal with a probability of 54%. This prediction is further analyzed by the
meta learner and the final output is given. Which in this case is correct. The right side of
Figure 4 presents another example of the CNN-GSR network, however, in this case for a
“high arousal”. From the input (top-right) it can be seen that the values of the signal are
over 80%, which indicates a high sweating rate. In addition to that, there is a high positive
change towards the end of the signal, which may indicate affective reaction of the person.
The middle-right and the top right figures show that the network emphasized the high peak
of the signal. Finally, the prediction of the network (bottom-right arrow) is that the signal
is a “high arousal” signal with a probability of 77%. This number is served as input to the
meta learner.

6. Conclusion

The goal of this study was to improve the performance in emotion recognition based on
learning from semantically similar, yet technically quite heterogeneous data. We proposed
a novel DNN ensemble method and compared it against seven “flat” ML algorithms and one
advanced ML stacking scheme. At least for the tested six domains, it turned out that by
using DNN methods and by merging different datasets the accuracy of the affect recognition
increased. The ensemble DNN method was best able to combine the abstract knowledge
encompassing several domains and enrich it with the special knowledge for each domain.
To a certain point, this resembles human learning: we are able to capture general, abstract
common knowledge and enrich it with specialized knowledge for a specific task.

The preprocessing method used for translating different datasets into a common spectro-
temporal space was a prerequisite. Once the datasets were transformed to the common
spectro-termporal space, the novel DNN meta learning was able to improve upon the per-
formance of the classical flat ML approaches by utilizing the knowledge from the different
sources.

By examining the output of the CNN-GSR network, it was noted that the CNN has
taught itself that peaks of the GSR signal contain information regarding arousal, thus the
network developed filters to stress those parts of the signals (see Figure 4). This is in
line with many physiological van Dooren et al. (2012) and affective computing Healey and
Picard (2005) studies which analyze Skin Conductance Responses (SCR) s one of the main
features for affect recognition.

In this paper, we focused on recognizing the arousal, i.e., the dimension that represents
the intensity of the emotions. For future work we plan to extend the approach to the other
two dimensions (valence and dominance). Additionally, we plan to examine the behavior
of the DNNs on a completely new domain, which has not been included in the train phase.
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