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Abstract

We study the problem of offline learning in
automated decision systems under the con-
textual bandits model. We are given logged
historical data consisting of contexts, (ran-
domized) actions, and (nonnegative) rewards.
A common goal is to evaluate what would hap-
pen if different actions were taken in the same
contexts, so as to optimize the action poli-
cies accordingly. The typical approach to this
problem, inverse probability weighted estima-
tion (IPWE) [5], requires logged action prob-
abilities, which may be missing in practice
due to engineering complications. Even when
available, small action probabilities cause
large uncertainty in IPWE, rendering the cor-
responding results insignificant. To solve both
problems, we show how one can use policy
improvement (PIL) objectives, regularized by
policy imitation (IML). We motivate and ana-
lyze PIL as an extension to Clipped-IPWE, by
showing that both are lower-bound surrogates
to the vanilla IPWE. We also formally connect
IML to IPWE variance estimation [31] and
natural policy gradients. Without probability
logging, our PIL-IML interpretations justify
and improve, by reward-weighting, the state-
of-art cross-entropy (CE) loss that predicts
the action items among all action candidates
available in the same contexts. With probabil-
ity logging, our main theoretical contribution
connects IML-underfitting to the existence
of either confounding variables or model mis-
specification. We show the value and accu-
racy of our insights by simulations based on
Simpson’s paradox, standard UCI multiclass-
to-bandit conversions and on the Criteo coun-
terfactual analysis challenge dataset.
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1 Introduction

There are two types of offline learning approaches in
automated decision systems (e.g. recommendation sys-
tems): Q-learning and policy learning. Q-learning uses
reward-modeling (or supervised learning) to predict
rewards from both the context features and the action
features. Formally, we estimate Q(a, x), the expected
reward from taking an action a in context x; deci-
sions are then implied by the greedy policy that selects
actions with the highest expected reward in each deci-
sion context [15, 23, 11, 21]. Reward modeling suffers
from biases due to unobserved confounding variables
or model mis-specification. For example, items that
are temporarily popular because of sales events may
not be popular in general, but these sales can confuse
the learning system by reinforcing any mistakes in the
previous policies when they are mistaken as the causes
of successful sales. Therefore, it is often desirable to
build reward-model-free decision systems that directly
estimate the causal effects of the candidate actions,
robust to hidden biases in previous logging policies.

As a result, many decision systems use policy learning
[5, 31, 19, 14, 1, 8, 12]. To directly optimize for the
decision policy in the presence of confounders, one addi-
tional requirement is to have randomization in the log-
ging process: every candidate action must have nonzero
probability to be selected given any context. By log-
ging these action probabilities, unbiased causal effects
can be estimated via inverse probability weighted esti-
mator (IPWE), which up- or down-weights the rewards
according to the odds of choosing the same action in
the same context, across the two policies.

Unfortunately, accurate probability logging is a signifi-
cant practical challenge. More worryingly, even with
probability logging, naive IPWE suffers from large
variance in estimation of causal effects, due to the
up-weighting of rare actions, some of which will, on bal-
ance, appear in the logged datasets at least once. For
example, consider a logging policy with a 1% chance of
sampling a rare action. The rare action will be included
in a dataset of a hundred samples at least once with

1Most of the work done while at Amazon.
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Table 1: Challenges tackled by different objectives

challenge Q IPWE IML PIL-IML

confounders ⇥ X X X
small/no probs X ⇥ X X
improvement X X ⇥ X

Figure 1: The importance weight distribution in Criteo
counterfactual-analysis dataset [19] has unbounded vari-
ance due to its slower-than-central-limit-theorem (CLT)
tail; max(w) = 49 000 in a total of 21MM examples.

probability 1� (1�1%)

100

= 63%. When this happens,
IPWE weighs the single item as much as 100 examples–
equivalent to half of the dataset. This increases the
variance of any estimates that depend on that example
significantly (See Example 8 in the appendix for more
details and Figure 1 for a real-world example). Since
this problem is caused by rare actions, one solution is to
use biased estimators that conservatively estimate any
potential lifts after up-weighting, [5, 31, 27, 26], which
we show corresponds to estimating a lower bound on
the eventual policy improvements.

In this paper, we show a connection between policy
improvement lower bounds (PIL) and Clipped-IPWE
[5] (Theorem 1). This connection opens up a number
of extensions to Clipped-IPWE, and we focus on one in
particular - the log-transformed-IPWE. We analyze this
estimator, and further establish connections to policy
gradients (PG) [30] using log-separability and Taylor
approximations. In essence, we show that PG for con-
textual settings is equivalent to the cross-entropy (CE)
objective in multi-class classification, where the label
is whichever action that leads to the largest positive
rewards in a particular context (Eq. 9). Since PG/CE
does not require logged action probabilities, this pro-
vides a justification for their success even when logging
is biased, particularly when compared with other offline
learning objectives, e.g. Bayesian personalized ranking,
sigmoid or triplet losses.

Once we identify PG/CE as an approximation we pro-
pose and analyze policy imitation learning (IML) as
a regularizer (12), and show that this improves the
tightness of estimates (Theorem 2). We connect IML
to IPWE variance estimation [31]. In our experiments
we see that IML is superior because it does not rely on

unstable IPWE mean estimates, which is required for
direct variance estimation (Section 7). We also connect
IML to natural policy gradients [17, 27, 26, 21] without
requiring knowledge of the model families. Similar to
PG/CE, IML also works without logged action proba-
bilities. The combined PIL-IML objective predicts the
best next action that is ever taken in the logged data,
with a weight that is large for very positive rewards
and small but still positive for less-good rewards.

Finally, we show that when we have logged action
probabilities, we can still benefit from IML by using it
to diagnose a common problem in offline learning - when
the logging policy is not in the class of optimization
policies under consideration when learning. We show
that IML-underfitting implies that the learning policy
class does not have enough complexity or sufficient
decision variables to imitate the original policy, which
may lead to model biases. On the other hand, IML-
underfitting can be used to our advantage by pointing
out where we should collect additional data, through
better action explorations (Theorem 7).

Notice, IML is different from propensity fitting, which
is used as a plug-in replacement for the logging proba-
bilities in the denominators of IPWE [8, 29]. On the
other hand, we extend our methods to doubly robust
approaches [25, 24, 2, 13, 8] and switching approaches
[33, 18, 32] for additional, free variance reduction.

2 Offline Learning Objectives

While many methods have been proposed for learning
from logged data, it is often unclear what the objective
being maximized or minimized by different approaches.
We introduce some clarifying definitions here. Let
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available data sets, due to proprietary features or hu-
man operators overwriting decisions every once in a
while. In general, we do not assume that we know the
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analytic form of µ besides having logged µ
i

for the
specific action taken. We will also consider the setting
when even µ

i

is not known, which makes it fundamen-
tally impossible to do consistent off-policy evaluation
(due to confounders), but we will show that often we
can still do off-policy learning and adapt to the un-
known propensities. To the best of our knowledge, this
is the first time that a result of such flavor is presented.

The task of offline learning is to come up with a new
policy, which is a distribution over candidate actions
given context, ⇡(a | x), 8a 2 A(x), such that the ex-
pected reward under ⇡:

E
⇡

r = E
X

a2A(x)

⇡(a | x)r(x, a). (1)

is as large as possible. This is difficult because it aims
to estimate rewards for actions that may not have been
logged in a particular context, unless they happen to
coincide with the randomized action choices.

Inverse-probability weighted estimation (IPWE)
[12, 5] is an unbiased offline evaluation method, which
uses importance weights to estimate expectations under
any new policy with samples generated from the original
logging policy,

E
⇡
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where the last expectation is over the logging policy
and can be estimated (without bias) by its sample
mean. Define w =
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µ
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to be the
importance weight in function form and instance form,
respectively. Empirically, unbiased policy improvement
can be maximized by
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The variance of policy improvements is:

V(�IPWE(⇡)) =
1

n
V

µ

((w � 1)r), (4)

which can similarly be estimated from the logged data.

While IPWE does not model the reward function and
thus avoids modeling biases, it depends on randomized
sampling of actions, which are usually the result of
exploration/exploitation trade-offs. Lack of sufficient
exploration, very common in practice, may lead to a
large variance in the estimate, because data points with
small action probabilities have large weights.

Any objective then must consider the trade-off be-
tween bias and variance. Our objective, which is often
reasonable from a practical perspective, is to reliably
maximize the policy improvement by a significant mar-
gin over the logging policy.

3 Proposed methods

To solve the large variance in IPWE, we propose to
maximize a policy improvement lower-bound (PIL) reg-
ularized by policy imitation learning (IML). Assuming
that the rewards are nonnegative, the general form is:

max

⇡

PIL(r,⇡) + ✏IML(⇡), (5)

where ✏ is a tuning parameter to trade-off explo-
ration/exploitation. One notable special case of the
objective resembles a reward-weighted cross-entropy
(CE) objective, written as:
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We thus see the use of CE loss in offline learning as the
result of a particular choice in the trade-offs of bias and
variance (and ease of generalization and optimization).

3.1 Policy improvement lower-bounds (PILs)

w =

⇡

µ

w̄

PIL
IPWE

⌧

IPWE

Figure 2: PIL and IPWE

One way to reduce the
large IPWE variance is
to clip its large weights
by replacing w with
w̄

⌧

= min(w, ⌧) for
a reasonable threshold
⌧ > 0. Here, ⌧ is a
bias-variance trade-off
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Instead, in offline learning, we take a different perspec-
tive on IPWE

⌧

. Assuming that the rewards are nonneg-
ative, w̄

⌧

 w lets IPWE
⌧

to be always a lower-bound
on IPWE. Maximizing lower bounds as a surrogate
objective is common practice. Generalizing this ob-
servation, we can arrive at many extensions of IPWE.
One that we focus on is what we call the policy im-
provement lower bound estimator (PIL), which is based
on the inequality log(w)  w � 1, 8w > 0 (Figure 2).
Depending on the logging scenario - with or without
probabilities µ, we define the following objectives:
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Without the logged probabilities µ, we can also ap-
proximate IPWE up to a constant value. Consider the
cross-entropy loss and its minimization,

argmin

⇡

CE(⇡; r) = � 1

n

X

n

i=1

r
i

log ⇡(a
i

| x
i

). (9)
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We see that, up to log-separable constant terms in
the parameters of the logging policy, the PIL objec-
tive is equivalent to minimizing the reward-weighted
cross-entropy loss for next-action predictions. That
is CE(⇡; r) = CE(µ; r) � PIL;(⇡). As a result, CE
may not require logged action probabilities yet enjoys
the additional causality justification than other offline
learning objectives, such as Bayesian personalized rank-
ing and triplet loss. In particular, the other objectives
are more likely to be biased by the logging policy and
their negative sampling processes.

All these approximations of IPWE, come with an im-
portant indicator of the biases they induce - violations
of the self-normalizing property. The self-normalizing
property is that E

µ

(w) = E(⇡ � µ) = 1� 1 = 0. When
w is replaced with w̄, the violation is empirically

Gap =

1

n

X

n

i=1

(1� w̄
i

), (10)

where w̄ generalizes to any valid lower-bound surro-
gates. The theorem below shows the relationship be-
tween this observable quantity and the unobserved
sub-optimality due to the use of a surrogate objective.
Theorem 1 (Probability gap). For any w̄  w, assum-
ing 0  r  R, the approximation gap can be bounded
by the probability gap, in expectation:

0  E
µ

[(w � w̄)r]  E
µ

[Gap]R. (11)

In particular, when w̄ = 1 + logw, Gap has a simple
form � 1

n

P

n

i=1

logw
i

, which equals to one of the IML
objectives that we introduce next.

3.2 Policy imitation for variance estimation

Another way to reduce IPWE variance is by adding
regularization terms, that penalize the variance of the
estimated rewards of the new policy. However, direct
IPWE variance estimation [31] is problematic, because
it requires the unreliable IPWE mean estimation in
the first place. To this end, we propose to use policy
imitation learning (IML) to bound the IPWE variance.

We define IML by empirically estimating the Kullback-
Leibler (KL) divergence between the logging and the
proposed policies, KL(µk⇡) = E

µ

log

µ

⇡

= �E
µ

logw.
We consider three logging scenarios - full logging where
we have access to the logged probabilities of all actions,
partial logging where we only know the logged proba-
bility of the taken action and missing where no logging
probabilities are available. Depending on the amount of
logging, our definition of IML has the following forms:
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where CE(µ; 1) = � 1

n

P

n
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logµ
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is a log-separable
constant term similar to (9), but without the reward
weighting. The following theorem shows that IML is a
reasonable surrogate for the IPWE variance.

Theorem 2 (IML and IPWE variance). Suppose 0 
r  R and a bounded second-order Taylor residual
|�E

µ

logw � V
µ

(w � 1)|  B, the IML objective is
closely connected to the �IPWE variance

V(�IPWE)  1

n

⇣

2E
µ

�

IML

�

+B
⌘

R2. (13)

Proof by Taylor expansion around w = 1, E
µ

(IML) =

�E
µ

log(w) ⇡ 1

2

E
µ

(w � 1)

2, where the first-order ap-
proximation term is exactly E

µ

(w� 1) = E(⇡� µ) = 0.

Corollary 3. These two imitation methods are second-
order similar: min

⇡

�E
µ

log(⇡) ⇡ min

⇡

1

2

E
µ

�

⇡

µ

� 1

�

2.

3.3 Other Properties

Generalizability: In stochastic bandits, optimal poli-
cies are often greedy. While classical arguments suggest
that IPWE can learn greedy policies unbiasedly, e.g.,
with a saturated softmax, such policies may not gen-
eralize well. For example, a greedy policy for binary
selections may look like ⇡(y | x) = e

y✓

>
x

1+e

✓

>
x

, 8y 2 {0, 1},
which saturates with k✓k

2

! 1. Unfortunately, learn-
ing models with large weights often suggests large
model complexity, which easily leads to overfitting [3].

Instead, Bayesian decision theory suggests a two-step
approach: (1) fit a (reward-posterior) probability distri-
bution of the optimal actions, which leads to smoother
functions and (2) apply greedy argmax (or probability
sharpening to handle ties). Along this line, CE uses a
log-softmax link function, which is a convex, margin-
based loss function that further improves generalization.
It yielded better empirical results in Section 7 and fur-
ther motivates (6) as an offline learning objective.

Adaptivity to unknown µ. The fact that the CE
objective (6) is independent to the logging policy µ in-
dicates that we can optimize a causal objective without
knowing or needing to estimate the underlying propen-
sities, which avoids the potential pitfalls in model mis-
specification and confounding variables. The following
theorem establishes that optimizing CE(⇡; r) based
on the observed samples is implicitly maximizing the
lower bound E

µ

r log(⇡⇤/µ) for an unknown µ.

Theorem 4 (Statistical learning bound). Let µ be
the unknown randomized logging policy and ⇧ be a
policy class. Let ⇡⇤

= argmax

⇡2⇧

CE(⇡; r). Then with
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probability 1� �, ⇡⇤ obeys that

E
⇡

⇤r � E
µ

r � E
µ

r log(⇡⇤/µ) � max

⇡2⇧

�

E
µ

r log
�

⇡/µ
� 

�O

✓

log(max

⇡2⇧

D
�

2
(µk⇡)) + log(|⇧|/�)p
n

◆

Please refer to Appendix C for proofs and discussions.

A caveat is that although we can optimize the lower
bound, we cannot explicitly evaluate the resulting lower
bound of the policy improvement (e.g., to tell whether
it is positive), without knowing µ. A heuristic solution
is to use µ̂ = argmin

⇡

IML(⇡) as a surrogate of µ.
Lemma 5 (Connections to natural policy gradients
(NPGs) [17]). Suppose the policy class is parametrized
by ✓, differentiable, and of the form ⇡(a | x; ✓). Suppose
the logging policy also resides in the policy class, as
µ(a | x) = ⇡(a | x; ✓

0

). The constrained optimization
problem of natural policy gradient is a linear approxi-
mation to the PIL-IML in Lagrangian function form:

argmax

�✓

E
µ



r(x, a)

✓

⇡(a | x; ✓
0

+�✓)

µ(a | x) � 1

◆�

(14)

s.t. E
⇣

KL

�

µ(a | x) k⇡(a | x; ✓
0

+�✓)
�

⌘

 ✏2.

While PIL-IML can connect to NPG when the logging
policy is included in the policy class, we should notice
that the scope of PIL-IML is more general. In offline
learning, we also consider problems where the logging
policy may not be realizable in the policy class. In these
problems, PIL-IML is still a valid objective, whereas
NPG may not be properly evaluated.

Joachims et al., [14] showed some empirical successes
using a Lagrangian form of a “self-normalized” SNIPS
estimator, but did not provide much justification. We
can show that the Lagrangian formulation of SNIPS
transforms the original objective to a conservative one
similar to our PIL-IML. To see this, notice that the op-
timal Lagrangian multipliers in [14] are always around
1, which equivalently means that the rewards are non-
negative, agreeing with our intuitions.

Doubly-robust estimators can be natural exten-
sions for PIL-IML. Please see Appendix H for details.

4 IML for causal exploration

In addition to variance control, IML has a number of
useful properties and applications.

IML causality diagnosis: We define the IML train-
ing loss to be the objective values of (12) given partial
or full logging probabilities. A positive IML training
loss indicates logging biases such as confounding vari-
ables, likely due to the exclusion of engineered features

that existed in the original logging policy, or policy
misspecification when the true logging policy is not in
the learned class. This property extends the classical
propensity fitting methods [25, 24] that impute missing
probabilities, which do not often check the feasiblity of
the imputations when µ is assumed to be unknown.
Lemma 6 (IML diagnosis). Suppose the model fam-
ily does not contain the logging policy ⇧ 63 µ, then
min

⇡2⇧

EKL(µk⇡) � 0. For example, if µ is a policy
based on variables x = (x

1

, x
2

), yet ⇧ contains poli-
cies with only support on x

1

, then min

⇡2⇧

EKL(µk⇡) �
EI

µ

(a;x
2

| x
1

) � 0, where I
µ

is the mutual information
between the logging policy and the confouding variable.
Equality is found at ⇡(a | x

1

) = E[µ(a | x) | x
1

], 8x
1

8a.

We often measure the IML feasibility gaps - i.e. indica-
tors of how “far” the true logging policy is from the class
of policies we are using - by perplexity (PPL), which
is the exponent of the original IML loss. A perplexity
of K implies that even after finding the policy in our
class which best fits the logged data, the remaining
uncertainty in the original action policy is equivalent
to a uniform selection among K candidates. Perfect
IML-fitting implies a CE of zero and a PPL of one.

IML for pure exploration: In batch offline cases,
where we have multiple sequential opportunities to
interact with the world - we suggest data recollec-
tion through online application of IML policies in (12).
There are three benefits: the variance of each IML
policy is small, due to the connection between IML
objective and IPWE variance (Theorem 2); the perfor-
mance of IML policy is predictable in offline evaluation
and is typically comparable with the logging policy;
lastly, with positive training loss and comparable per-
formance, IML-resampling may greatly reduce model
complexity by removing unexplained but unimportant
decision factors from the logging policy. As a result, the
new policies tend to be more exploratory. The improve-
ments can be measured by increase in the entropy of the
policy, which we quantify below (Proof in Appendix G
is nontrivial due to action-induced distribution shifts).
Theorem 7 (Entropy increase). Let x = (x

1

, x
2

)

>

be the vector of observed and confounding variables,
respectively. If ⇡ is the marginalization of the logging
policy, ⇡(a | x

1

) = E[µ(a | x) | x
1

], 8x
1

8a, we may
guarantee an increase of expected entropy than that of
the logging policy:

EH(⇡)� EH(µ) = E
�

KL(µk⇡)
�

� 0. (15)

5 Simpson’s paradox and simulations

Simpson’s paradox [28, 16, 5] is often used to explain
the importance to remove confounders when modeling
rewards. However, we use the example differently;
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we simulate action randomization that also leads to
correct action recommendations. Further, we validate
the IML theoretical properties that detect confounders
and improve exploration.

Table 2: Simpson’s paradox for kidney stone treatments

Context Open surgery Small puncture
Small 93% (81/87) 87% (234/270)
Large 73% (192/263) 69% (55/80)
Hidden 78% (273/350) 83% (289/350)

In the Simpson’s paradox example, a kidney stone
treatment dataset with two actions is presented: an
open surgery treatment or a small puncture treatment.
The dataset was collected with an implicit bias where
most people with large stones were treated with open
surgery and most with small stones were treated with
punctures, due to medical practices (such as risks and
recovery times, which we do not model). An absolute
majority of patients have small stones, which have
higher cure rates with either treatment. As a result,
despite the fact that an open surgery had a higher
cure rate with either size of stones, regression on the
treatment type without knowledge of the stone size
would lead to the false conclusion that small punctures
are correlated with higher cure rates (Table 2). It
would seem that accurate reward modeling based action
selection is impossible without the stone size contexts.

Table 3: Offline learning with logged probabilities.

Context Action Probability Size Cure

Hidden Surgery 24% 87 93%
Hidden Puncture 76% 270 87%
Hidden Surgery 77% 263 73%
Hidden Puncture 23% 80 69%

On the other hand, both treatment actions have
nonzero frequencies given any stone size contexts. We
could alternatively assume that the actions are random-
ized with their probabilities logged, given the hidden
contexts (Table 3). Note that these probabilities are
conditional on the internal states of the decision system
and are different from the observed marginal proba-
bilities, e.g., µ(Surgery | Small Stone) =

87

87+270

⇡
24%, µ(Surgery | Large Stone) = 263

263+80

⇡ 77%.

In this way, unbiased offline learning is possible by
weighting the action effects according to their inverse
action probabilities, i.e., via IPWE. Thus logging would
lead to the correct decision (surgery treatment). Dou-
bly robust (DR) estimators may further reduce IPWE
variance, but the amount of reduction depends on the
quality of the reward model and can even be negative
in some cases (Table 4 first column).

Table 4: Estimated cure rates of the surgery treatment

Method Original data IML-resampled

IPWE 83.3±5.0 83.3±3.7
Q-learning 78.0±1.6 83.3±1.4
DR 83.3±2.6 83.3±2.5
DR worst case 83.3±5.4 83.3±4.0

Based on our results, we use IML to first examine
the logged action probabilities. In this case, IML is
underfitted with 1.15(> 1) perplexity with a uniform
policy, which suggests that there exist unobserved con-
founders. Since we do not have access to the additional
confounders, we could simply resample data with the
IML-fitted policy. We simulate resampling by weigh-
ing the examples according to the ratios between the
IML policy and the logged probabilities. Due to self-
normalization properties of the weights, the effective
sample size (sum of all weights) remains the same for
both small and large stone cases for fair comparisons.
Table 4 shows that IML-resampling decreases the vari-
ance of all methods. This is because the new logging
probabilities become more balanced (uniformly ran-
dom trials), without depending on the hidden decision
variable: the unknown stone sizes.

6 UCI bandit simulations

We use UCI multiclass-to-bandit conversion datasets
that originally appeared in [8, 33] to simulate contex-
tual bandit problems. For each data point, we sampled
one class as the action and observed partial feedback
whether the sampled class is the true class for that data
point. Following previous literature, we constructed
the logging policies by the softmax prediction of a
linear logistic regression classifier trained on skewed
datasets with induced covariate shifts. Since we have
full knowledge of the original multiclass labels, we can
exactly evaluate the learned policies during test time by
multiclass fractional accuracy. We used 50% train-test
splits where the training sets were converted to bandit
datasets. Figure 3 also reports 95% confidence inter-
vals from 100 repetitions. With this dataset, we show
how reward modeling biases and IPWE variances affect
offline learning, how to reduce variance using PIL-IML,
and how to adapt IML into a batch-online method to
collect better data for future offline learning.2

As discussed earlier, Q-learning biases can come from
missing confounders and/or model underfitting, leading
to variable under-utilization. We simulate this effect by
using a second-order model, �(x, a) = x>UV >a, with

2Codes for these and experiments in the next section
will be available at https://github.com/yifeim/pil-iml.
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(a) Unbiased IPWE is better than Q-
learning with misspecified models.

(b) Variance reduction techniques
further improve offline learning.

(c) Online application of IML im-
proves future offline learning.

Figure 3: Multiclass-to-bandit conversion on UCI optdigits dataset. Proposed improvements are in hollow style.
Results for the other UCI datasets are included in the Appendix L.

insufficient rank. For UCI optdigits, a rank-2 model
could only realize 67% multiclass accuracy when trained
with full information, compared with 95% accuracy for
a full-rank model, i.e. �(x, a) = x>Wa. We call rank-2
models misspecified and full-rank models realizable.

Figure 3a shows that Q-learning and IPWE policy learn-
ing behave differently for misspecified model families.
This is because Q-learning studies the biased correlation
effects between the rewards and context-action pairs,
whereas IPWE studies the unbiased causal effects of
the actions given the contexts. Therefore, IPWE lead
to better actions. On the other hand, Q-learning and
IPWE policy learning behaved similarly for realizable
model families, as expected from our analysis.

Variance-reduced methods further improved offline
learning. Figure 3b continues the experiments with
misspecified models, where the solid boxes are carried
over from Figure 3a, with the addition of the logging
policy itself (µ), and doubly robust (DR).

We compare three different variance-reduction ap-
proaches: PIL, PIL with DR extensions, and the orig-
inal IPWE with IML regularization. All three ap-
proaches improved the final policy. The results were
not very sensitive to the parameter choices, which we
picked ✏ = 10

�4, after a coarse grid search.

IML causality diagnosis was able to detect model
underfitting due to insufficient rank. With a theoretical
limit of 0, the rank-2 model family could only achieve
0.60 training loss, which indicates that the best IML
policy cannot explain exp(0.60) = 1.82 perplexity in
the logged actions. Full-rank action policies can achieve
a near-zero (0.02) training loss.

IML-resampling to collect additional data im-
proves the policies learned with all methods (Figure 3c,
changes from solid to hollow boxes), despite a small
cost during IML resampling (µ as a policy in the first

box). This is because better exploration leads to smaller
inverse probability weights. Besides, IML-fitting allevi-
ates model underfitting biases in the new data. Finally,
the cost of IML resampling can be estimated prior to
applying IML online and is fundamentally unavoidable
for all methods that use the same model class.

Additional results on the other UCI datasets are in
the appendix. In those examples, we further observed
that improvements from variance reduction are signifi-
cant only when IML loss is above zero. IML loss at zero
indicates that there were no confounding variables or
model misspecification (e.g., Figure 3a full-rank model);
and that both naive Q-learning and IPWE would per-
form similarly to the variance-reduced methods.

7 Large-scale experiments

We extend our study on Criteo counterfactual-analysis
dataset [19]. This dataset is particularly interesting,
because the logging policy is in fact unrealizable from
the published features and models. We made novel
discoveries on (1) the existence of large variance due to
Cauchy-like importance weight distribution and (2) the
existence of modeling biases and confounding variables.
We communicated and confirmed our hypotheses with
the original authors.

The dataset contains logs of display advertisements
shown to users, the hidden action probabilities, the user
context features as well as features for every candidate
action. However, we observed some discrepancies when
we reran the provided scripts (Table 6 in Appendix I).

First, we noticed that the importance weight distri-
butions, e.g., between the uniform policy and the log-
ging policy, resemble heavy-tail distributions with un-
bounded variance. I.e., P (|W | > w) decays slower
than O(1/w2

) in Figure 1. This fact invalidates the
confidence interval (CI) estimation in the original paper



Imitation-Regularized Offline Learning

Table 5: Criteo counterfactual analysis dataset [19].

Approach
de=greedy

Offline Est.
(⇥10

4)
Gap (10)
(100%)

Paired ˆ

�

(⇥10

4)

Logging (53.3, 53.7) ( 0.0, 0.0) ( 0.1, 1.8)
IML (51.5, 53.3) (-0.3, 0.3) ( 0.0, 0.0)
Uniform (41.8, 52.6) ( 7.0, 8.0) (-10 , 0.1)
dQ-learne (49.3, 55.9) ( 3.0, 4.0) (-2.8, 3.1)
POEM [31] (51.4, 53.7) ( 0.1, 0.7) (-1.0, 1.1)
IPWE

100

(51.9, 54.5) (-0.2, 0.5) (-0.6, 1.9)
PIL-IML (52.3, 53.7) (-0.2, 0.2) ( 0.0, 0.8)
dIMLe (53.0, 55.1) (-0.4, 0.2) ( 0.2, 2.4)
dPIL-IMLe (53.1, 55.2) (-0.3, 0.3) ( 0.6, 2.9)

[19] based on Central Limit Theorem (CLT), which re-
quires bounded variance. For example, while the IPWE
of the uniform distribution is 44.7±2.1 in the test split,
it becomes 52.6± 18.7 in the training split, due to one
observation with importance weight 4.9⇥ 10

4.

To reduce heavy-tail uncertainties, we not only used
weight clipping [5, 33], but also novelly applied sub-
sampling bootstrap [22], which only assumes that
n��

�

IPWE

n

�E(IPWE)

�

n!1����!
dist.

F asymptotically con-
verges to any fixed distribution F , where � can be fitted
from data. By weight clipping, we showed that � im-
proved from 0.3 to near 0.5, which would be the CLT
ideal case. See Appendix J for more details.

Then, using IML (12), we estimated the KL-divergence
between the logging policy and its realizable imitation
to be 0.40(� 0). I.e., the logging policy is unreal-
izable by an exponential-family model with raw fea-
tures, which contradicts [19] and essentially implies
confounders (Lemma 6). Even with a more complex
second-order model with 256-dimensional embedding,
IML improved to 0.35, but was still large. While hav-
ing perfect imitation is a sufficient but not necessary
condition, as long as key decision variables are included
[29], we found the situation practically difficult.

Table 5 reports offline 95% CIs using IPWE with
weights clipped at 500 and subsampling bootstrap.
Similar to [5], the first column includes both IPWE
uncertainties and any missing clicks from the self-
normalization Gaps, which we report in the second
column. Since the global click rate is very low (around
5%), using 0 < R < 1 extreme values may overes-
timate the upper bounds. Reasonably, we used the
additional assumption that the expected click rates is
always between 0 ⇠ 1% in any reasonable subsets, twich
their global average. The last column reports any im-
provements ˆ

� compared with the realizable IML. Here,
paired-tests were used to avoid reward estimation noise.
The formula also used weight-clipping and Gap-filling

combinations: ˆ

� =

1

n

P

n

i=1

h

clip(

⇡

i

�µ̂

i

µ

i

,�⌧, ⌧)r
i

i

+

h

1

n

P

n

i=1

clip(

⇡

i

�µ̂

i

µ

i

,�⌧, ⌧)
i

R, s.t. 0 < R < 1%.

Beating the realizable IML are the logging policy with
its secret features, PIL

µ

+0.8 IML with a tight margin,
and most interestingly, greedy policies by sharpening
PIL-IML or even IML, which is reward-agnostic but
near-optimal. Intuitively, optimal policies are often
greedy in stochastic environments. An option is always
desirable no matter how small its improvements are, as
long as they are consistent. While IPWE

100

would also
yield greedy solutions, they tend to learn saturated
softmax, which may not generalize well (Section 3.3).

Notice, this stochastic view may have taken advantage
of the temporal overlaps between the train/test splits.
In contrast, randomized policies are more popular in
adversarial bandits to account for temporal uncertain-
ties [6, 20]. Similarly, if we were allowed to collect
new data, we would use PIL-IML (non-greedy) to im-
prove exploration (Theorem 7). The perplexity would
increase from 3.6 to 5.2 and the heavy-tail situations
would alleviate.

8 Discussion and conclusion

Why should I imitate a policy when I already have the
logged propensities? First, IPWE might suffer from
high variance and DR is often not much better because
we seldom observe all major variables that contribute
to the variance of the reward. Second, whether the
imitated policy produces probabilities that match the
logged propensities or not reveals whether there are
hidden decision variables used by the logging policy.

What can I use an imitated policy for? We can run it to
collect new data, which guarantees that (if we cannot
discover or log them for some reasons) the new data will
have a realizable policy without unknown confounding
decision variables. Besides, the IPWE estimate of the
imitated policy should not suffer from high variance
and we will have good evidence whether the imitated
policy performs similarly to the unrealizable logging
policy in most cases.

What are the take-home messages for data scientists
and developers? The most important message is that
one should be cautious about using and evaluating Q-
learning approaches in problems where decisions are
involved. We highlight the value of having randomized
policies that allow one to marginalize over unobserved
confounding variables and make statistically valid in-
ferences despite possible confounders. Lastly, the prob-
abilities corresponding to actions that are not taken
are also useful and can be used to reduce variance in
offline policy valuation and policy optimization.
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