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Abstract Dechter, 2007) and th&ND/OR sampling schen(&ogate

and Dechter, 2008). Based on the Rao-Blackwell theo-
rem (Casella and Robert, 1996) and w-cutset condition-
ing (Dechter, 1990), the w-cutset sampling scheme com-
bines sampling with exact inference. The idea is to sample
only a subseC of variables, called the-cutset and exactly
marginalize out the remaining variables conditioned on
each sampled assignment. The AND/OR sampling scheme,
on the other hand, reduces variance by exploiting condi-
tional independencies uncovered by the AND/OR tree or
graph (Dechter and Mateescu, 2007) to derive a different
sample mean from the same set of input samples. Previ-
ously in (Gogate and Dechter, 2008), we considered two al-
ternative AND/OR sample means: one based on AND/OR
tree which has the same time and space complexity as the
conventional OR tree approach but has smaller variance
and the second based on AND/OR graph which is more
expensive to compute but has the smallest variance.

In this paper, we consider two variance reduction
schemes that exploit the structure of the primal
graph of the graphical modeRao-Blackwellised
w-cutset samplinggnd AND/OR sampling We
show that the two schemes are orthogonal and
can be combined to further reduce the variance.
Our combination yields a new family of estima-
tors which trade time and space with variance.
We demonstrate experimentally that the new es-
timators are superior, often yielding an order of
magnitude improvement over previous schemes
on several benchmarks.

1 Introduction

Importance sampling (Rubinstein, 1981) is a generallhe main idea in this paper is to combine these two
scheme which can be used to approximate variouschemes by performing AND/OR tree or graph sampling
weighted counting tasks defined over graphical mod-over the w-cutset variables and exact inference over the
els such as computing the probability of evidence in aremaining variables conditioned on each sampled assign-
Bayesian network, computing the partition function of ament. We show that this yields new sample means, which
Markov network and counting the number of solutions ofhave smaller variance than the sample means of AND/OR
a constraint network. The main idea is to transform thesampling and w-cutset sampling. However, they are more
weighted counts or summation into an expectation usingxpensive to compute both time and space wise and thus
a special distribution called the proposal distributioeng there is a trade-off.
erate samples from the proposal and estimate the Weightngé
n

counts by a weiahted averaae (also called the sample meal e conducted extensive experimental evaluation of all the
y 9 9 (. P w schemes proposed on several benchmark probabilis-
over the generated samples. It is well known that the qual:.

itv of estimation is highly d dent on th : fth tic and deterministic networks. Our results show that as
'y of estimation is highly dependent on Ihe variance ot th&y, o o yorks get larger and harder, exploiting more de-

sample mean and 'Fherefor(_a significant research has focusg mposition improves the accuracy of the estimates as a
on reducing its variance (Liu, 2001). function of time. In particular, the scheme that exploits
In this paper, we consider two graph-based variance rethe most decomposition, the AND/OR w-cutset graph sam-
duction schemes in the context of graphical models: thepling scheme is superior to all the other schemes.

Rao-Blackwellised w-cutset sampling scheBielyuk and The rest of the paper is organized as follows. In Section 2,

- : t . we present notation and background. Section 3 describes
Appearing in Proceedings of the!!3nternational Conference on . . .
Artificial Intelligence and Statistics (AISTATS) 2010, GhLa- AND/OR w-cutset tree sampling and Section 4 describes
guna Resort, Sardinia, Italy. Volume 9 of JIMLR: W&CP 9. Copy-AND/OR w-cutset graph sampling. Complexity versus
right 2010 by the authors. variance trade-offs are discussed in Section 5. Expergnent
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are described in Section 6 and Section 7 concludes. Next, we show how the weighted counts can be estimated
using importance sampling. Given a (importance) proposal
distribution Q(X) satisfying[", F(x) > 0= Q(x) > 0,

2 Background .
we can rewriteZ as follows:

We start by presenting notation and preliminarie_s on graph- 5 M, F(x) B ™, F(x)
ical models. Then we present an overview of importance = ;7(2()() Qx) = Q(x)
Xe

samplingw-cutset sampling and AND/OR sampling.
Given independent and identically distributed (i.i.d.Jnsa
ples(xt,...,xN) generated fron®, we can estimat& by:

] )

We denote variables by upper case letters (8,Y,...) and
values of variables by lower case letters (exy,...). Sets
of variables are denoted by bold upper case letters, (e.g.
X ={Xy,...,%}) while sets of values are denoted by bold 7N Hi=1™\*/) 1 z w(xK) 2)
lower case letters (e.gc = {x1,...,%n}). We denote byD; N& Q¥ N &

the set of possible values ¥f (also called as the domain of o )

Xi). Yxex denotes the sum over the possible values of variwhere w(xK) = %;f)"_) is the weight of sampleX. It
ables inX, namely,y y,ex, 36, - Yxex, The expected o easy to see thdg[Z] = Z, namely it is unbiased. The
valueEq[X] of a random variablX with respect to a distri- variance of the weights is given by:

butionQ is defined asEq[X] = Y yx XQ(X). The variance '

Vo[X] of X is defined asVg[X] = 3 yex (X— Eq[X])2. Volw(x)] = Z( (W(x) — 2)2Q(x) 3)
Definition 1 (Graphical models). (Pearl, 1988) A graph- X€

ical model is a three-tuple# = (X,D,F) where X = ~. . . ) ) i
{X4,..., %} is a set of random variable® = {D,...,D,}  Note thatZ is itself a random variable and its variance is

is a set of domains whei®, is the domain of XandF —  diven by:

{F4,,...,Fm} is a set of non-negative real valued functions R 1 Vo[W(X)]
where each HAs defined over a subset of variablgsc X, VolZ] = N Z( (W(x) — z)ZQ(X) - QT (4)
called its scope. A graphical model represents a joint dis- X€

tribution overX given by: Py (x) = 2 1™, F(x) where Z

) N ) Because the mean-squared error of an unbiased estimate
is a normalization constant given by:Z ¥ ,x [ 1 Fi (X). d

. ; . such a<Z is equal to its variance, we would like the vari-
We will often refer to Z as weighted counts. Tprémal 2 1S €eq . .
ance ofZ to be as small as possible. Based on Equation

graph of a graphical model is an undirected graph which 4, we can reduce the variance by decreasing the variance

has variables as its vertices and an edge between any twg . ; .
: . . : . of the weights or by increasing the number of samples or
variables which are included in the scope of a function.

both. Next, we present two schemes that use graph decom-
We will focus on the query of computing the weighted POSitions to either redudé|w(x)] or increaseN.

countsZ. It is easy to show that the weighted counts spe- _ _
cialize to the probability of evidence of a Bayesian net-2.2 Rao-Blackwellised w-cutset Importance Sampling
work, the partition function of a Markov network and the

number of solutions of a constraint network. The w-cutset sampling framework is based on a graph

concept called w-cutset and the Rao-Blackwell theo-
rem (Casella and Robert, 1996).

Theorem 1 (Rao-Blackwell Theorem). Let F(Y,Z) be
Importance sampling (Rubinstein, 1981; Liu, 2001) isa function and QY,Z) be a proposal distribution then,
a general Monte Carlo simulation technique which can, [Fv2a] < v [EM] where _ 7} and
be used for estimating various statistics of a given tar- [QW*ZJ o [ } W) 22Ql-2

2.1 Importance Sampling

Q|Qly

get distribution such a®,. Since it is often hard to F(y)=3:F(y.2.

sample fromP ,, the main idea is to generate samplesDefinition 2 (w-cutse)). Given a graph GX,E) and a con-
from another easy-to-simulate distributi€p called the stant w, a w-cutset is a sub-set of variableés- X such
proposal (or importance) distribution and then estimatghat after removingC, the treewidth (see for e.g., (Dechter,
various statistics oveP , by a weighted average over 1999) for a definition of treewidth) of the remaining graph
the samples. Following (Cheng and Druzdzel, 2000)js bounded by w. A cycle cutset islecutset of G.X is a

we assume that the proposal distribution is specified irD-cutset.

a factored product form (namely a Bayesian network): ] ) .
QX) = My Qi (Xi|Xa, ..., Xi—1) = [, Qi(X[|Y;) along In w-cutset sampling, we sample only thg variables |n_the
an orderingo = (Xi,...,X,) of variables, wherey; C w-cutsetC and perform exact computations (e.g. using

{X1,...,%_1}. The cardinality of the seY; is assumed Ducket elimination (Dechter, 1999)) on the remaining vari-
to be bounded by a constant. ablesR = X\ C given a sampl€ = c. Because the time
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Figure 1:(a) A 3-coloring problem, (b) Pseudo-tree (c) OR tree (d) AQR tree (e) AND/OR graph

and space complexity of bucket elimination is exponentiaAND/OR search Tree Given a set of sample$ =

in the treewidth of the graph (Dechter, 1999), it is obvious{x%,...,xN}, the AND/OR sample tree (similarly, the OR
that given an-cutset, bucket elimination can be carried out sample tree) is a subset of the full AND/OR search tree (OR
efficiently in polynomial time (exponential in the constant search tree) from which all nodes not $hare removed.
w). Formally, given a proposal distributid®(C) defined The set of unique samples of an AND/OR sample tree is
over thew-cutset, and a set of samplés,...,cV) gener-  equal to the set of its solution sub-trees, which is defined

ated fromQ, thew-cutset estimate & is given by: recursively as follows. Aolution sub-treeontains the root
R N mF(r.C=d node. For each OR node, it contains one of its children and
Zwe = % Zl 2reR HJ(S( Ji() ) (5)  for each AND node, it contains all of its children.
. c
=

Example 1. Figure 1(a) shows a primal graph of a 3-
From thg Rao-BlaCkWE/l\l theorem, it follows that the vari- Co]oring prob|em overd variables. A possib|e pseudo
ance ofZyc is less tharZ. w-cutset sampling generalizes tree is given in Figure 1(b). The full OR and AND/OR
importance sampling in the following sense. Wher-0,  search trees are shown in Figures 1(c) and 1(d) respec-

Zyc equals the conventional sample mean tively. Let us assume that we have generated the four sam-
ples: (1) (C=0,B=1,D=1,A=0), (2) (C=0,B=2,D=2,A=1),
2.3 AND/OR Importance Sampling (3) (C=1,B=0,D=0,A=2) and (4) (C=1, B=2, D=2,A=0)

_ _ ] ) from a proposal distribution that is defined along the topo-
AND/OR importance sampling (for more information, seeogical order of the pseudo tree. The bold edges and nodes
(Gogate and Dechter, 2008)) is a generalization of impor;, Figures 1 (c) and (d) show these four samples arranged
tance sampling to AND/OR search spaces (Dechter angy an OR tree and an AND/OR tree respectively. One
Mateescu, 2007). The mainidea is to arrange the generated, verify that thet samples (solution sub-trees) over the
samples over an AND/OR tree or graph and then utilizegr sample tree correspond ®virtual samples over the
conditional independencies to derive a larger set of Vvirtuaanp/OR sample tree. The AND/OR sample tree includes
samples. The structure of the AND/OR tree is guided by &g, example the assignment (C=0,B=2,D=1,A=0) which
backbone pseudo-tree Qfdefined below. does not appear in the OR sample tree.
Definition 3 (pseudo-tree). Given an undirected graph
G = (V,E'), a directed rooted tree = (V,E) defined on Because of this larger virtual sample size, we can prove
all its nodes is called pseudo tree if any arc of G which isthat the variance of the sample mean computed over the
not included inE is a back-arc, namely it connects a node AND/OR sample tree is smaller than or equal to the vari-

toan ancestorinT. ance of the sample mean over the conventional OR sam-
. ) ple tree (Gogate and Dechter, 2008). Note that the sample
AND/OR search Tree Given a graphical model# = mean computed over an OR sample tree eqfi@isd thus

(X,D,F), its primal graphG and a backbone pseudo tree AND/OR sampling generalizes importance sampling.
T of G, the associated AND/OR search ti&e has alter-

nating levels of AND and OR nodes. The OR nodes are la- .
beledX; and correspond to the variables. The AND nodes3 AND/OR w-cutset Tree sampllng

are labeled by; and correspond to the value assignmentsin ] ) o ) .
the domains of the variables. The structure of the AND/ORY/e now describe one of our main contributions in which
search tree is based @n The root of the AND/OR search W& combinew-cutset sampling with AND/OR sampling.
tree is an OR node labeled by the rootTaf The children We illustrate the main idea in the following example.

of an OR nodeX; are AND nodes labeled with assignment Example 2. Consider the primal graph in Figure 2

Xi, which is consistent along the path from the root. The(a). The minimal cycle cutset contains the three nodes
children of an AND node; are OR nodes labeled with the {A,B,C}. Given a proposal distribution @\, B,C) = Q(A)
children of variableX; in T. When the pseudo tree is a Q(B|A) Q(C|A), in cycle cutset sampling, the variables A,
chain, the AND/OR search tree coincides with the regulaB and C are sampled, as if they form a chain pseudo-tree
OR search tree. shown in Figure 2(c) before executing bucket elimination
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Valueof Cgiven A=0:
xiH(AZO’C:DxV(C:I)
0(C=1]4=0)
° 2
Arc label of OR node C to And node 1:
e <H(A:0,C:1)A2>
o(C=1]4=0)
(d)
Figure 2:(a) an example primal graph (b) Pseudo tree (c) Start Valueof C=1:
pseudo-tree of OR w-cutset tree sampling and (d) Start pseud WC=1)=3 3 H(4=0,)H(C=1,9)H(g, /YH(C =1, 1)
tree of AND/OR w-cutset tree sampling. IF5<G

Samples: (A=0,B=0,C=1), (A=0,B=1,C=1), (A=1,B=0,C=0), (A=1,B=1,C=0)

on the remaining network defined Y0,E,F,G} given  Figure 3: Figure demonstrating computation of arc-labels and
(A=a,B=Db,C =c) to compute the sample weight. node values over an AND/OR w-cutset sample tree.

However, after A is sampled, we see that the remainin%aCh arc from an OR node n labeled byt an AND node
sub-problem is split into two components and therefore We\ |abeled by xis labeled with a pair(w(n, m), #(n,m))

can organize the cycle cutset into two portions as in thew(n m) is called the weight of the arc and is given by
(start) pseudo-tree of Figure 2(d) (Mateescu and Dechter,  ~ Brx, (. AlTh) )
2005). We can now arrange the generated samples on af{(™ M) = <5 x7amm) Where Brx (i, A(Th)) is the prod-

AND/OR sample tree restricted over the cutset variableg!Ct of all functions irF that mention Xbut do not mention
{A,B,C} and separately compute the weighted counts (usny variables that are descendants gfiXT. #(n,m) is

ing bucket elimination) over the networks defined by thehe frequency of the arc. It equals the number of times the
two component§D,E} given(A=a,B=b) and {F,G}  Partial assignment f¥z,) occurs inS.

given(A = a,C = c) respectively.

Note that an OR w-cutset sample tree is an AND/OR w-
We now formalize the intuition in Example 2, defining a cutset sample tree based on a chain start pseudo tree.

new sample mean called AND/OR-cutset sample tree Definition 6 (AND/OR w-cutset sample tree meah
mean. We start with some required definitions. Given an AND/OR w-cutset sample tregygT, the value

Definition 4 (AND/OR w-cutset, start and full pseudo ~ Of @ node n, denoted by() is defined recursively as fol-
trees. (Mateescu and Dechter, 2005) Given a pseudo tred0oWs. The value of leaf AND node | is given by:

T(V,E), a directed rooted tree TV',E’) whereV' C V _

andE’ C E is a start pseudo tree of T if it has the same v(l) = uelpaZhT(mx-elpl;lhT(mBT’xj (UA(m))  (6)
rootas T andis a connected sub-graphof T. T is called the :

full pseudo treeof its start pseudo tree’TAn AND/OR W-  where Ipath (X) is the set of variables along the path from
cutset is a pairT’,K) whereK is a w-cutset and TK,E") X to the leaf | in the full pseudo tree T. If n is an internal
is a start pseudo tree defined ower AND node then: {n) = [yycehim V(1) and if n is an inter-

Example 3. The pseudo tree given in Figure 2(d) is a start nal OR node then,
pseudo tree of the (full) pseudo tree given in Figure 2(b). o HL ) /
The AND/OR w-cutset is the set of variab{gsB,C} to- v(n) = Zovectiqn) #(N, 1) w(n,/n) ()
gether with the start pseudo tree of Figure 2(d). 3wt cchi(n) #(n, 1Y)

Definition 5 ((Arc-labeled) AND/OR w-cutset sample  where chin) is the set of child nodes of node n ipd/T-
tree). Given a graphical model# = ( X, D, F ), an  The AND/OR w-cutset sample tree mean is the value of the
AND/OR w-cutsefT’,K), a full pseudo tree T of Ta pro- oot node of Sowr.

posal distribution along the pseudo tregX), and a se- ]

quence of sampleSover T, an AND/OR w-cutset sample Example 4. Flgu_re 3 shows an AND/OR W-cuts_et s_ample
tree Sow IS a subset of full AND/OR search tree over  (ree corresponding to the four samples shown in Figure 3

w.r.t. T from which all assignments not Biare removed. w.r.t. the start psgudo_tree shown i_n Figure 2(d). We.as:sume
that all the functions in our graphical model are pairwise.

A path from the root of &w to a node n is denoted by Namely, we have functions corresponding to each edge:
mh. If nis an OR node labeled with; Xr an AND node  H(A B), H(AE),... , H(F,G). The arc-labels and values of
labeled with x the path will be denoted by (Xi) or Th(xi)  a few arcs and nodes are shown in Figure 3. The AND/OR

respectively. The assignment sequence along themath .-cutset sample mean is the value of the node A.
denoted by Am,) is the set of assignments associated with

the sequence of AND nodes alamg Namely, Am,(X;)) =  The AND/OR w-cutset sample tree mean generalizes the
{X1,...,%-1} and ATh(%)) = {X1,...,% }. sample means of importance sampling, w-cutset impor-
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tance sampling and AND/OR tree importance sampling in
the following sense.

Proposition 1. The sample mean obtained via conven-
tional importance sampling is equal to the OR 0O-cutset
sample tree mean. The w-cutset sample mean is equal to
the OR w-cutset sample tree mean. The AND/OR sample
tree mean defined in (Gogate and Dechter, 2008) is equal
to the AND/OR 0-cutset sample tree mean.

OR-tree-IS
OR-w-cutset- AND/OR-
tree-IS tree-IS
AND/OR-w- AND/OR-
cutset-tree-IS graph-IS
AND/OR-w-
cutset-graph-IS

Figure 4: Variance Hierarchy

Using simple algebraic manipulations, we can prove that:

Theorem 2. The AND/OR w-cutset sample tree mean is an
unbiased estimate of the weighted counts Z. Definition 8 (AND/OR w-cutset sample graph and mean)

) Given an AND/OR w-cutset sample tre@qo®T, the
Using the Rao-Blackwell theorem and AND/OR theory, we AND/OR w-cutset sample graph&vc is obtained from

can prove the following two theorems showing the superi—sAOWT by merging all nodes based on context. The

ority of our hybrid scheme over its individual components. AND/OR w-cutset sample graph mean is the AND/OR sam-
Theorem 3. Given w> 0, the variance of AND/OR w- ple mean computed ovefSve

cutset sample tree mean is less than or equal to the VariTheorem 5. Given w> 0, the variance of the AND/OR

ance of OR w-cutset sample tree mean. w-cutset sample graph mean is less than or equal to the

Theorem 4. Given w> 0, the variance of AND/OR W- variance of AND/OR w-cutset sample tree mean. Given

cutset sample tree mean is less than or equal to the variy > 0, the variance of the AND/OR w-cutset sample graph

ance of AND/OR 0-cutset sample tree mean. mean is less than or equal to the variance of AND/®R
cutset sample graph mean.

4 AND/OR graph w-cutset sampling

5 Complexity and Variance Hierarchy
Next, we define a more powerful sample mean by mov-
ing from AND/OR trees to AND/OR graphs (Dechter and Theorems 3, 4 and 5 along with the Rao-Blackwell theo-
Mateescu, 2007). An AND/OR:-tree may contain nodesrem help us establish the variance hierarchy shown in Fig-
are merged, the tree becomes a graph and its size becomggsed on the same set of samples and the same full and
texts defined below. 0 <w < t* (t* is the treewidth), the directed arcs in Figure
Definition 7 (Context). Given a pseudo-tree(V,E), the 4 indicate that the variance of the child node is less than (or
context of a node X V is the set of ancestors of Xhat  equal to) the variance of the parent. We see that the vari-
are connected topand descendants of X ance of AND/OR sample tree mean is incomparable with
Example 5. For illustration, the bold nodes in Figure 1(e) W-cutset sample mean. We also see that AND/OR w-cutset

show8 virtual samples (solution sub-trees) of the AND/ORSample graph mean has the lowest variance.

sample tree of Figure 1(d) arranged on an AND/OR sam-e summarize the complexity of computing various sam-

ple graph by merging context unifiable nodes (based on th§|e means in the following theorem:
conditional independence assertion that A is independe

of C given B). One can verify that tigevirtual samples on
the AND/OR sample tree correspondifdvirtual samples
(solution sub-trees) on the AND/OR sample graph. T
AND/OR sample graph includes for example the sampl
(C=0,B=2,D=1,A=0) which is not present in the

r]'ILheorem 6. Given a graphical model# having n vari-
ables, an AND/OR w-cutséT’, X) of .2, a full pseudo
ndree T of T and a proposal distribution Q defined along
éhe pseudo-tree T, let h be the height ahdbé the maxi-
mum context size (treewidth) of T and let ¢ be the size of

AND/OR sample tree. Due to an increase in the virtuaIthe w-cutset. Given N samples generated i.i.d. from Q, the
sample size, the variance of AND/OR sample graph meaﬁOmIOIeXIty of C(_)mputlng AND/OR W'CUtset tree and graph
is smaller than (or equal to ) that of AND/OR sample treesample means is given in the following table:

mean (Gogate and Dechter, 2008).

Sample mean Time Complexity Space Complexity

OR O-cutset tree O(NN) 0O(1)
The main idea in AND/ORv-cutset graph estimation is to A“,ii’,g’,ﬁggt‘éi‘f;;ee o?mf) oc()g,?‘)

store all the generated samples on an AND/®Rutset
graph instead of an AND/OR-cutset tree and then com-
pute a new sample mean over the AND/@Rutset sample
graph, which will have smaller variance. Formally,

OR w-cutset tree

O(cN+ (n—c)Nexpw))

Ol(n— c)expw))

AND/OR w-cutset tree|

O(cN+ (n—c)Nexpgw))

O(h+ (n—c)expgw))

AND/OR w-cutset grap|

hO(cNt" + (n—c)Nexgw))

O(cN+ (n—c)expw))

From Theorem 6, we see that variance reduction comes
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at an extra computational cost. In particular, as we movescheme for generating the samples, namely the proposal
down the variance hierarchy, the time and space complexdistribution is identical in all the schemes.

ity of the schemes typically increases. : . .
y typically All of our experiments were run on linux servers, each with

dual 2.4Ghz processors and 2GB of memory. We exper-
6 Experimental Results imented with three sets of benchmarks: (a) the grid net-

works, (b) the Linkage networks and (c) 4-coloring prob-
In this section, we demonstrate empirically that thelems. We organize the results in two subsections. In the
AND/OR w-cutset tree and graph sampling schemes ar@ext subsection, we present results on instances for which
superior in terms of accuracy to OR w-cutset sampling andhe exact weighted counts are known and in subsection 6.3

AND/OR (0-cutset) tree and graph sampling. we present results on instances for which the exact counts
are not known. The reason for this separation is the differ-
6.1 Experimental Setup ence in the evaluation criteria used.

The strength of AND/OR w-cutset estimates is that theg 5 Results on instances for which the exact weighted
samples on which the estimates are based upon can be gen- .4 nts are known

erated using any importance sampling scheme. Therefore,

in order to demonstrate the impact of our new schemes in &able 1 shows the results. For each instance, in column
non-trivial setting, we generate samples using statéy@f-t 2, we report the number of variables (n), average domain
art techniques such as IJGP-IS (Gogate and Dechter, 2008jze (k), the number of evidence nodes (c) (or constraints
and IJGP-SampleSearch (Gogate and Dechter, 2007).  for the graph coloring problem) and treewidtti)( The

IIGP-IS uses the output of Iterative Join graph propagat-h'rd column reports the exact value of the weighted counts.

tion (IJGP) (Dechter et al., 2002; Mateescu et al., 2010)Cor:umns 4f-9 rfrr:ortf glsusa_lmple mean output by various
to compute a proposal distribution because it was showsichemes after 1hro time.

to yield good approximation to the posterior distribution Grid networks Our first problem domain is that of par-
P (Yedidia et al., 2004; Dechter et al., 2002; Yuan andtially deterministics x s grid networks, available from the
Druzdzel, 2006). IJGP is a generalized belief propagatiomuthors of Cachet (Sang et al., 2005). The last node in the
scheme parameterized by a constamialled thei-bound,  grid network is called the sink node whose marginal prob-
yielding a class of algorithm8JGP(i)) whose complex- ability is to be determined. Given a parameter called the
ity is exponential i, that allow a trade-off between accu- deterministic ratig a fraction of the functions in a grid are
racy and complexity. As increases, accuracy generally made deterministic by randomly filling them with 0 or 1. In
increases. When equals the treewidth of the graphical Table 1, the instances are designated aswherepiis the
model, IJGP(i) is exact. We use &bound of 5 and set deterministic ratio expressed as a percentagesandhe

the number of iterations to 10 in all our experiments to en-ize of the grid. We observe that AND/OR w-cutset graph
sure that IJGP terminates in a reasonable amount of timeind tree schemes (ao-wc-graph-IS and ao-wc-tree-1S) are
On benchmarks which have strong deterministic relationbetter than the other schemes, with the AND/@Rutset
ships (specifically the linkage and coloring instances), wegraph scheme being the best performing schemeutset

use IJGP-based SampleSearch specialized to handle the igyportance sampling (or-wc-tree-1S) is slightly worsertha
jection problem (Gogate and Dechter, 2007). AND/OR tree and graph schemes which do not use a w-

We experimented with the following schemes: (a) OR treeCUtset (a0-graph-1S and ao-tree-IS). Pure importance sam-

importance sampling (or-tree-1S) (b) AND/OR tree impor- P/Ing (0r-ree-IS) is the worst performing scheme.

tance sampling (ao-tree-IS), (c) AND/OR graph impor-Linkage Networks The linkage instances are generated by

tance sampling (ao-graph-IS) (d) OR tree w-cutset imporconverting a pedigree to a Bayesian network (Fishelson and
tance sampling (or-wc-tree-1S) (e) AND/OR w-cutset treeGeiger, 2003).

importance sampling (ao-wc-tree-IS) and (f) AND/OR w-
cutset graph importance sampling (ao-wc-graph-IS). Th
last two are the new schemes.

heBN_69 toBN_77 instances were used in the UAI 2006
evaluation (Bilmes and Dechter, 2006). We observe that on
6 out of the 9 instances, AND/OR-cutset graph scheme
We used the min-fill ordering to generate the pseudo-treegao-wc-graph-1S) is more accurate than the AND/@R
We set thev of w-cutset to 5, again to ensure that the bucketcutset tree scheme (ao-wc-tree-1S) which in turn is substan
elimination component of w-cutset sampling does not runtially more accurate than the OR-cutset tree scheme (or-
out of memory and terminates in a reasonable amount ofic-tree-IS). Pure importance sampling (or-tree-IS) is the
time. We generated the w-cutset using a greedy schemgorst performing scheme. On an average, we observe that

outlined in (Bidyuk and Dechter, 2004). This scheme re-the AND/OR w-cutset graph scheme (ao-wc-graph-IS) is
quires a tree-decomposition as input, which was generthe most accurate scheme.
ated using the min-fill ordering. Note that the underlying
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Problem-name (n,k,c,t*) Exact | or-tree-IS | or-wc-tree-IS | ao-tree-IS| ao-graph-IS | ao-wc-tree-IS| ao-wc-graph-IS
Grids
50-18-5 (3242,1,18) 0.4137 0.31 0.64 0.27 0.422 0.401 0.422
50-19-5 (3612,1,19 0.2209 0.243 0.2301 0.244 0.23 0.2244 0.2217
50-20-5 (400,2,1,20) 0.5692 0.34 0.333 0.542 0.567 0.571 0.569
75-22-5 (4842,1,22 0.437 0.695 0.452 0.572 0.493 0.446 0.435
75-23-5 (5292,1,23 0.348 0.25 0.380 0.19 0.299 0.331 0.350
75-26-5 (676,2,1,26) 0.264 0.079 0.1432 0.124 0.19 0.184 0.24
90-34-5 (11562,1,34) 0.0859 0.044 0.0452 0.0449 0.0516 0.0557 0.082
90-38-5 (14442,1,38) 0.141 0.08 0.123 0.19 0.183 0.143 0.143
90-42-5 (17642,1,42) 0.654 0.42 0.81 0.576 0.511 0.74 0.67
Linkage
BN_69 (777,7,78,36) |5.28E-054 3.31E-55| 3.01E-55 | 2.58E-55| 2.66E-55 3.00E-55 3.15E-54

BN_70 (23155,15935) | 2.00E-71| 6.77E-76] 1.10E-75 | 9.50E-76| 4.81E-75 3.22E-75 2.81E-73

BN_71 (17406,202 35) | 5.12E-111] 1.89E-118 9.78E-114 | 4.27E-117] 1.32E-113 | 4.63E-112 2.36E-112

BN_72 (21556,252 33) | 4.21E-150 7.35E-155 3.28E-153 | 5.49E-154] 1.81E-150 [ 2.59E-150 1.71E-150
)

BN._73 (21405,216,42) | 2.26E-113 1.17E-126] 6.39E-122 | 5.33E-126| 1.70E-118 | 2.33E-117 8.08E-118

BN_74 (749,6,66,32) | 3.75E-45] 1.58E-47] 2.13E-46 | 4.57E-47| 2.00E-46 2.08E-46 2.22E-46
BN_75 (18205,15532) | 5.88E-91| 5.39E-97[ 1.09E-95 | 2.58E-98| 3.19E-95 9.59E-95 1.21E-91
BN_76 (21557,169,37) | 4.93E-110[ 1.02E-121] 6.93E-117 | 3.03E-119] 1.23E-117 | 1.56E-115 1.69E-112
BN_77 (10209,13522) | 6.88E-79| 3.57E-87| 3.46E-82 | 3.20E-86| 2.42E-85 3.63E-84 1.92E-81
pedigreel3 | (10773,0,31) | 5.44E-32] 1.83E-44| 5.57E-35 | 1.83E-44]| 6.75E-34 3.99E-32 4.03E-32
pedigree34 | (11603,0,28) | 5.89E-65] 5.80E-78| 1.24E-69 | 7.20E-74]| 8.19E-70 1.65E-64 1.77E-64
pedigree44 (811,3,0,25 3.36E-64| 3.15E-66| 2.00E-65 | 3.58E-66| 2.30E-64 3.21E-64 3.21E-64
pedigree50 (514,3,0,17) 1.32E-23| 3.32E-24| 3.44E-25 | 1.65E-24| 1.14E-23 1.38E-23 1.38E-23
pedigree51 | (11523,0,35 | 1.33E-74] 9.95E-82| 4.38E-78 | 1.24E-79] 1.44E-76 6.75E-75 6.86E-75
pedigree7 (10684,0,30) 15E-65 [ 5.91E-71| 7.73E-69 | 2.49E-72| 2.42E-67 7.28E-66 7.77E-66
pedigree9 (11183,0,25) | 3.43E-79] 2.12E-81| 2.81E-85 | 2.56E-81| 7.86E-79 1.36E-79 1.27E-79

Table 1:Table showing the sample means output by various schemesets ®f benchmark graphical models. Each algorithm was
run for 1 hr. The best results are highlighted by bold in eagh r

On the pedigree linkage instances, we observe that the athe quality of the approximation, namely how close the ap-
wc-graph-1S, ao-wc-tree-IS and ao-graph-IS schemes angroximation is to the exact, cannot be measured. To allow
more accurate than the other schemes, often outperformiregcomparison on such hard instances we evaluate the power
them by an order of magnitude. ao-tree-IS is better tharmf the various sampling schemes for yielding good lower-
or-tree-1S on most instances while or-wc-tree-IS is usuall bound approximations whose quality can be compared (the
better than ao-tree-IS and or-tree-1S. ao-wc-graph-IBds t higher the better) even when the exact solution is not avail-
best performing scheme. able. Specifically, when the exact weighted counts are not

known, we compare the lower bounds obtained by combin-
P(e) vs Time for BN_75, num-vars= 1820 ing the sample means output by various schemes with the
1e-90 B TS -S— Markov inequality based lower bounding scheme presented
et g 1 in (Gogate et al., 2007). Such lower bounding schemes, see
: also (Gomes et al., 2007), take as input: (a) a set of unbi-
ased sample means and (b) a real number®d< 1, and
output a lower bound on the weighted counts that is correct
with probability greater than. Formally,

Theorem 7. (Gomes et al., 2007; Gogate et al., 2007) Let

Z1,Z5,...,Z: be the unbiased sample means over “r" in-

Probability of Evidence

0 500 1000 1500 2000 2500 3000 3500 4000

Time in seconds dependent runs of a sampling scheme.Qeta < 1 be a
e 2o e (LT 1 T
o i TR Bericta constantand lef = (=g) . Then, %, = 5 x mir{_;Z is
O-UeelS Ko a lower bound on Z with probability greater than

Figure 5:P(e) as a function of time for BN'5 instance.
In our experiments, we se&t = 0.99 andr = 5, namely,

Finally, Figure 5 shows how the probability of evidence o  each algorithm five times and each lower bound is
P(e) changes with time for one of Linkage instances. Here?orrect with probability greater thand®.

we can clearly see the superior any-time performance o
AND/OR-basedv-cutset schemes over the other schemes4-Coloring Problems Our final domain is that of
We observed similar behavior on other instances. 4-coloring problems generated using Joseph Cul-
berson’s flat graph coloring generator (available at
6.3 Results on instances for which the exact weighted Nttp://www.cs.ualberta.cafoe/Coloring/). ~ Here, the
counts are not known weighted counting task is equivalent to counting the
number of solutions. From Table 2, we observe that in
When exact results are not available, evaluating the pemost cases, the AND/OR schemes are better than pure
formance of approximate schemes is problematic becausmportance sampling (or-tree-1S) amndcutset sampling

263



On Combining Graph-based Variance Reduction schemes

Problem-name (n,k,c,t*) Exact | or-tree-IS | or-wc-tree-IS | ao-tree-IS | ao-graph-IS | ao-wc-tree-IS| ao-we-graph-IS

4-Coloring

4-coloringl | (100,4,200,71) 1.57E+37| 1.98E+37 | 1.54E+37| 2.18E+37 2.30E+37 1.78E+38
4-coloring2 | (100,4,250,95) 4.35E+27| 9.86E+28 | 5.26E+29| 6.00E+29 8.20E+28 1.02E+30
4-coloring3 | (200,4,400, 144 1.61E+70| 4.63E+70 | 1.21E+72| 1.76E+72 4.89E+70 2.59E+72
4-coloring4 | (200,4,500 191 2.230E+62 4.82E+62 | 5.75E+63| 1.21E+64 8.65E+64 6.07E+65
4-coloring5 | (300,4,600,30 1.12E+97| 1.21E+99 [1.65E+10(0] 1.61E+100| 1.72E+102 1.28E+104
4-coloringé | (300,4,750,338 1.30E+88| 9.01E+90 | 5.82E+88| 1.01E+91 1.13E+91 1.75E+91

Table 2: Table showing thdower bounds on the weighted counts with 99% confidenc@btained by various schemes for
graph coloring benchmarks. The exact weighted counts fsettinstances are not known. Each algorithm was run 5 tinae$, e
run was 1 hryielding 5 sample means. We ase 0.99, and combined these sample means using Theorem 7 to yislegabound orZ.

(or-we-tree-IS). AND/ORw-cutset graph sampling yields Dechter, R. (1990). Enhancement schemes for constraioegse
the highest lower bound for all the instances. ing: Backjumping, learning and cutset decompositiétifi-
cial Intelligence 41:273-312.

Dechter, R. (1999). Bucket elimination: A unifying frameko
for reasoning Artificial Intelligence 113:41-85.

. Dechter, R., Kask, K., and Mateescu, R. (2002). Iterativia Jo
The paper presentdND/OR w-cutset samplinga gen- Graph propagation. IWAI, pages 128-136.
eral and unlfylng_framework er developing and analyzmg Dechter, R. and Mateescu, R. (2007). AND/OR search spaces fo
graph-based variance reduction schemes. Our generaliza-graphical modelsArtificial Intelligence 171(2-3):73-106.
tion yields two new schemes called AND/OR w-cutset treeFisheIson, M. and Geiger, D. (2003). Optimizing exact genet

sampling and AND/OR w-cutset graph sampling, which jinkage computations.  IProceedings of RECOMBpages
have smaller variance than other schemes proposed in lit- 114-121.

erature. Our experimental evaluation shows that our newsogate, V., Bidyuk, B., and Dechter, R. (2007). Studies neo
schemes are often more accurate than other schemes, wherbounding probability of evidence using the Markov inediyali

all are given an identical time-bound and therefore they In UAI, pages 141-148.

should be always preferred. Gogate, V. and Dechter, R. (2005). Approximate inferenge-al
. rithms for hybrid Bayesian networks with discrete constisi
Several avenues remain for future work, such as: (a) de- | yal, pages 209-216.

signing good proposal distributions over the w-cutset-vari Gogate, V. and Dechter, R. (2007). Samplesearch: A scheane th

ables, (b) developing variance reduction schemes that take gearches for consistent sampl&sSTATSpages 147-154.

advantage of local structure such as context specific inde('sogate V. and Dechter, R. (2008). AND/OR Importance Sam-

pendence (Boutilier et al., 1996) and combining them with  pjing. 1n UAI, pages 212-219.

AND_/OR w-cutset sampling and (c) (_jevelopmg Sequem"”“Gomes, C. P., Hoffmann, J., Sabharwal, A., and Selman, B.
versions of AND/OR w-cutset sampling.

(2007). From sampling to model counting. IBCAI, pages
2293-2299.
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