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Abstract

Hartigan’s method for k-means clustering is
the following greedy heuristic: select a point,
and optimally reassign it. This paper de-
velops two other formulations of the heuris-
tic, one leading to a number of consistency
properties, the other showing that the data
partition is always quite separated from the
induced Voronoi partition. A characteriza-
tion of the volume of this separation is pro-
vided. Empirical tests verify not only good
optimization performance relative to Lloyd’s
method, but also good running time.

1 Introduction

Clustering is the classical problem of dividing a data
sample {xi}n1 in some space X into a collection of dis-
joint groups. This selection is often formulated as min-
imization of an objective function. One of the most
popular notions of clustering, k-means, chooses k clus-
ters {Cj}k1 which minimize

k∑
j=1

inf
yj∈X

∑
i∈Cj

‖xi − yj‖2.

In this paper, X = Rd, and ‖ · ‖ denotes the Euclidean
norm. Conveniently, the inf is realizable—indeed, it
is always µ(Cj), the barycenter (mean) of Cj . Al-
though it is not considered in this paper, the minimiz-
ing yj is still the barycenter when ‖ · ‖2 is replaced
with any other Bregman divergence (Banerjee et al.
2005). As one may suspect, optimizing k-means cost
is NP-hard, even in the plane (Mahajan, Nimbhorkar,
and Varadarajan 2009).
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The k-means objective function is appealing for a num-
ber of reasons. It can be shown to minimize within-
cluster distance while maximizing between-cluster dis-
tance, which is perhaps the most intuitive notion of
a good clustering (Ding and He 2004). The objec-
tive function itself can be seen as minimizing the size-
weighted sample variance of each Cj , and as such is a
good technique for selecting cluster for stratified sam-
pling (Fisher 1958). Another justification is the task of
vector quantization, where one seeks a codebook {yj}k1
with minimal sum-squared error. Finally, it can be in-
terpreted as a hard assignment analogue of EM applied
to a mixture of equally weighted spherical covariance
gaussians.

The most prevalent optimization heuristic for k-means
cost is Lloyd’s method: given some initial cluster-
ing, repeatedly compute the µ(Cj)’s and assign points
to their closest centers (Lloyd 1982; MacQueen 1967;
Forgey 1965). This scheme is intuitive, and empirical
support is favorable: the technique generally seems to
find a good solution in a small number of iterations.

Theoretical support for Lloyd’s method is varied. Al-
though the cost is guaranteed to decrease with each
iteration, it may still be unboundedly worse than the
global optimum (cf. section 2.4). On the other hand,
it may be initialized with kmeans++, a randomized
greedy strategy which takes only O(nkd) iterations
and immediately grants an expected approximation ra-
tio of O(log k) (Arthur and Vassilvitskii 2007). Addi-
tionally, the number of iterations of Lloyd’s method, in
the worst case, can be1 Ω(2n) (Vattani 2009), however
a smoothed analysis reconciles this with the fast em-
pirical convergence by showing a polynomial smoothed
complexity (Arthur, Manthey, and Röglin 2009).

In this paper, we resurrect an old heuristic, due to
Hartigan (Hartigan 1975): repeatedly pick a point, and
determine its optimal cluster assignment. The obvious
distinction with Lloyd is that the algorithm proceeds
point by point. More interestingly, whereas Lloyd’s

1Θ, Ω and ω are shorthand for asymptotically equal to,
greater than or equal to, and greater than; for instance,
f = o(g) iff g = ω(f).
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method only iterates if some cluster has a point closer
to some other cluster’s center, Hartigan’s method takes
into account the motion of the means resulting from
the reassignment—that is, it may reassign a point to
another cluster, even if it is already assigned to the
closest center.

Section 2 presents Hartigan’s method in three ways,
each providing a different perspective on the choices
made by the algorithm. The first is as above, stating
that the algorithm simply greedily reassigns points to
clusters. The second view is with respect to the dis-
tances of points to centers, and immediately leads to
Theorem 2.2, stating the set of local optima of the al-
gorithm is a strict subset of those of Lloyd’s method.
The third view is perhaps the most important, showing
that the data partition induced by Hartigan’s method
is tighter, in a strong sense, than the Voronoi parti-
tion induced by the cluster centers. This is of particu-
lar interest since it provides new insight into k-means
global optima in general. The section closes with a
brief overview of some example behaviors.

Section 3 provides a characterization of situations
where Hartigan’s method will improve upon Lloyd’s
method. This analysis stems from the third view of
Hartigan’s method as described above, which effec-
tively states that the Voronoi partition it finds upon
termination (and also any globally optimal k-means
clustering) will have a large quantity of empty space.
Accordingly, Theorem 3.1 provides a lower bound on
this extra space.

Section 4 provides empirical support of the quality of
the algorithm. First, three synthetic data sets high-
light the improvement under three varying conditions
reflecting predictions of Theorem 3.1. The section
continues with real-world examples, which reflect the
same performance trends. Although it is not treated
analytically in this paper, the tests also demonstrate
speedier convergence for Hartigan’s method.

To close, section 5 presents open problems.

2 Hartigan’s Method

As in the introduction, the space is Rd, and there are n
examples {xi}n1 ⊂ Rd. There are k clusters {Cj}k1 with
centers µ(Cj) = |Cj |−1

∑
i∈Cj

xi. The k-means cost of
a cluster Cj with respect to a point z is φ(Cj , z) =∑
i∈Cj
‖xi − z‖2. We will typically refer to the k-

means cost of Cj , denoted by φ(Cj) = φ(Cj , µ(Cj)).
A clustering {Cj}k1 on {xi}n1 induces a labeling {yi}n1 ,
yi ∈ {1, . . . , k}. For convenience, the cardinality |C|
of a cluster C will frequently be denoted by C itself;
context will always disambiguate notions.

A standard result from the k-means literature is the
following bias-variance decomposition of k-means cost:

φ(C, z) = φ(C) + C‖µ(C)− z‖2. (1)

Denote the cost of merging two clusters A,B by
∆(A,B) = φ(A ∪ B) − φ(A) − φ(B). For nonempty
A,B, using (1) and some algebra gives

∆(A,B) =
AB

A+B
‖µ(A)− µ(B)‖2. (2)

When either of A or B are empty, set ∆(A,B) = 0.

2.1 Holistic Formulation

The first formulation of Hartigan’s method is the most
direct. Before providing the pseudocode, it is useful to
characterize the exact behavior mathematically. Con-
sider two sets S, T , and a point x ∈ S. The principal
question is the how much the cost improves by moving
x to T ; i.e., what is the value of

Φ(x;S, T ) = φ(S) + φ(T )− φ(S \ {x})− φ(T ∪ {x})?

Half of this is granted by (2), since φ(T∪{x})−φ(T ) =
∆(T, {x}) = T/(T +1)‖µ(T )−x‖2. For the other half,
(2) grants φ(S)−φ(S \{x}) = (S−1)/S‖µ(S \{x})−
x‖2. Performing some linear algebra and combining
the two halves gives

Φ(x;S, T ) =
T

T + 1
‖µ(T )− x‖2 − S

S − 1
‖µ(S)− x‖2.

Using Φ, a succinct formulation of Hartigan’s method
is possible.

H1({xi}n1 , {yi}n1 ):

• Set {Cj}k1 to match {yi}n1 , and compute {µ(Cj)}k1 .

• While ∃i, j � Φ(xi;Cyi , Cj) > 0:

– Set (xi, yi)← Select({xi}n1 , {yi}n1 ).
– Choose l← argmaxj Φ(xi;Cyi

, Cj).
– Update {yi}, Cyi , Cj , µ(Cyi), µ(Cj).

• Return {yi}n1 .

The technique is parameterized by a function Select,
which chooses the point to improve. If Select tra-
verses the points in order, the original form of Har-
tigan’s method is exactly recovered (Hartigan 1975).
It may seem beneficial to have Select choose the
point providing the best improvement in cost, and in-
deed this choice can be used to show some nice prop-
erties of the algorithm. As will be discussed later,
this technique yields little improvement empirically,
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Figure 1: Avoiding a local minimum of Lloyd’s
method; points are circles, centers are diamonds, and
clusters are denoted by their convex hulls. An iter-
ation of Hartigan’s method will reassign one point,
since (as denoted by the arrow) its extended radius
is within reach of another center (cf. section 2.2).
The notch indicates the radius considered by Lloyd’s
method. Correspondingly, the point is well within its
cluster’s Voronoi cell, but outside its cluster’s circlonoi
cell (cf. section 2.3).

and is avoided due to its increased complexity. Note
that in order to guarantee termination, Select needs
some regularity: in particular, it should only choose
points which yield no improvement a bounded num-
ber of times. Henceforth, to simplify discussion, it is
assumed that Select returns a point which can im-
prove cost (the loop condition assures the existence of
such a point).

2.2 Point-relative Formulation

Rearranging Φ(xi;Cyi
, Cj) > 0 yields

‖µ(Cj)− xi‖ < ‖µ(Cyi
)− xi‖

√
Cyi(Cj + 1)
Cj(Cyi

− 1)
,

with the convention that z/0 =∞ for any z ∈ R. This
gives the second formulation of Hartigan’s method,
where α(S, T ) =

√
S(T + 1)/(T (S − 1)).

H2({xi}n1 , {yi}n1 ):
Same as H1, except with iteration condition

∃i, j � ‖µ(Cj)− xi‖ < α(Cyi
, Cj)‖µ(Cyi

)− xi‖.

Note that when |S| > 2 and |T | > 1, α(S, T ) ≤ 2.

More importantly, regardless of |S| and |T |, α > 1.
Consider for comparison the online version of k-means,
which selects a point xi and reassigns it if there exists
a Cj such that ‖µ(Cj)−xi‖ < ‖µ(Cyi

)−xi‖. One can
interpret online k-means as maintaining an open ball
of radius ‖µ(Cyi)− xi‖ around each xi, and changing
yi iff there is some Cj with µ(Cj) inside this ball. H2,
on the other hand, uses an extended ball with a radius
α(Cyi

, Cj) times as large. From this it is immediate
that H2 can escape certain local optima which trap
online k-means, as demonstrated in figure 1.

In the experiments of section 4, Lloyd’s method and
online k-means exhibit similar optimization perfor-
mance; this is in agreement with the experimental re-
sults comparing Lloyd and online k-means provided by
Har-Peled et al. in (Har-Peled and Sadri 2005) 2 Al-
though no formal justification is provided here for this
phenomenon, there is perhaps a deeper explanation,
as mentioned in section 5. As such, it often suffices to
consider the simpler comparison of Hartigan’s method
versus online k-means.

From these two formulations of Hartigan’s method, it
is easy to establish a few basic properties of the algo-
rithm.

Theorem 2.1. Hartigan’s method has the following
properties:

(1) The cost sequence is strictly decreasing.

Additionally, when there are n ≥ k distinct points:

(2) The resulting partition has no empty clusters.

(3) The resulting partition has distinct means.

Before proceeding, note that although these are prop-
erties of basic value, they are not all satisfied by Lloyd
and its online variant. In particular: (1) is satisfied
by Lloyd and online k-means; (2) holds for online k-
means, but not for Lloyd; (3) is satisfied by neither.
As an example of the last point, place four data points
on the corners of a square, with the diagonals com-
prising two clusters, their common center being the
two means; unlike Hartigan’s method, Lloyd and on-
line k-means will not iterate.

Proof. For (1), note that the algorithm only iterates
if there is a point whose reassignment will improve
cost, and in this iteration the algorithm only chooses
improving assignments.

2In (Har-Peled and Sadri 2005), online k-means bears
the name SinglePnt; the name used in this paper matches
that of (Bottou and Bengio 1995).
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For (2), suppose contradictorily that some cluster is
empty. Then some cluster has at least 2 distinct
points. But by assigning any of these points to the
empty cluster and leaving the rest as they are, the cost
goes down. But the existence of this situation contra-
dicts the fact that Hartigan’s method terminated.

For (3), suppose contradictorily that the algorithm ter-
minates and there are two clusters S, T with µ(S) =
µ(T ). By (2), |S|, |T | ≥ 1, and since all points are
distinct, there exists some point x ∈ S ∪ T with
x 6= µ(S) = µ(T ); without loss of generality take
x ∈ S. Then, since α(S, T ) > 1, ‖µ(T ) − x‖ =
‖µ(S) − x‖ < α(S, T )‖µ(S) − x‖, meaning the algo-
rithm can iterate, contradicting the assertion that it
terminated.

Theorem 2.2. The set of local optima of Hartigan’s
method is a (possibly strict) subset of the set of local
optima of Lloyd’s method (and hence online k-means).

Theorems 2.4 and 3.1 quantify this reduction.

Proof. First note that Lloyd and online k-means have
the same set of optima: Lloyd cannot iterate iff every
point is assigned to its nearest mean iff online k-means
cannot iterate.

Next consider the case that Hartigan’s method termi-
nates. Therefore, for every point xi, and any other
cluster Cj , the termination condition gives ‖µ(Cyi

) −
x‖ < ‖µ(Cj)− x‖, meaning Lloyd and online k-means
will not iterate.

Figure 1 shows a situation where the relationship is
strict.

2.3 Cluster-relative Formulation

Consider two clusters S, T with means µ(S), µ(T ). Un-
der what condition would a point x switch from S to
T? To be precise, what is the form of the set

Xβ = {x : ‖µ(S)− x‖ = β‖µ(T )− x‖}?

In the case of online k-means, β = 1, and this set is the
hyperplane of points equidistant from each center. A
point x will not be reassigned iff it lies in the halfspace
containing its current center. In the case that k > 2
and x ∈ S, then the clustering is stable with respect to
online k-means iff it is in the same halfspace as µ(S)
for every pair of clusters containing S. Thus x is in
the intersection of these halfspaces, which is precisely
a Voronoi cell, and thus online k-means stops when the
Voronoi partition defined by its centers agrees with its
labeling {yi}n1 .

Now consider the case of Hartigan’s method, meaning
β ≥ infS,T α(S, T ) > 1. For convenience, fix some S, T
and take α = α(S, T ). After some algebra, the set Xα

is the (surface of the) hypersphere with center

ν(S;T ) = µ(S ∪ T ) +
ST (µ(S)− µ(T ))

S + T
(3)

and radius

ρ(S;T ) =
‖µ(S)− µ(T )‖

√
ST (S − 1)(T + 1)

S + T
(4)

= α‖ν(S;T )− µ(S)‖. (5)

(By convention, when |S| = 1, take ρ(S;T ) = ∞.)
This gives rise to a third formulation of Hartigan’s
Method.

H3({xi}n1 , {yi}n1 ):
Same as H1, except with iteration condition

∃i, j � ‖xi − ν(Cyi , Cj)‖ > ρ(Cyi , Cj).

Note that as |S|, |T | → ∞, then α → 1, and this is
simply the Voronoi partition. But in general, the sta-
ble partition is a collection of intersections of spheres.
Define the circlonoi cell of S to be the intersection
of these spheres, and define a circlonoi partition of
the data to be the collection of these cells. Note that
the circlonoi partition does not partition the space,
whereas it induces a partition of the data: in fact, un-
like the Voronoi partition, the union of its elements
forms a compact set. Figure 1 depicts a circlonoi par-
tition.

The following two theorems establish basic properties
of circlonoi partitions.

Theorem 2.3. For any S, T , it holds that µ(S), µ(T )
and µ(S ∪ T ) lie along the line segment connecting
ν(S;T ) and ν(T ;S).

Proof. Follows from the definition of ν(S;T ) and the
fact that µ(S) = µ(S ∪ T ) + T

S+T (µ(S)− µ(T )).

Theorem 2.4. Let S, T be two clusters as provided by
the termination of H3. Then every point of S∪T is at
a distance of at least ‖µ(S) − µ(T )‖/(2S + 2T ) from
the Voronoi boundary (hyperplane) between S and T .

Proof. Since the statement is equivalent with respect
to S or T , it suffices to consider S. H3 terminated,
so for any s ∈ S, ‖ν(S;T ) − s‖ ≤ ρ(S;T ); this is still
true after projecting all points of S onto the line con-
necting µ(S) and µ(T ). The Voronoi boundary passes
through that line at the coordinate (µ(S) + µ(T ))/2,
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so it suffices to lower bound∥∥∥∥ν(S;T )− µ(S) + µ(T )
2

∥∥∥∥− ρ(S;T )

=
‖µ(S)− µ(T )‖

2(S + T )

(
2ST + S − T

− 2
√
ST (S − 1)(T + 1)

)
.

Since
√
x ≤ (x+ 1)/2, its first-order Taylor expansion

at 1, then

2
√
ST (S − 1)(T + 1)

= 2ST
√

1 + (S − T − 1)/ST
≤ 2ST + S − T − 1.

Inserting this into the above yields the desired lower
bound.

Perhaps the strongest result of this statement is what
it says about the k-means global optimum, which is by
necessity a (local) optimum of Hartigan’s method.

Corollary 2.5. The k-means global optimum is con-
sistent with the circlonoi partition of the data, as
given by (3) and (4). Moreover, for any two clusters
S, T , the corresponding Voronoi boundary is at least
‖µ(S)− µ(T )‖/(2S + 2T ) away from each point.

2.4 Iteration Examples

Consider four points at the corners of a rectangle hav-
ing height 1 and width a ≥ 1. Lloyd’s method, if ini-
tialized to the two clusters having width a, will never
leave this configuration, resulting in a cost of a2; and
of course, a can be made arbitrarily large. Notice
that Hartigan’s method will leave this configuration if
a >

√
2, guaranteeing a bounded approximation fac-

tor.

Unfortunately, Hartigan’s method still has examples
with unbounded approximation factor. (But by The-
orem 2.2, these are also bad for Lloyd.) In particular,
place 3 optimal centers equally spaced on the real line,
and surround each with a pair of points. As the point
separation goes to zero, the optimal cost goes to zero.
On the other hand, both Lloyd and Hartigan can get
stuck in a configuration putting 4 points in one cluster,
and two others as singletons.

As a final remark, note that although Lloyd’s method
can not iterate from a fixed point of Hartigan’s
method, it is still possible that Lloyd’s method
achieves a better optimization value. This is because
the algorithm makes different greedy choices through-
out its lifetime, and therefore can end up in a part of
the optimization space with completely different cost
structure.

3 Volume Analysis

Viewed intuitively, the results of the previous section
imply that Hartigan’s method should have a good
chance to escape the local optima of Lloyd’s method
(and online k-means). In particular, the excess vol-
ume between the circlonoi partition and the Voronoi
partition could potentially have non-trivial size (see
figure 1). Recall that any point in this excess volume
forces Hartigan’s method to iterate, which is not the
case with Lloyd’s method.

This section attempts to quantify this gap. In partic-
ular, it is shown that this space tends to grow when
d increases, when the cluster size decreases, and when
cluster separation decreases. As such, these are the
cases where we expect Hartigan’s method to outper-
form Lloyd’s method. This intuition is matched by
the experimental results of section 4. To quantify the
excess volume we look at a clustering where Lloyd’s
method terminated. The following definition provides
a useful characterization of the Voronoi partition de-
fined by this clustering.

Definition 3.1. Given a k-means instance, consider
a clustering which is stable for Lloyd’s method. We
say that the Voronoi partition defined by this k-means
clustering is an (m, ε)-Voronoi partition if it satisfies
the following properties:

(1) Every pair of adjacent Voronoi cells contains at
most m points.

(2) For every Voronoi cell the minimum distance from
its center to its boundary is at most ε.

The main theorem proved in this section is the follow-
ing.

Theorem 3.1. Let a k-means instance in [0, 1]d be
given. Consider any (m, ε)-Voronoi partition and the
corresponding circlonoi partition. Define Γ to be the
volume of the space in [0, 1]d not inside any circlonoi
cell. Then,

Vol(Γ) ≥
(

1− 2ε
(

1− 1
m

))d
−
(

1− 1
m

)d
.

Specifically,

Vol(Γ) ≥
(

1
e

)Θ(εd)

−
(

1
e

)Θ(d/m)

. (6)

Theorem 3.1 provides a lower bound on the excess vol-
ume Γ between the circlonoi partition and the Voronoi
partition for any instance in the unit hypercube. This
bound corroborates earlier discussion identifying when
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Figure 2: Performance on synthetic data; please see section 4.

Hartigan’s method is better than Lloyd’s method. In-
deed, the two terms in (6), as well as their develop-
ment in the proof, have an intuitive explanation. Sup-
pose one were to shrink the Voronoi cells so that the
circlonoi cells are still contained within them (Theo-
rem 2.4 grants the existence of a non-trivial scaling).
The second term in (6) quantifies the volume of these
new cells, while the first term is an adjustment for
the fact that our attention is restricted to [0, 1]d, and
thus shrinkage along the hypercube surface should be
discarded. The parameter ε governs the permissible
shrinkage. As expected, increasing d or decreasing m
gives rise to more Voronoi faces, and therefore more
empty space. However, if d grows too fast, namely
d = ω(1/ε), most of the faces of a Voronoi cell will be
adjacent to the edges of the hypercube, yielding little
room for improvement by Hartigan’s method.

Proof. Throughout the proof, Voronoi cells and cir-
clonoi cells are understood to be intersected with
[0, 1]d; thus every Voronoi cell is bounded. When
quantifying shrinkage, the region along the hypercube
boundary must be ignored. For a Voronoi cell S, let CS
be the circlonoi cell of S (formally, intersection (over
T ) of spheres of center ν(S;T ) and radius ρ(S;T )).
Let

εS =
1
2

min
T∈adj(S)

‖µ(S)− µ(T )‖.

be the minimum distance from the center µ(S) of S
to the boundary of an adjacent Voronoi cell. Consider
the hypothetical cell S′ obtained by scaling down S by
a factor of (1− 1

m ) (S′ will have the same center as S).
Note that

εS′ = εS(1− 1
m

) = εS −
1
2

min
T∈adj(S)

‖µ(S)− µ(T )‖
m

.

Consider first the case when S is not adjacent to a face
of the hypercube. Then Theorem 2.4 assures that CS

is contained in S′. In the other case, since εS < ε, CS
is contained in S′ ∪BS where

BS = ([0, 1]d − [γ, 1− γ]d) ∩ S

with γ = ε(1 − 1
m ). Observing that Vol(S′) =

Vol(S)(1 − 1
m )d and that S′ ∩ BS = ∅, we conclude

that∑
S

Vol(CS) ≤
∑
S

(Vol(S′) + Vol(BS))

=
∑
S

Vol(S)(1− 1
m

)d +
∑
S

Vol(BS)

≤ (1− 1
m

)d
∑
S

Vol(S) + (1− (1− 2γ)d)

= (1− 1
m

)d + (1− (1− 2γ)d).

The first part of the theorem follows since Vol(Γ) =
1−

∑
S Vol(CS) and by definition of γ.

For the second part, observe that m ≥ 2 implies γ =
Θ(ε). Thus, inequality (6) follows from the fact that,
for x bounded away from 1, (1− 1

x ) = (1
e )Θ(1/x), which

in turn follows by the Taylor expansion e−y = 1− y+
O(y2) for |y| < 1.

Theorem 3.1 has some surprising implications. Imag-
ine a scenario with k = Θ(n) very balanced, small
clusters; in the jargon of Theorem 3.1, m = O(1) and
ε = o(1/d). Then, inequality (6) entails that the ex-
cess volume Γ with increasing dimension d, tends to
the whole volume! Also, even for constant dimension,
Γ covers a constant factor of the (bounded) space. Al-
though this scenario was constructed for simplicity, a
uniform distribution of n points and k centers in the
unit hypercube will be close to having this regularity
property: in expectation, for d = o(log n), it will be
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m = n/k and ε = k−1/d which matches the above
scenario when k = Θ(n).

4 Empirical Performance

Theorem 2.2 states that Hartigan’s method has at
most as many local optima as Lloyd’s method. The-
orem 2.4 shows that Hartigan’s method is a little bit
more picky about the data partition it settles upon.
Theorem 3.1 states that this pickier partition must be
finer, potentially by a great degree. How are these
statements reflected in real data?

First consider the results from three synthetic data
sets, presented in figure 2: “simplex gaussians” places
8 identical gaussians with equal weight at the vertices
of a simplex; “sphere surface” places points uniformly
on the surface of a sphere; “unit hypercube” places
points uniformly in the volume of a ten-dimensional
hypercube. To perform the tests, 100 points were
drawn from each model, and then all algorithms were
run; this process was repeated 20 times. Each data set
highlighted the effect of varying a different parameter:
“simplex gaussians” varied the standard deviation of
the gaussians; “sphere surface” varied the dimension
of the sphere; “unit hypercube” varied the number of
clusters the algorithm was asked to find. (For the other
models, k was fixed at 8.) Clusters were initialized by
choosing k random centers, and assigning points to the
nearest center (trends for kmeans++ initialization are
similar).

The results report the optimization performance after
initialization, and after converging each of the three
heuristics. For each of these four, a corresponding re-
gion connects the minimum cost and mean cost curves.
Choosing points more carefully in Hartigan’s method
and online k-means did not affect results, and is thus
not reported. A few important trends are immedi-
ately visible. The relative improvement of Hartigan’s
method versus Lloyd’s method increases with σ, k, and
d, which is in agreement with our intuition and theory.
Interestingly, online k-means and Lloyd have nearly in-
distinguishable performance characteristics.

Table 1 provides a summary of empirical results:
“cloud” is a UCI data set employed in (Arthur and
Vassilvitskii 2007) (1024 points, 10 dimensions); “kiss”
is a vector quantization problem provided by (Har-
Peled and Sadri 2005) and originally used in (Kanungo
et al. 2004) (10,000 points, 3 dimensions); “wave” is
Hokusai’s painting “The Great Wave off Kanagawa”
divided into patches of size 4x4 and 8x8 (7992 points
each); “wine” is from the UCI database (6497 points,
12 dimensions). All tests were repeated 16 times.

Performance is only presented as a ratio between

ds init k mico meco mini meni

cloud

++ 10 1.000 0.984 1.000 0.497
++ 50 0.992 0.958 0.556 0.786
++ 100 0.942 0.937 0.667 0.653
rs 10 0.999 0.816 1.062 0.782
rs 50 0.957 0.785 0.923 0.667
rs 100 0.876 0.904 0.800 0.637

kiss

++ 50 0.984 0.993 0.606 0.663
++ 100 1.000 0.992 0.571 0.539
++ 400 0.955 0.958 0.765 0.733
rs 50 0.985 0.984 0.640 0.535
rs 100 1.011 0.988 0.574 0.562
rs 400 0.936 0.933 0.621 0.774

wave4

++ 50 0.992 0.990 0.792 0.807
++ 100 0.980 0.978 0.833 0.771
++ 400 0.920 0.918 0.560 0.607
rs 50 0.990 0.989 0.603 0.726
rs 100 0.974 0.968 0.768 0.757
rs 400 0.891 0.886 1.586 1.899

wave8

++ 50 0.987 0.986 0.727 0.862
++ 100 0.973 0.968 0.636 0.746
++ 400 0.918 0.913 0.765 0.789
rs 50 0.991 0.989 0.679 0.690
rs 100 0.976 0.972 0.696 0.767
rs 400 0.887 0.878 1.857 2.179

wine

++ 25 0.994 0.989 0.591 0.683
++ 50 0.990 0.986 0.519 0.616
++ 200 0.976 0.973 0.778 0.654
rs 25 0.998 0.987 0.558 0.561
rs 50 0.949 0.992 0.808 0.639
rs 200 0.929 0.861 0.619 0.599

Table 1: Relative performance on real-world data;
please see section 4. Mico, meco, mini, meni respec-
tively refer to min cost, mean cost, min iterations,
mean iterations.

Hartigan’s method (using ordered selection), and
Lloyd’s method. The tests were in fact run
with online k-means, online k-means initialized with
Lloyd’s method, and Hartigan’s method initialized
with Lloyd’s method, however Lloyd and online k-
means were indistinguishable, and initializing Harti-
gan’s method with the result of Lloyd’s method gave
no advantage. Note that the ratio is of corresponding
attributes: thus min cost (“mico”) means the best op-
timization cost of Hartigan’s method, divided by the
best optimization cost of Lloyd’s method. On aver-
age, Hartigan’s method provides an improvement of
roughly 5-10%.

There are a number of important trends. As predicted
by the theory and intuition, data sets with higher
dimension generally feature stronger performance by
Hartigan’s method. Additionally, Hartigan’s method’s
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improvement grows as k is increased.

In general, the solutions obtained with kmeans++ ini-
tialization are vastly better, and the relative improve-
ment of Hartigan’s improvement over Lloyd’s method
is less dramatic. This could be in part due to the close-
ness of the kmeans++ partition to the global optimum,
however there is perhaps another explanation. Intu-
itively, kmeans++ is picking out well-separated clusters.
Said another way, the fringes of the Voronoi cells de-
marcated by kmeans++ will be almost empty. But this
is precisely the region Hartigan benefits from, as de-
scribed in Theorem 2.4 and measured in Theorem 3.1.

The table also presents the relative number of itera-
tions. Here, a single iteration of Hartigan’s method
means that all points are cycled over. This corre-
sponds roughly, in time complexity, to the amount of
work done per iteration in a standard implementation
of Lloyd’s method. In general, many fewer iterations
are required.

5 Open Problems

To summarize, Hartigan’s method is likely to find a
slightly more refined k-means clustering than Lloyd’s
method, as demonstrated both theoretically and em-
pirically. Many questions remain, however.

First, how long does it take? Although Lloyd’s method
requires super-polynomially many iterations, online
k-means requires only poly(n, k,D) iterations, where
D is the spread of the dataset (Har-Peled and Sadri
2005). Theorems 2.3 and 2.4 show that the behavior of
the algorithm is very constrained, and thus any super-
polynomial example would be extremely delicate. As
such, a smoothed analysis would most likely give poly-
nomial running time.

Next, nothing prevents the algorithm from optimiz-
ing gaussian mixture likelihood with hard assignments
equal cluster weights, but differing covariance matri-
ces: simply rewrite H2 with Mahalanobis distance.
What can be said about this heuristic?

Third, one of the shocking outcomes of the empirical
results is that online and batch versions of Lloyd’s al-
gorithm are essentially equivalent from the perspective
of optimization performance. Recent work has related
the generalization performance of batch and stochas-
tic gradient algorithms for classification (Bottou and
Bousquet 2008); perhaps a related story can be made
in clustering.

Fourth, Theorems 2.3 and 2.4 give new properties
which the global optimum of k-means must satisfy.
Does this yield any new optimization algorithms?

Lastly, Lloyd’s method can be implemented in ways

generally vastly faster than the naive implementation
alluded to above. Are there ways to speed up Harti-
gan’s method? Hartigan and Wong developed an op-
timized version of the algorithm (Hartigan and Wong
1979), however there has been no theoretical analysis
of this work.

Acknowledgements

The authors would like to thank Sanjoy Dasgupta,
Daniel Hsu, and Aditya Menon for helpful discussions,
and the reviewers for the careful criticism. The au-
thors also thank David Arthur and Sariel Har-Peled
for making their datasets publically available.

References

Arthur, D., B. Manthey, and H. Röglin (2009). “k-Means
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