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A. Proof of Proposition 3
Proof. It follows
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B. Derivation for Categorical Distribution
We derive the Fisher information matrix, its inverse and
square root, and the natural gradient for the categorical
distribution defined on C = J1,m1K× · · · × J1,mncK.

In our parameterization θ = (θ1, . . . , θnc), the probabil-
ity of i-th (i ∈ J1, ncK) categorical variable [c]i to be
j ∈ J1,mi − 1K is [θ]i,j = [θi]j , and 1 −∑mi−1

j=1 [θ]i,j
is the probability of [c]i = mi. For the sake of sim-
plicity, we denote [θ]i,mi = 1 − ∑mi−1

j=1 [θ]i,j . Then,
T (c) = (T1([c]1), . . . , Tnc([c]nc)), where Ti : J1,miK →
[0, 1]mi−1 is the one-hot representation without the last ele-
ment. It is the exponential parameterization as θ = E[T (c)].

The inverse of the Fisher information matrix simply follows
from the formula for the exponential family: F(θ)−1 =
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E[(T (c) − θ)(T (c) − θ)T]. It is a block diagonal ma-
trix F(θ)−1 = diag(F1(θ1)−1, . . . ,Fnc(θnc)−1), where
Fi(θi)

−1 = diag(θi)− θiθTi . Sherman-Morrison formula
reads Fi(θi) = diag(θi)

−1 +(1−∑mi−1
j=1 [θi]j)

−111T and
we have F(θ) = diag(F1(θ1), . . . ,Fnc(θnc)).

As the Fisher information matrix is block-diagonal, and
each block is of size mi − 1, a naive computation of F(θ)

1
2

requires O(
∑nc

i=1(mi − 1)3). This is usually not expensive
as nc � mi. An alternative way that we employ in this
paper is to replace F(θ)

1
2 with a tractable factorization A

with F(θ) = AAT. Our choice of A is the block-diagonal
matrix whose i-th block is square, of size mi − 1, and

Ai = diag(θi)
− 1

2 +
1√

[θ]i,mi + [θ]i,mi
1
√
θi

T
,

where
√
θi is a vector whose j-th element is the square

root of [θ]i,j . Then, the product of A and a vector can be
computed in O(

∑nc

i=1(mi − 1)). In our preliminary study
we did not obverse any significant performance difference
by this approximation.

C. Derivation for Gaussian Distribution
We derive the Fisher information matrix, its inverse and
square root, and the natural gradient for the Gaussian distri-
bution defined on C ⊆ Rnc .

Our choice is Pθ = N (µ1, σ
2
1)×· · ·×N (µnc , σ

2
nc

) and θ =
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2
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1 , . . . , µnc , µ
2
nc

+ σ2
nc

). Then, we have T (c) =
(T1([c]1), . . . , Tnc([c]nc)) with Ti([c]i) = ([c]i, [c]2i ). It is
the exponential parameterization as θi = (µi, µ

2
i + σ2

i ) =
E[Ti([c]i)] and θ = (θ1, . . . , θnc).

The inverse of the Fisher information matrix simply fol-
lows from the formula for the exponential family. F(θ)−1

is a block-diagonal matrix with block size 2 whose i-th
block is Fi(θi)

−1 = [σ2
i , 2µiσ

2
i ; 2µiσ

2
i , 4µ

2
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i ].
Since each block is a symmetric matrix of dimension 2,
its eigen decomposition Fi(θi)

−1 = EΛET can be an-
alytically obtained. With the decomposition, we have
Fi(θi) = EΛ−1ET and F(θi)

1
2 = EΛ−

1
2ET. Then, we

have F(θ) = diag(F1(θ1), . . . ,Fnc(θnc)) and F(θ)
1
2 =

diag(F1(θ1)
1
2 , . . . ,Fnc(θnc)

1
2 ).



Adaptive Stochastic Natural Gradient Method for One-Shot Neural Architecture Search: Supplemental Material

D. Restriction for the Range of θ
To guarantee that the Fisher information matrix is nonsingu-
lar and the natural gradient is well defined, we restrict the
domain Θ of the parameter of the probability distribution.

For the categorical distribution, we set Θ =

[θmin
1 , θmax

]m1−1 × · · · × [θmin
nc

, θmax]mnc−1, where
θmin
i = 1

nc(mi−1) and θmax = 1 − 1
nc

. Then, a small yet
positive probability for all combinations of categorical
variables is guaranteed and the Fisher information matrix is
nonsingular at any point of Θ.

To force the parameter to live in Θ, we apply the following
steps after θ update:

[θ]i,j ← max{[θ]i,j , θmin
i } for all i, j, then

[θ]i,j ← [θ]i,j +
1−∑mi

k=1[θ]i,k∑mi
k=1

(
[θ]i,k − θmin

i

) ([θ]i,j − θmin
i

)
.

The first line guarantees [θ]i,j ≥ θmin
i . The second line

ensures
∑mi
j=1[θ]i,j = 1, while keeping [θ]i,j ≥ θmin

i .

For the integer variables, the parameters of the Gaussian
distributions, [θ]i,1 := µi and [θ]i,2 := µ2

i + σ2
i , are forced

to be in a compact set as follows. The range of the mean
value of each integer variable is [µmin

i , µmax
i ], which is the

same as the range of the integer variable. The standard
deviation is forced to be no smaller than σmin

i = 1/4 and
no greater than σmax

i = (µmax
i − µmin

i )/2. To keep the
parameters inside these ranges, after every θ update we clip
[θ]i,1 to [µmin

i , µmax
i ] and [θ]i,2 to [[θ]2i,1 + (σmin

i )2, [θ]2i,1 +

(σmax
i )2]. If the variables are real-value, rather than integer,

then σmin
i may be set smaller depending on the meaning of

the variable.

E. Experimental Details
E.1. Toy Problem

To check the robustness of ASNG for the hyper-parameter
α, we ran ASNG on the selective squared error function
with the varying α and initial step-size δ0θ for the step-sizes
of εx = {0.05, 0.0005}. Figure 1 shows the performance
of ASNG with the different α settings. We observe that the
hyper-parameter α is not sensitive for the performance, and
ASNG reaches the target value for all settings.

E.2. Image Classification

Dataset: We use the CIFAR-10 dataset which consists of
50,000 and 10,000 RGB images of 32 × 32, for training
and testing. All images are standardized in each channel
by subtracting the mean and then dividing by the standard
deviation. We adopt the standard data augmentation for
each training mini-batch: padding 4 pixels on each side,
followed by choosing randomly cropped 32 × 32 images
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Figure 1. Performance of ASNG with the different α settings on
the selective squared error function for εx = 0.05 (left) and 0.0005
(right). Median values over 100 runs are reported.
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Figure 2. Overall model structure for the classification task.

and by performing random horizontal flips on the cropped
images. We also apply the cutout (DeVries & Taylor, 2017)
to the training data.

Search Space: Figure 2 shows the overall model structure
for the classification task. We optimize the architecture
of the normal and reduction cells by ASNG-NAS. In the
retraining phase, we construct the CNN using the optimized
cell architecture with an increased number of cells N and
channels. In the reduction cell, all operations applied to
the inputs of the cell have a stride of 2, and the number of
channels is doubled to keep the dimension of the output
roughly constant.

Training Details: In the architecture search phase, we fix
affine parameters of batch normalizations for the purpose
of absorbing effect of the dynamic change in architecture.
We apply weight decay of 3 × 10−4 and clip the norm of
gradient at 5. In the retraining phase, we make all batch
normalizations have learnable affine parameters because
the architecture no longer changes. We apply the Sched-
uledDropPath (Zoph et al., 2018) dropping out each path
between nodes, and the drop path rate linearly increases
from 0 to 0.3 during the training. We also add the auxiliary
classifier (Szegedy et al., 2016) with the weight of 0.4 that
is connected from the second reduction cell. The total loss
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Figure 3. The best cell structures discovered by ASNG-NAS in the classification task.

is a weighted sum of the losses of the auxiliary classifier and
output layer. Other settings are the same as the architecture
search phase.

The best cell structures: The best cell structures that
achieve the error rate of 2.66% is displayed in Figure 3.

E.3. Inpainting

Dataset: The CelebA is a large-scale human face im-
age dataset that contains 202,599 RGB images. We select
101,000 and 2,000 images for training and test, respectively,
in the same way as Suganuma et al. (2018). All images
were cropped to properly contain the entire face by using
the provided the bounding boxes, and resized to 64 × 64
pixels. All images are normalized by dividing by 255, and
we perform data augmentation of random horizontal flipping
on the training images. We adopt three masks, Center, Pixel,
and Half, to make corrupted images. The purpose of the
task is to recover a clean image from the corrupted image
as much as possible. The masks in random pixel and half
image masks were randomly generated for each training
mini-batch and each test image.

Evaluation Measure: The PSNR is the metric evaluating
the error between the ground truth and restored images
and corresponds to the mean squared error (MSE). But the
PSNR are not very well matched to perceived visual quality
because the PSNR can not distinguish between the large
difference on local region and the small difference on overall
region. For this reason, the SSIM is also often used together
with the PSNR, and more clearly assesses difference in
each local region. We quantize the generated image within
[0, 255] followed by to calculate the PSNR and SSIM value.
The setting of SSIM is based on Wang et al. (2004).

Search Space: We employ the convolutional autoencoder
(CAE), which is similar to RED-Net (Mao et al., 2016), as
a base architecture. RED-Net consists of a chain of con-
volution layers and symmetric deconvolution layers as the

encoder and decoder parts, respectively. The encoder and
decoder parts perform the same counts of downsampling
and upsampling with a stride of 2, and a skip connection
between the convolutional layer and the mirrored deconvo-
lution layer can exist. For simplicity, each layer employs
either a skip connection or a downsampling, and the decoder
part is employed in the same manner. In the skip connected
deconvolution layer, the input feature maps from the encoder
part are added to the output of the deconvolution operation,
followed by ReLU. In the other layers, the ReLU activation
is performed after the convolution and deconvolution oper-
ations. We prepare six types of layers: the combination of
the kernel sizes {1× 1, 3× 3, 5× 5} and the existence of
the skip connection. The layers with different settings do
not share weight parameters.

To represent a symmetric CAE, it is enough to represent the
encoder part. We consider Nc hidden layers and the output
layer. We encode the type, channel size, and connections of
each hidden layer. The kernel size and stride of the output
deconvolution layer are fixed with 3× 3 and 1, respectively,
but the connection is determined by a categorical variable.
To ensure the feed-forward architecture and to control the
network depth, the connection of the i-th layer is only al-
lowed to be connected from (i−1) to max(0, i−b)-th layers,
where b (b > 0) is called the level-back parameter. Namely,
the categorical variable representing the connection of the
i-th layer has min(i, b) categories. Obviously, the first hid-
den layer always connects with the input, and we can ignore
this part. With this representation, there can exist inactive
layers that do not connect to the output layer. Therefore,
this model can represent variable length architectures by the
fixed-dimensional variables. We choose Nc = 20 and the
level-back parameter of b = 5.

ASNG-NAS (Cat) encodes the type and channel size of each
hidden layer by categorical variables with 6 and 3 categories,
respectively. We select the output channel size of each
hidden layer from {64, 128, 256}. It amounts to nc = 60
(# categorical variables) and nθ = 214 (dimension of θ). A
conceptual example of the symmetric CAE architecture and
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Figure 4. A conceptual example of the decoded symmetric CAE architecture and the corresponding categorical variables. The decoder
part is automatically decided from the encoder structure as a symmetric manner.
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Figure 5. Example of inpainting results obtained by ASNG-NAS.

the corresponding representation by the categorical variables
is shown in Figure 4. ASNG-NAS (Int) encodes the kernel
size and the channel size by integers in J1, 3K (corresponding
to {1 × 1, 3 × 3, 5 × 5}) and J64, 256K. The existence of
skip connection is determined by a categorical variable with
2 categories. It amounts to nc = 80 (# categorical and
integer variables) and nθ = 174 (dimension of θ).

Example of Inpainting Result: Figure 5 shows the ex-
ample of inpainting results obtained by ASNG-NAS.
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