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Abstract
It is well-known that the expressivity of a neural
network depends on its architecture, with deeper
networks expressing more complex functions. In
the case of networks that compute piecewise lin-
ear functions, such as those with ReLU activation,
the number of distinct linear regions is a natural
measure of expressivity. It is possible to construct
networks with merely a single region, or for which
the number of linear regions grows exponentially
with depth; it is not clear where within this range
most networks fall in practice, either before or
after training. In this paper, we provide a mathe-
matical framework to count the number of linear
regions of a piecewise linear network and mea-
sure the volume of the boundaries between these
regions. In particular, we prove that for networks
at initialization, the average number of regions
along any one-dimensional subspace grows lin-
early in the total number of neurons, far below the
exponential upper bound. We also find that the
average distance to the nearest region boundary at
initialization scales like the inverse of the number
of neurons. Our theory suggests that, even after
training, the number of linear regions is far below
exponential, an intuition that matches our empiri-
cal observations. We conclude that the practical
expressivity of neural networks is likely far below
that of the theoretical maximum, and that this gap
can be quantified.

1. Introduction
A growing field of theory has sought to explain the broad
success of deep neural networks via a mathematical charac-
terization of the ability of these networks to approximate dif-
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Figure 1. How many linear regions? This figure shows a two-
dimensional slice through the 784-dimensional input space of
vectorized MNIST, as represented by a fully-connected ReLU
network with three hidden layers of width 64 each. Colors denote
different linear regions of the piecewise linear network.

ferent functions of input data. Many such works consider the
expressivity of neural networks, showing that certain func-
tions are more efficiently expressible by deep architectures
than by shallow ones (e.g. Bianchini & Scarselli (2014);
Montufar et al. (2014); Telgarsky (2015); Lin et al. (2017);
Rolnick & Tegmark (2018)). It has, however, also been
noted that many expressible functions are not efficiently
learnable, at least by gradient descent (Shalev-Shwartz et al.,
2018). More generally, the typical behavior of a network
used in practice, the practical expressivity, may be very dif-
ferent from what is theoretically attainable. To adequately
explain the power of deep learning, it is necessary to con-
sider networks with parameters as they will naturally occur
before, during, and after training.

Networks with a piecewise linear activation (e.g. ReLU,
hard tanh) compute piecewise linear functions for which in-
put space is divided into pieces, with the network computing
a single linear function on each piece (see Figures 1-4). Fig-
ure 2 shows how the complexity of these pieces, which we
refer to as linear regions, changes in a deep ReLU net with
two-dimensional inputs. Each neuron in the first layer splits
the input space into two pieces along a hyperplane, fitting a
different linear function to each of the pieces. Subsequent
layers split the regions of the preceding layers. The local
density of linear regions serves as a convenient proxy for
the local complexity or smoothness of the network, with the
ability to interpolate a complex data distribution seeming to
require fitting many relatively small regions. The topic of



Complexity of Linear Regions in Deep Networks

counting linear regions is taken up by a number of authors
(Telgarsky, 2015; Montufar et al., 2014; Serra et al., 2018;
Raghu et al., 2017).

A worst case estimate is that every neuron in each new
layer splits each of the regions present at the previous layer,
giving a number of regions exponential in the depth. Indeed
this is possible, as examined extensively e.g. in Montufar
et al. (2014). An example of Telgarsky (2015) shows that
a sawtooth function with 2n teeth can be expressed exactly
using only 3n+ 4 neurons, as shown in Figure 3. However,
even slightly perturbing this network (by adding noise to
the weights and biases) ruins this beautiful structure and
severely reduces the number of linear pieces, raising the
question of whether typical neural networks actually achieve
the theoretical bounds for numbers of linear regions.

Figure 2. Evolution of linear regions within a ReLU network for
2-dimensional input. Each neuron in the first layer defines a linear
boundary that partitions the input space into two regions. Neurons
in the second layer combine and split these linear boundaries into
higher level patterns of regions, and so on. Ultimately, the input
space is partitioned into a number of regions, on each of which the
neural network is given by a (different) linear function. During
training, both the partition into regions and the linear functions on
them are learned.

Figure 1 also invites measures of complexity for piecewise
linear networks beyond region counting. The boundary
between two linear regions can be straight or can be bent in
complex ways, for example, suggesting the volume of the
boundary between linear regions as complexity measure for
the resulting partition of input space. In the 2D example of
Figure 1, this corresponds to computing perimeters of the
linear pieces. As we detail below, this measure has another
natural advantage: the volume of the boundary controls the
typical distance from a random input to the boundary of
its linear region (see §2.2). This measures the stability of
the function computed by the network, and it is intuitively
related to robustness under adversarial perturbation.

Our Contributions. In this paper, we provide mathematical
tools for analyzing the complexity of linear regions of a

Figure 3. The sawtooth function on the left with 2n teeth can be
expressed succinctly by a ReLU network with only 3n+4 neurons
(construction from Telgarsky (2015)). However, slight perturba-
tion of the weights and biases of the network (by Gaussian noise
with standard deviation 0.1) greatly simplifies the linear regions
captured by the network.

network with piecewise linear activations (such as ReLU)
before, during, and after training. Our main contributions
are as follows:

• For networks at initialization, the total surface area
of the boundary between linear regions scales as the
number of neurons times the number of breakpoints
of the activation function. This is our main result,
from which several corollaries follow (see Theorem 3,
Corollary 4, and the discussion in §2).

• In particular, for any line segment through input space,
the average number of regions intersecting it is linear
in the number of neurons, far below the exponential
number of regions that is theoretically attainable.

• Theorem 3 also allows us to conclude that, at initial-
ization, the average distance from a sample point to
the nearest region boundary is bounded below by a
constant times the reciprocal of the number of neurons
(see Corollary 5).

• We find empirically that both the number of regions
and the distance to the nearest region boundary stay
roughly constant during training and in particular are
far from their theoretical maxima. That this should be
the case is strongly suggested by Theorem 3, though
not a direct consequence of it.

Overall, our results stress that practical expressivity lags sig-
nificantly behind theoretical expressivity. Moreover, both
our theoretical and empirical findings suggest that for cer-
tain measures of complexity, trained deep networks are
remarkably similar to the same networks at initialization.
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In the next section, we informally state our theoretical and
empirical results and explore the underlying intuitions. De-
tailed descriptions of our experiments are provided in §3.
The precise theorem statements for ReLU networks can be
found in §5. The exact formulations for general piecewise
linear networks are in Appendix A, with proofs in the rest of
the Supplementary Material. In particular, Appendix B con-
tains intuition for how our proofs are shaped, while details
are completed in §C-D.

Figure 4. Graph of function computed by a ReLU net with input
and output dimension 1 at initialization. The weights of the net-
work are He normal (i.i.d. normal with variance = 2/fan-in) and
the biases are i.i.d. normal with variance 10−6.

2. Informal Overview of Results
This section gives an informal introduction to our results.
We begin in §2.1 by describing the case of networks with in-
put dimension 1. In §2.2, we consider networks with higher
input dimension. For simplicity, we focus throughout this
section on fully connected ReLU networks. We emphasize,
however, that our results apply to any piecewise linear acti-
vation. Moreover, the upper bounds we present in Theorems
1, 2, and 3 (and hence in Corollaries 4 and 5) can also be
generalized to hold for feed-forward networks with arbitrary
connectivity, though we do not go into details in this work,
for the sake of clarity of exposition.

2.1. Number of Regions in 1D

Consider the simple case of a ReLU net N with input and
output dimensions equal to 1. Such a network computes
a piecewise linear function (see Figure 4), and we are in-
terested in understanding both at initialization and during
training the number of distinct linear regions. There is a
simple universal upper bound:

max #{regions} ≤ 2#neurons, (1)

where the maximum is over all settings of weight and biases.
This bound depends on the architecture of N only via the
number of neurons. For more refined upper bounds which
take into account the widths of the layers, see Theorem 1 in
Raghu et al. (2017) and Theorem 1 in Serra et al. (2018).

The constructions in Montufar et al. (2014); Telgarsky
(2015); Raghu et al. (2017); Serra et al. (2018) indicate
that the bound in (1) is very far from sharp for shallow and
wide networks but that exponential growth in the number
of regions can be achieved in deep, skinny networks for
very special choices of weights and biases. This is a man-
ifestation of the expressive power of depth, the idea that
repeated compositions allow deep networks to capture com-
plex hierarchical relations more efficiently per parameter
than their shallow cousins. However, there is no non-trivial
lower bound for the number of linear regions:

min #{regions} = 1, ∀N .

The minimum is attained by setting all weights and biases
to 0. This raises the question of the behavior for the average
number of regions when the weights and biases are chosen
at random (e.g. at initialization). Intuitively, configurations
of weights and biases that come close to saturating the
exponential upper bound (1) are numerically unstable in
the sense that a small random perturbation of the weights
and biases drastically reduces the number of linear regions
(see Figure 3 for an illustration). In this direction, we prove
a somewhat surprising answer to the question of how many
regionsN has at initialization. We state the result for ReLU
but note that it holds for any piecewise linear, continuous
activation function (see Theorems 3 and 6).

Theorem 1 (informal). Let N be a network with piecewise
linear activation with input and output dimensions of N
both equal 1. Suppose the weights and biases are randomly
initialized so that for each neuron z, its pre-activation z(x)
has bounded mean gradient

E [‖∇z(x)‖] ≤ C, some C > 0. (2)

This holds, for example, for ReLU networks initialized with
independent, zero-centered weights with variance 2/fan-in.
Then, for each subset I ⊂ R of inputs, the average number
of linear regions inside I is proportional to the number of
neurons times the length of I

E [#{regions in I}] ≈ |I| · T ·#{neurons},

where T is the number of breakpoints in the non-linearity
of N (for ReLU nets, T = 1). The same result holds when
computing the number of linear regions along any fixed
1-dimensional curve in a high-dimensional input space.

This theorem implies that the average number of regions
along a one-dimensional curve in input space is proportional
to the number of neurons, but independent of the arrange-
ment of those neurons. In particular, a shallow network and
a deep network will have the same complexity, by this mea-
sure, as long as they have the same total number of neurons.
Of course, as |I| grows, the bounds in Theorem 1 become
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less sharp. We plan to extend our results to obtain bounds
on the total number of regions on all of R in the future. In
particular, we believe that at initialization the mean total
number of linear regions N is proportional to the number
of neurons (this is borne out in Figure 5, which computes
the total number of regions on an infinite line).

Theorem 1 defies the common intuition that, on average,
each layer in N multiplies the number of regions formed
up to the previous layer by a constant larger than one. This
would imply that the average number of regions is expo-
nential in the depth. To provide intuition for why this is
not true for random weights and biases, consider the effect
of each neuron separately. Suppose the pre-activation z(x)
of a neuron z satisfies |z′(x)| = Θ(1), a hallmark of any
reasonable initialization. Then, over a compact set of inputs,
the piecewise linear function x 7→ z(x) cannot be highly
oscillatory over a large portion of the range of z. Thus, if
the bias bz is not too concentrated on any interval, we expect
the equation z(x) = bz to have O(1) solutions. On average,
then, we expect that each neuron adds a constant number
of new linear regions. Thus, the average total number of
regions should scale roughly as the number of neurons.

Theorem 1 follows from a general result, Theorem 3, that
holds for essentially any non-degenerate distribution of
weights and biases and with any input dimension. If
‖∇z(x)‖ and the bias distribution ρbz are well-behaved,
then throughout training, Theorem 3 suggests the number
of linear regions along a 1-dimensional curve in input space
scales like the number of neurons in N . Figures 5-6 show
experiments that give empirical verification of this heuristic.

2.2. Higher-Dimensional Regions

For networks with input dimension exceeding 1, there are
several ways to generalize counting linear regions. A unit-
matching heuristic applied to Theorem 1 suggests

#{regions} = #{neurons}nin , nin = input dim.

Proving this statement is work in progress by the authors.
Instead, we consider here a natural and, in our view, equally
important generalization. Namely, for a boundedK ⊂ Rnin ,
we consider the (nin − 1)-dimensional volume density

volnin−1 (BN ∩K)
/

volnin
(K), (3)

where

BN = {x | ∇N (x) is not continuous at x} (4)

is the boundary of the linear regions for N . When nin = 1,

vol0 (BN ∩K) + 1 = #{regions in K},

and hence the volume density (3) truly generalizes to higher
input dimension of the number of regions. One reason for

studying the volume density (3) is that it gives bounds from
below for distance (x,BN ), which in turn provides insight
into the nature of the computation performed by N . Indeed,
the exact formula

distance (x,BN ) = min
neurons z

{
|z(x)− bz|

/
‖∇z(x)‖

}
,

shows that distance (x,BN ) measures the sensitivity over
neurons at a given input x. In this formula, z(x) denotes
the pre-activation for a neuron z and bz is its bias, so that
ReLU(z(x) − bz) is the post-activation. Moreover, the
distance from a typical point to BN gives a heuristic lower
bound for the typical distance to an adversarial example:
two inputs closer than the typical distance to a linear region
boundary likely fall into the same linear region, and hence
are unlikely to be classified differently. Our next result
generalizes Theorem 1.

Theorem 2 (informal). Let N be a network with a piece-
wise linear activation, input dimension nin and output di-
mension 1. Suppose its weights and biases are randomly
initialized as in (2). Then, for K ⊂ Rdin bounded, the aver-
age volume of the linear region boundaries in K satisfies:

E
[

volnin−1 (BN ∩K)

volnin
(K)

]
≈ T ·#{neurons},

where T is the number of breakpoints in the non-linearity
of N (for ReLU nets, T = 1). Moreover, if x ∈ [0, 1]nin is
uniformly distributed, then the average, over both x and the
weights/biases of N , distance from x to BN satisfies

E [distance (x,BN )] ≥ C (#{neurons})−1
, C > 0.

Experimentally, distance (x,BN ) remains comparable to
(#{neurons})−1 throughout training (see Figure 6).

3. Experiments
We empirically verified our theorems and further examined
how linear regions of a network change during training. All
experiments below were performed with fully-connected
networks, initialized with He normal weights (i.i.d. with
variance 2/fan-in) and biases drawn i.i.d. normal with vari-
ance 10−6 (to prevent collapse of regions at initialization,
which occurs when all biases are uniquely zero). Training
was performed on the vectorized MNIST (input dimension
784) using the Adam optimizer at learning rate 10−3. All
networks attain test accuracy in the range 95− 98%.

3.1. Number of Regions Along a Line

We calculated the number of regions along lines through the
origin and and a random selected training example in input
space. For each setting of weights and biases within the
network during training, the number of regions along each



Complexity of Linear Regions in Deep Networks

Figure 5. We here show how the number of regions along 1D lines in input space changes during training. In accordance with Theorem 3,
we scale the number of regions by the number of neurons. Plots show (a) early training, up through 0.5 epochs, and (b) later training,
up through 20 epochs. Note that for all networks, number of regions is a fixed constant times the number of neurons at initialization,
as predicted, and that the number decreases (slightly) early in training before rebounding. [n1, n2, n3] in the legend corresponds to an
architecture with layer widths 784 (input), n1, n2, n3, 10 (output).

Figure 6. We here consider the average distance to the nearest boundary, as evaluated over 10000 randomly selected sample points. In (a)
we show that this distance is essentially bounded between 0.4/#{neurons} and 1.5/#{neurons}. Accordingly, in the next plot, we
normalize the distance to the nearest boundary by dividing by the number of neurons. We plot this quantity against (b) epoch and (c)
test accuracy. Observe that, in keeping with the findings of Figure 5, the distance to the nearest boundary first increases quickly (as the
number of regions decreases), then rebounds more slowly as the network completes training. [n1, n2, n3] in the legend corresponds to an
architecture with layer widths 784 (input), n1, n2, n3, 10 (output).

line is calculated exactly by building up the network one
layer at a time and calculating how each region is split by
the next layer of neurons. Figure 5 represents the average
over 5 independent runs, from each of which we sample 100
lines; variance across the different runs is not significant.

Figure 5 plots the average number of regions along a line, di-
vided by the number of neurons in the network, as a function
of epoch during training. We make several observations:

1. As predicted by Theorem 3, all networks start out with
the number of regions along a line equal to a constant
times the number of neurons in the network (the con-
stant in fact appears very close to 1 in this case).

2. Throughout training, the number of regions does not
deviate significantly from the number of neurons in the
network, staying within a small constant of the value
at initialization, in keeping with our intuitive under-
standing of Theorem 3 described informally around
Theorem 1 above.

3. The number of regions actually decreases during the
initial part of training, then increases again. We explore
this behavior further in other experiments below.

3.2. Distance to the Nearest Region Boundary

We calculated the average distance to the nearest boundary
for 10000 randomly selected input points, for various net-
works throughout training. Points were selected randomly
from a normal distribution with mean and variance matching
the componentwise mean and variance of MNIST training
data. Results were averaged over 12 independent runs, but
variance across runs is not significant. Rerunning these ex-
periments with sample points selected randomly from (i)
the training data or (ii) the test data yielded similar results
to random sample points.

In keeping with our results in the preceding experiment,
the distance to the nearest boundary first increases then de-
creases during training. As predicted by Theorem 2, we find
that for all networks, the distance to the nearest boundary
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is well-predicted by 1/#{neurons}. Throughout training,
we find that it approximately varies between the curves
0.4/#{neurons} and 1.5/#{neurons} (Figure 6(a)). At
initialization, as we predict, all networks have the same
value for the product of number of neurons and distance
to the nearest region boundary (Figure 6(b)); these prod-
ucts then diverge (slightly) for different architectures, first
increasing rapidly and then decreasing more slowly.

We find Figure 6(c) fascinating, though we do not com-
pletely understand it. It plots the product of number of
neurons and distance to the nearest region boundary against
the test accuracy. It suggests two phases of training: first
regions expand, then they contract. This lines up with ob-
servations made in Arpit et al. (2017) that neural networks
“learn patterns first” on which generalization is simple and
then refine the fit to encompass memorization of individual
samples. A generalization phase would suggest that regions
are growing, while memorization would suggest smaller
regions are fit to individual data points. This is, however,
speculation and more experimental (and theoretical) explo-
ration will be required to confirm or disprove this intuition.
We found it instructive to consider the full distribution of

Figure 7. Distribution of log distances from random sample points
to the nearest region boundary for a network of depth 4 and width
16, at initialization and after 1 and 20 epochs of training on MNIST.

distances from sample points to their nearest boundaries,
rather than just the average. For a single network (depth 4,
width 16), Figure 7 indicates that this distribution does not
significantly change during training, although there appears
to be a slight skew towards larger regions, in agreement
with the findings in Novak et al. (2018). The histogram
shows log-distances. Hence, distance to the nearest region
boundary varies over many orders of magnitude. This is
consistent with Figures 1 and 4, which lend credence to the
intuition that small distances to the nearest region bound-
ary are explained by the presence of many small regions.
According to Theorem 3, this should correlate with a com-
bination of regions in input space at which some neurons
have a large gradient and neurons with highly peaked biases
distributions. We hope to return to this in future work.

3.3. Regions Within a 2D Plane

We visualized the regions of a network through training.
Specifically, following experiments in Novak et al. (2018),
we plotted regions within a plane in the 784-dimensional in-
put space (Figure 8) through three data points with different
labels (0, 1, and 2, in our case) inside a square centered at
the circumcenter of the three examples. The network shown
has depth 3 and width 64. We observe that, as expected from
our other plots, the regions expand initially during training
and then contract again. We expect the number of regions
within a 2-dimensional subspace to be on the order of the
square of the number of neurons – that is, (64·3)2 ≈ 4×104,
which we indeed find.

Our approach for calculating regions is simple. We start
with a single region (in this case, the square), and subdi-
vide it by adding neurons to the network one by one. For
each new neuron, we calculate the linear function it defines
on each region, and determine whether that region is split
into two. This approach terminates within a reasonable
amount of time precisely because our theorem holds: there
are relatively few regions. Note that we exactly determine
all regions within the given square by calculating all region
boundaries; thus our counts are exact and do not miss any
small regions, as might occur if we merely estimated regions
by sampling points from input space.

4. Related Work
There are a number of works that touch on the themes of this
article: (i) the expressivity of depth; (ii) counting the number
of regions in networks with piecewise linear activations; (iii)
the behavior of linear regions through training; and (iv) the
difference between expressivity and learnability. Related to
(i), we refer the reader to Eldan & Shamir (2016); Telgarsky
(2016) for examples of functions that can be efficiently
represented by deep but not shallow ReLU nets. Next, still
related to (i), for uniform approximation over classes of
functions, again using deep ReLU nets, see Yarotsky (2017);
Rolnick & Tegmark (2018); Yarotsky (2018); Petersen &
Voigtlaender (2018). For interesting results on (ii) about
counting the maximal possible number of linear regions in
networks with piecewise linear activations see Bianchini &
Scarselli (2014); Montufar et al. (2014); Poole et al. (2016);
Arora et al. (2018); Raghu et al. (2017). Next, in the vein
of (iii), for both a theoretical and empirical perspective on
the number of regions computed by deep networks and
specifically how the regions change during training, see
Poole et al. (2016); Novak et al. (2018). In the direction
of (iv), we refer the reader to Shalev-Shwartz et al. (2018);
Hanin & Rolnick (2018); Hanin (2018). Finally, for general
insights into learnability and expressivity in deep vs. shallow
networks see Mhaskar & Poggio (2016); Mhaskar et al.
(2016); Zhang et al. (2017); Lin et al. (2017); Poggio et al.
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Figure 8. Here we show the linear regions that intersect a 2D plane through input space for a network of depth 3 and width 64 trained on
MNIST. Black dots indicate the positions of the three MNIST training examples defining the plane. Note that we obtain qualitatively
different pictures from Novak et al. (2018), which may result partially from our using ReLU activation instead of ReLU6.

(2017); Neyshabur et al. (2017).

5. Formal Statement of Results
To state our results precisely, we fix some notation. Let
d, nin, n1, . . . , nd ≥ 1 and consider a depth d fully con-
nected ReLU net N with input dimension nin, output di-
mension 1, and hidden layer widths nj , j = 1, . . . , d− 1.
As explained in the introduction, a generic configuration of
its weights and biases partitions the input space Rnin into a
union of polytopes Pj with disjoint interiors. Restricted to
each Pj , N computes a linear function.

Our main mathematical result, Theorem 3, concerns the
set BN of points x ∈ Rnin at which the gradient ∇N is
discontinuous at x (see (4)). For each k = 1, . . . , nin, we
define

BN ,k = the “(nin − k)–dimensional piece” of BN . (5)

More precisely, we set BN ,0 := ∅ and recursively define
BN ,k to be the set of points x ∈ BN \{BN ,0∪· · ·∪BN ,k−1}
so that in a neighborhood of x the set BN \{BN ,0 ∪ · · · ∪
BN ,k−1} coincides with a co-dimension k hyperplane.

For example, when nin = 2, the linear regions Pj are poly-
gons, the set BN ,1 is the union of the open line segments
making up the boundaries of the Pj , and BN ,2 is the collec-
tion of vertices of the Pj . Theorem 3 provides a convenient
formula for the average of the (nin − k)−dimensional vol-
ume of BN ,k inside any bounded, measurable setK ⊂ Rnin .
To state the result, for every neuron z in N we will write

z(x) := pre-activation at z, `(z) = layer index of z
(6)

and bz := bias at z. Thus, for a given input x ∈ Rn0 , the
post-activation of z is

Z(x) := ReLU(z(x)) = max{0, z(x)− bz}. (7)

Theorem 3 holds under the following assumption on the
distribution of weights and biases:

A1: The conditional distribution of any collection of biases
bz1 , . . . , bzk , given all the other weights and biases,
has a density ρbz1 ,...,bzk (b1, . . . , bk) with respect to
Lebesgue measure on Rk.

A2: The joint distribution of all the weights has a density
with respect to Lebesgue measure on R#weights.

These assumptions hold in particular when the weights and
biases ofN are independent with marginal distributions that
have a density relative to Lebesgue measure on R (i.e. at ini-
tialization). They hold much more generally, however, and
can intuitively be viewed as a non-degeneracy assumption
on the behavior of the weights and biases ofN . Specifically,
they are used in Proposition 10 to ensure that the set BN ,k
consists of inputs where exactly k neurons turn off/on. As-
sumption (A1) also allows us, in Proposition 11, to apply
the co-area formula (29) to compute the expect volume of
the set of inputs where a given collection of neurons turn
on/off. Our main result is the following.

Theorem 3. Suppose N is a feed-forward ReLU net
with input dimension n0, output dimension 1, and ran-
dom weights/biases. Assume that the distribution of
weights/biases satisfies Assumptions A1 and A2 above.
Then, with the notation (6), for any bounded measurable set
K ⊆ Rnin and any k = 1, . . . , nin, the average (nin− k)−
dimensional volume E [volnin−k(BN ,k ∩K)] of BN ,k in-
side K is

E [volnin−k(BN ,k ∩K)] (8)

of BN ,k inside K is, in the notation (6),∑
distinct neurons
z1,...,zk in N

∫
K

E
[
Yz1,...,zk(x)

]
dx,

where Yz1,...,zk(x) is

‖Jz1,...,zk(x)‖ ρbz1 ,...,bzk (z1(x), . . . , zk(x))
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times the indicator function of the event that zj is good at x
for each j = 1, . . . , k. Here, Jz1,...,zk is the k × nin Jaco-
bian of the map x 7→ (z1(x), . . . , zk(x)),

‖Jz1,...,zk(x)‖ := det
(
Jz1,...,zk(x) (Jz1,...,zk(x))

T
)1/2

,

the function ρbz1 ,...,bzk is the density of the joint distribution
of the biases bz1 , . . . , bzk , and we say a neuron z is good at
x if there exists a path of neurons from z to the output in the
computational graph of N so that each neuron along this
path is open at x).

To evaluate the expression in (8) requires information on the
distribution of gradients ∇z(x), the pre-activations z(x),
and the biases bz. Exact information about these quantities
is available at initialization (Hanin, 2018; Hanin & Rol-
nick, 2018; Hanin & Nica, 2018), yielding the following
Corollary.

Corollary 4. With the notation and assumptions of Theorem
3, suppose the weights are independent are drawn from a
fixed probability measure µ on R that is symmetric around
0 and then rescaled to have Var[weights] = 2/fan-in. Fix
k ∈ {1, . . . , nin}. Then there exists C > 0 for which

E [volnin−k(BN ,k ∩K)]

volnin(K)
(9)

≤
(

#{neurons}
k

)
(Cgrad · Cbias)

k,

where
Cbias = sup

z
sup
b∈R

ρbz (b)

and

Cgrad = sup
z

sup
x∈Rnin

E
[
‖∇z(x)‖2k

]1/k
≤ Ce

C
∑d
j=1

1
nj

where C > 0 depends only on µ but not on the architecture
of N and nj is the width of the jth hidden layer. Moreover,
we also have similar lower bounds(

#{neurons}
k

)
ckbias ≤

E [volnin−k(BN ,k ∩K)]

volnin
(K)

(10)

where
cbias = inf

|b|≤η
ρbz (b),

and

η =

 supx∈K ‖x‖
2

nin
+

d∑
j=1

σ2
bj

 e
C′
∑d
j=1

1
nj ,

with C ′ > 0 depending only on the distribution µ of the
weights in N .

We prove Corollary 7 in Appendix D. Let us state one final
corollary of Theorem 3
Corollary 5. Suppose N is as in Theorem 3 and satisfies
the hypothesis (14) in Corollary 7. Then, for any compact
set K ⊂ Rnin let x be a uniform point in K. There exists
c > 0 independent of K so that

E [distance(x,BN )] ≥ c

CbiasCgrad#{neurons}
.

We prove Corollary 8 in §E. The basic idea is simple. For
every ε > 0, we have

E [distance(x,BN )] ≥ εP (distance(x,BN ) > ε) ,

with the probability on the right hand side scaling like

1− volnin
(Tε(BN ) ∩K)/ volnin

(K),

where Tε(BN ) is the tube of radius ε around BN . We ex-
pect that its volume like ε volnin−1(BN ). Taking ε =
c/#{neurons} yields the conclusion of Corollary 8.

6. Conclusions and Further Work
The question of why depth is powerful has been a persistent
problem for deep learning theory, and one that recently has
been answered by works giving enhanced expressivity as
the ultimate explanation. However, our results suggest that
such explanations may be misleading. While we do not
speak to all notions of expressivity in this paper, we have
both theoretically and empirically evaluated one common
measure: the linear regions in the partition of input space
defined by a network with piecewise linear activations. We
found that the average size of the boundary of these linear
regions depends only on the number of neurons and not
on the network depth – both at initialization and during
training. This strongly suggests that deeper networks do
not learn more complex functions than shallow networks.
We plan to test this interpretation further in future work –
for example, with experiments on more complex tasks, as
well as by investigating higher order statistics, such as the
variance.

We do not propose a replacement theory for the success of
deep learning; however, prior work has already hinted at
how such a theory might proceed. Notably, Ba & Caruana
(2014) show that, once deep networks are trained to perform
a task successfully, their behavior can often be replicated by
shallow networks, suggesting that the advantages of depth
may be linked to easier learning.
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