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Abstract

In this paper, we propose a faster stochastic alter-
nating direction method of multipliers (ADMM)
for nonconvex optimization by using a new
stochastic path-integrated differential estimator
(SPIDER), called as SPIDER-ADMM. More-
over, we prove that the SPIDER-ADMM achieves
a record-breaking incremental first-order oracle
(IFO) complexity of O(n+ n1/2ε−1) for finding
an ε-approximate solution, which improves the
deterministic ADMM by a factorO(n1/2), where
n denotes the sample size. As one of major con-
tribution of this paper, we provide a new theoreti-
cal analysis framework for nonconvex stochastic
ADMM methods with providing the optimal IFO
complexity. Based on this new analysis frame-
work, we study the unsolved optimal IFO com-
plexity of the existing non-convex SVRG-ADMM
and SAGA-ADMM methods, and prove they have
the optimal IFO complexity of O(n+ n2/3ε−1).
Thus, the SPIDER-ADMM improves the exist-
ing stochastic ADMM methods by a factor of
O(n1/6). Moreover, we extend SPIDER-ADMM
to the online setting, and propose a faster online
SPIDER-ADMM. Our theoretical analysis shows
that the online SPIDER-ADMM has the IFO com-
plexity of O(ε−

3
2 ), which improves the existing

best results by a factor of O(ε
1
2 ). Finally, the ex-

perimental results on benchmark datasets validate
that the proposed algorithms have faster conver-
gence rate than the existing ADMM algorithms
for nonconvex optimization.
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1. Introduction
Alternating direction method of multipliers (ADMM)
(Gabay & Mercier, 1976; Boyd et al., 2011) is a powerful
optimization tool for the composite or constrained problems
in machine learning. In general, it considers the following
optimization problem:

min
x,y

f(x) + g(y), s.t. Ax+By = c,

where f(x) : Rd → R and g(y) : Rp → R are convex func-
tions. For example, in machine learning, f(x) can be used
for the empirical loss, g(y) for the structure regularizer, and
the constraint for encoding the structure pattern of model
parameters. Due to the flexibility in splitting the objective
function into loss f(x) and regularizer g(y), the ADMM can
relatively easily solve some complicated structure problems
in machine learning, such as the graph-guided fused lasso
(Kim et al., 2009) and the overlapping group lasso, which
are too complicated for the other popular optimization meth-
ods such as proximal gradient methods (Nesterov, 2005;
Beck & Teboulle, 2009). Thus, the ADMM has been exten-
sively studied in recent years (Boyd et al., 2011; Nishihara
et al., 2015; Xu et al., 2017).

The above deterministic ADMM generally needs to compute
the gradients of empirical loss function on all examples at
each iteration, which makes it unsuitable for solving big
data problems. Thus, the online and stochastic versions of
ADMM (Wang & Banerjee, 2012; Suzuki, 2013; Ouyang
et al., 2013) are developed. However, due to large variance
of stochastic gradients, these stochastic methods suffer from
a slow convergence rate. Recently, some fast stochastic
ADMM methods (Zhong & Kwok, 2014; Suzuki, 2014;
Zheng & Kwok, 2016a) have been proposed by using the
variance reduced (VR) techniques.

So far, the above discussed ADMM methods build on the
convexity of objective functions. In fact, ADMM is also
highly successful in solving various nonconvex problems
such as tensor decomposition (Kolda & Bader, 2009) and
training neural networks (Taylor et al., 2016). Thus, some
works (Li & Pong, 2015; Wang et al., 2015a;b; Hong et al.,
2016; Jiang et al., 2019) have devoted to studying the non-
convex ADMM methods. More recently, for solving the big
data problems, the nonconvex stochastic ADMMs (Huang
et al., 2016; Zheng & Kwok, 2016b) have been proposed
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Table 1. IFO complexity comparison of the non-convex ADMM methods for finding an ε-approximate solution of the problem (1), i.e.,
E‖∇L(x, y[m], z)‖2 ≤ ε. n denotes the sample size.

Problem Algorithm Reference IFO

Finite-sum

ADMM Jiang et al. (2019) O(nε−1)

SVRG-ADMM Huang et al. (2016); Zheng & Kwok (2016b) O(n+ n
2
3 ε−1)

SAGA-ADMM Huang et al. (2016) O(n+ n
2
3 ε−1)

SPIDER-ADMM Ours O(n+ n
1
2 ε−1)

Online SADMM Huang & Chen (2018) O(ε−2)

Online SPIDER-ADMM Ours O(ε−
3
2 )

with the VR techniques such as the SVRG (Johnson &
Zhang, 2013) and the SAGA (Defazio et al., 2014). In
addition, Huang & Chen (2018) have extended the on-
line/stochastic ADMM (Ouyang et al., 2013) to the non-
convex setting.

Although these works have studied the convergence of non-
convex stochastic ADMMs and proved these methods have
O( cT ) convergence rate, where T denotes number of iter-
ation and c a constant independent on T , they have not
provided the optimal incremental/stochastic first-order or-
acle (IFO/SFO (Ghadimi & Lan, 2013)) complexity for
these methods yet. In other words, they have only proved
these stochastic ADMMs have the same convergence rate
to the deterministic ADMM (Jiang et al., 2019), but don’t
tell us whether these stochastic ADMMs have less IFO
complexity than the deterministic ADMM, which is a key
assessment criteria of the first-order stochastic methods
(Reddi et al., 2016). For example, from the existing non-
covex SAGA-ADMM and SVRG-ADMM (Zheng & Kwok,
2016b; Huang et al., 2016), we only obtain a rough IFO
complexity of O(n+ bcε−1) for finding an ε-approximate
stationary point, where b denotes the mini-batch size. In
their convergence analysis, to ensure the convergence of
these methods, they need to choose a small step size η and a
large penalty parameter ρ. Under this case, we maybe have
bc ≥ n, so that these stochastic ADMMs have no less IFO
complexity than the deterministic ADMM. Thus, there still
exist two important problems to be addressed:
• Does the stochastic ADMM have less IFO complexity

than the deterministic ADMM for nonconvex optimiza-
tion?

• If the stochastic ADMM improves IFO complexity, how
much can it improve?

In the paper, we answer the above challenging questions
with positive solutions and propose a new faster stochas-
tic ADMM method (i.e., SPIDER-ADMM) to solve the
following nonconvex nonsmooth problem:

min
x,{yj}mj=1

f(x) :=


1

n

n∑
i=1

fi(x) (finite-sum)

Eζ [f(x, ζ)] (online)

+

m∑
j=1

gj(yj)

s.t. Ax+

m∑
j=1

Bjyj = c, (1)

where A ∈ Rl×d, Bj ∈ Rl×p for all j ∈ [m], f(x) :
Rd → R is a nonconvex and smooth function, and gj(yj) :
Rp → R is a convex and possibly nonsmooth function for
all j ∈ [m], m ≥ 1. In machine learning, f(x) can be
used for losses such as activation functions of neural net-
works,

∑m
j=1 gj(yj) can be used for not only single struc-

ture penalty (e.g., sparse, low rank) but also superposition
structures penalties (e.g., sparse + low rank, sparse + group
sparse), which are widely applied in robust PCA (Candès
et al., 2011), subspace clustering (Liu et al., 2010), and dirty
models (Jalali et al., 2010). For the problem (1), its finite-
sum subproblem generally arises from the empirical loss
minimization and M-estimation. While its online subprob-
lem comes from the expected loss minimization. To address
the online subproblem, we extend the SPIDER-ADMM to
the online setting, and propose an online SPIDER-ADMM.

1.1. Challenges and Contributions

Our SPIDER-ADMM methods use a new stochastic path-
integrated differential estimator [SPIDER (Fang et al.,
2018)], which is a variant of stochastic recursive gradi-
ent algorithm [SARAH (Nguyen et al., 2017a;b)] and is
further improved by SpiderBoost in (Wang et al., 2018).
Although the SPIDER and SpiderBoost have shown good
performances in the stochastic gradient descent (SGD) and
proximal SGD methods, applying these techniques to the
nonconvex ADMM method is not a trivial task. There exist
the following two main challenges:

• Due to failure of the Fejér monotonicity of iteration,
the convergence analysis of the nonconvex ADMM is
generally quite difficult (Wang et al., 2015a). With
using the inexact stochastic gradient, this difficulty is
greater in the nonconvex stochastic ADMM methods;

• To obtain the optimal IFO complexity of our methods,
we need to design a new effective Lyapunov function,
which can not follow the existing nonconvex stochastic
ADMM methods (Huang et al., 2016).

In this paper, thus, we will fill this gap between the noncon-
vex ADMM and the SPIDER/SpiderBoost methods. Our
main contributions are summarized as follows:

1) We propose a faster stochastic ADMM ( i.e., SPIDER-
ADMM ) method for nonconvex optimization based on
the SPIDER/SpiderBoost. Moreover, we prove that the
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SPIDER-ADMM achieves an optimal IFO complexity
of O(n+ n1/2ε−1) for finding an ε-approximate solu-
tion of nonconvex optimization, which improves the
deterministic ADMM by a factor O(n1/2).

2) We extend the SPIDER-ADMM method to the online
setting, and propose a faster online SPIDER-ADMM
for nonconvex optimization. Moreover, we prove that
the online SPIDER-ADMM achieves the optimal IFO
complexity of O(ε−

3
2 ), which improves the existing

best results by a factor of O(ε
1
2 ).

3) We provide an useful theoretical analysis framework
for nonconvex stochastic ADMM methods with pro-
viding the optimal IFO complexity. Based on our new
analysis framework, we also prove that the existing
nonconvex SVRG-ADMM and SAGA-ADMM have
the optimal IFO complexity of O(n+ n2/3ε−1). Thus,
our SPIDER-ADMM improves the existing stochastic
ADMMs by a factor of O(n1/6).

1.2. Notations
Let y[m] = {y1, · · · , ym} and y[j:m] = {yj , · · · , ym}
for j ∈ [m] = {1, 2, · · · ,m}. Given a positive defi-
nite matrix G, ‖x‖2G = xTGx; σmax(G) and σmin(G)
denote the largest and smallest eigenvalues of matrix G,
respectively; κG = σmax(G)

σmin(G) ≥ 1. σAmax and σAmin denote
the largest and smallest eigenvalues of matrix ATA, re-
spectively. Given positive definite matrices {Hj}mj=1, let
σHmin = minj σmin(Hj) and σHmax = maxj σmax(Hj). Id
denotes a d× d identity matrix.

2. Preliminaries
In the section, we introduce some preliminaries regarding
problem (1). First, we restate the standard ε-approximate
stationary point of the nonconvex problem (1) used in (Jiang
et al., 2019; Zheng & Kwok, 2016b).
Definition 1. Given ε > 0, the point (x∗, y∗[m], z

∗) is said
to be an ε-stationary point of the problem (1), if it holds that

E
[
dist(0, ∂L(x∗, y∗[m], z

∗))2
]
≤ ε, (2)

where L(x, y[m], z) = f(x) +
∑m
j=1 gj(yj) − 〈z,Ax +∑m

j=1Bjyj − c〉,

∂L(x, y[m], z) =


∇xL(x, y[m], z)
∂y1L(x, y[m], z)

· · ·
∂ymL(x, y[m], z)

−Ax−
∑m
j=1Bjyj + c

 ,
and dist(0, ∂L) = infL′∈∂L ‖0− L′‖.
Next, we give some standard assumptions regarding prob-
lem (1) as follows:
Assumption 1. Each loss function fi(x) is L-smooth such
that

‖∇fi(x)−∇fi(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rd,

which is equivalent to

fi(x) ≤ fi(y) +∇fi(y)T (x− y) +
L

2
‖x− y‖2.

Assumption 2. Gradient of each loss function fi(x) is
bounded, i.e., there exists a constant δ > 0 such that for all
x, it follows ‖∇fi(x)‖2 ≤ δ2.
Assumption 3. f(x) and gj(yj) for all j ∈ [m] are all
lower bounded, and let f∗ = infx f(x) > −∞ and g∗j =
infyj gj(yj) > −∞.
Assumption 4. A is a full row or column rank matrix.

Assumption 1 imposes smoothness on the individual loss
functions, which is commonly used in convergence anal-
ysis of the nonconvex algorithms (Ghadimi & Lan, 2013;
Ghadimi et al., 2016). Assumption 2 shows the gradients of
loss functions have a bounded norm, which is used in the
stochastic gradient-based and ADMM-type methods (Boyd
et al., 2011; Suzuki, 2013; Hazan et al., 2016). Assump-
tions 3 and 4 have been used in the study of nonconvex
ADMMs (Hong et al., 2016; Jiang et al., 2019; Zheng &
Kwok, 2016b). Assumptions 3 guarantees the feasibility
of the problem (1). Assumption 4 guarantees the matrix
ATA or AAT is non-singular. Since there exist multiple
regularizers in the above problem (1), A is general a full
column rank matrix. Without loss of generality, we will use
the full column rank matrix A below.

3. Fast SPIDER-ADMM Method
In the section, we propose a new faster stochastic ADMM al-
gorithm, i.e., SPIDER-ADMM, to solve the finite-sum prob-
lem (1). We begin with giving the augmented Lagrangian
function of the problem (1):

Lρ(x, y[m], z) =f(x) +

m∑
j=1

gj(yj)− 〈z,Ax+

m∑
j=1

Bjyj − c〉

+
ρ

2
‖Ax+

m∑
j=1

Bjyj − c‖2, (3)

where z ∈ Rl and ρ > 0 denote the dual variable and
penalty parameter, respectively. Due to using stochastic
gradient of the function f(x) to update x, we define an
approximated function over xk as follows:

L̂ρ(x, yk+1
[m] , zk, vk) = f(xk) + vTk (x− xk) +

1

2η
‖x− xk‖2G

+

m∑
j=1

gj(y
k+1
j )− zTk (Ax+

m∑
j=1

Bjy
k+1
j − c)

+
ρ

2
‖Ax+

m∑
j=1

Bjy
k+1
j − c‖2, (4)

where η > 0 is a step size; vk is an unbiased stochastic
gradient over xk, i.e., E[vk] = ∇f(xk); G � 0 is a positive
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matrix. In updating x, to avoid computing inverse of G
η +

ATA, we can set G = rId − ρηATA � Id with r ≥
ρησAmax + 1 to linearize term ρ

2‖Ax+
∑m
j=1Bjy

k+1
j − c‖2.

To use the following proximal operator to update yj :

yk+1
j = arg min

yj∈Rp

1

2
‖yj − ykj ‖2 + gj(yj), ∀j ∈ [m] (5)

we can set Hj = τjIp − ρBTj Bj � Ip with τj ≥
ρσmax(BTj Bj) + 1 for all j ∈ [m] to linearize term
ρ
2‖Axk +

∑j−1
i=1 Biy

k+1
i +Bjyj +

∑m
i=j+1Biy

k
i − c‖2.

Algorithm 1 gives the SPIDER-ADMM algorithmic frame-
work. In Algorithm 1, after setting v0 = ∇f(x0), for each
subsequent iteration k, we have:

vk = ∇fIk(xk)−∇fIk(xk−1) + vk−1, (6)

where ∇fIk(xk) = 1
|Ik|

∑
i∈Ik ∇fi(xt). It is easy to

check E[vk|x0] = ∇f(xk), i.e., an unbiased estimate gradi-
ent over xk. Comparing the existing SVRG-ADMM, our
SPIDER-ADMM constructs stochastic gradient vk based on
the information xk−1 and vk−1, while the SVRG-ADMM
constructs vk based on the information x0 and v0 (i.e., the
initalization information of each outer loop). Due to using
more fresh information, thus, SPIDER-ADMM can yield
more accurate estimation of the full gradient than SVRG-
ADMM. Simultaneously, it does not require to additional
computation and memory, so it costs less memory than the
existing SAGA-ADMM.

Algorithm 1 SPIDER-ADMM Algorithm
1: Input: b, q, K, η > 0 and ρ > 0;
2: Initialize: x0 ∈ Rd, y0j ∈ Rp, j ∈ [m] and z0 ∈ Rl;
3: for k = 0, 1, · · · ,K − 1 do
4: if mod(k, q) = 0 then
5: Compute vk = ∇f(xk);
6: else
7: Uniformly randomly pick a mini-batch Ik (with

replacement) from {1, 2, · · · , n} with |Ik| = b,
and compute

vk = ∇fIk(xk)−∇fIk(xk−1) + vk−1;

8: end if
9: yk+1

j = arg minyj
{
Lρ(xk, yk+1

[j−1], yj , y
k
[j+1:m], zk)+

1
2‖yj − y

k
j ‖2Hj

}
for all j ∈ [m];

10: xk+1 = arg minx L̂ρ
(
x, yk+1

[m] , zk, vk
)
;

11: zk+1 = zk − ρ(Axk+1 +
∑m
j=1Bjy

k+1
j − c);

12: end for
13: Output: {x, y[m], z} chosen uniformly random from
{xk, yk[m], zk}

K
k=1.

4. Fast Online SPIDER-ADMM Method
In the section, we propose an online SPIDER-ADMM to
solve the online problem (1), which is equivalent to the
following stochastic constrained problem:

minEζ [f(x, ζ)]+

m∑
j=1

gj(yj), s.t.Ax+

m∑
j=1

Bjyj = c, (7)

where f(x) = Eζ [f(x, ζ)] denotes a population risk over an
underlying data distribution. The problem (7) can be viewed
as having infinite samples, so we cannot evaluate the full
gradient∇f(x). For the problem (7), we use stochastic sam-
pling to evaluate the full gradient. Algorithm 2 shows the
algorithmic framework of online SPIDER-ADMM method.
In Algorithm 2, we use the mini-batch samples to estimate
the full gradient.

Algorithm 2 Online SPIDER-ADMM Algorithm
1: Input: b1, b2, q, K, η > 0 and ρ > 0;
2: Initialize: x0 ∈ Rd, y0j ∈ Rp, j ∈ [m] and z0 ∈ Rl;
3: for k = 0, 1, · · · ,K − 1 do
4: if mod(k, q) = 0 then
5: Draw S1 samples with |S1| = b1, and compute

vk = 1
b1

∑
i∈S1
∇fi(xk);

6: else
7: Draw S2 samples with |S2| = b2 =

√
b1, and

compute

vk =
1

b2

∑
i∈S2

(
∇fi(xk)− fi(xk−1)

)
+ vk−1;

8: end if
9: yk+1

j = arg minyj
{
Lρ(xk, yk+1

[j−1], yj , y
k
[j+1:m], zk)+

1
2‖yj − y

k
j ‖2Hj

}
for all j ∈ [m];

10: xk+1 = arg minx L̂ρ
(
x, yk+1

[m] , zk, vk
)
;

11: zk+1 = zk − ρ(Axk+1 +
∑m
j=1Bjy

k+1
j − c);

12: end for
13: Output: {x, y[m], z} chosen uniformly random from
{xk, yk[m], zk}

K
k=1.

5. Convergence Analysis
In the section, we study the convergence properties of both
the SPIDER-ADMM and online SPIDER-ADMM. At the
same time, based on our new theoretical analysis frame-
work, we afresh analyze the convergence properties of exist-
ing ADMM-based nonconvex optimization algorithms, i.e.,
SVRG-ADMM and SAGA-ADMM, and derive their opti-
mal IFO complexity for finding an ε-approximate solution.
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5.1. Convergence Analysis of SPIDER-ADMM

In the subsection, we study convergence properties of the
SPIDER-ADMM algorithm. Throughout the paper, let
nk = dk/qe such that (nk − 1)q ≤ k ≤ nkq − 1.

Lemma 1. Suppose the sequence {xk, yk[m], zk}
K
k=1 is gen-

erated from Algorithm 1, and define a Lyapunov function
Rk as follows:

Rk=Lρ(xk, yk[m], zk)+(
9L2

σAminρ
+

3σ2
max(G)

σAminη
2ρ

)‖xk−xk−1‖2

+
2L2

σAminρb

k−1∑
i=(nk−1)q

E‖xi+1−xi‖2.

Let b = q, η = 2ασmin(G)
3L (0 < α ≤ 1) and ρ =

√
170κGL
σA
minα

,
then we have

1

K

K−1∑
k=0

(
‖xk+1 − xk‖2 +

m∑
j=1

‖ykj − yk+1
j ‖2

)
≤ R0 −R∗

Kγ
,

where γ = min(χ, σHmin) with χ ≥
√
170κGL
4α and R∗ is a

lower bound of the function Rk.

Let θk = E[‖xk+1 − xk‖2 + ‖xk − xk−1‖2 +
1
q

∑k
i=(nk−1)q ‖xi+1−xi‖2 +

∑m
j=1 ‖ykj − y

k+1
j ‖2]. Next,

based on the above lemma, we give the convergence proper-
ties of SPIDER-ADMM.

Theorem 1. Suppose the sequence {xk, yk[m], zk)Kk=1 is gen-
erated from Algorithm 1. Let

ν1 = m
(
ρ2σBmaxσ

A
max + ρ2(σBmax)2 + σ2

max(H)
)
,

ν2 = 3(L2 +
σ2
max(G)

η2
), ν3 =

18L2

σAminρ
2

+
3σ2

max(G)

σAminη
2ρ2

,

and let b = q, η = 2ασmin(G)
3L (0 < α ≤ 1), and ρ =

√
170κGL
σA
minα

, then we have

min
1≤k≤K

E
[
dist(0, ∂L(xk, y

k
[m], zk))2

]
≤ νmax

K

K−1∑
k=1

θk

≤ 3νmax(R0 −R∗)
Kγ

,

where γ = min(χ, σHmin) with χ ≥
√
170κGL
4α , νmax =

max{ν1, ν2, ν3} and R∗ is a lower bound of the function
Rk. It implies that the iteration number K satisfies

K =
3νmax(R0 −R∗)

εγ
,

then (xk∗ , y
k∗

[m], zk∗) is an ε-approximate stationary point
of (1), where k∗ = arg mink θk.

Remark 1. Theorem 1 shows that the SPIDER-ADMM
has O(1/K) convergence rate. Moreover, given b = q =
√
n, η = 2ασmin(G)

3L (0 < α ≤ 1) and ρ =
√
170κGL
σA
minα

, the

SPIDER-ADMM has the optimal IFO of O(n+ n
1
2 ε−1) for

finding an ε-approximate solution. In particular, we can
choose α ∈ (0, 1] according to different problems to obtain
appropriate step-size η and penalty parameter ρ, e.g., set
α = 1, we have η = 2σmin(G)

3L and ρ =
√
170κGL
σA
min

.

5.2. Convergence Analysis of Online SPIDER-ADMM

In the subsection, we study convergence properties of the
online SPIDER-ADMM algorithm.

Lemma 2. Suppose the sequence {xk, yk[m], zk}
K
k=1 is gen-

erated from Algorithm 2, and define a Lyapunov function
Φk as follows:

Φk =Lρ(xk, yk[m], zk) + (
9L2

σAminρ
+

3σ2
max(G)

σAminη
2ρ

)‖xk − xk−1‖2

+
2L2

σAminρb2

k−1∑
i=(nk−1)q

E‖xi+1 − xi‖2.

Let b2 = q, η = 2ασmin(G)
3L (0 < α ≤ 1) and ρ =

√
170κGL
σA
minα

,
then we have

1

K

K−1∑
k=0

(
‖xk+1 − xk‖2 +

m∑
j=1

‖ykj − yk+1
j ‖2

)
≤ Φ0 − Φ∗

Kγ
+

2δ2

b1Lγ
+

72δ2

σAminb1ργ
,

where γ = min(χ, σHmin) with χ ≥
√
170κGL
4α and Φ∗ is a

lower bound of the function Φk.

Let θk = E[‖xk+1 − xk‖2 + ‖xk − xk−1‖2 +
1
q

∑k
i=(nk−1)q ‖xi+1 − xi‖2 +

∑m
j=1 ‖ykj − y

k+1
j ‖2].

Theorem 2. Suppose the sequence {xk, yk[m], zk)Kk=1 is gen-
erated from Algorithm 2. Let

ν1 = m
(
ρ2σBmaxσ

A
max + ρ2(σBmax)2 + σ2

max(H)
)
,

ν2 = 3(L2 +
σ2
max(G)

η2
), ν3 =

18L2

σAminρ
2

+
3σ2

max(G)

σAminη
2ρ2

,

and let b2 = q =
√
b1, η = 2ασmin(G)

3L (0 < α ≤ 1) and

ρ =
√
170κGL
σA
minα

, then we have

min
1≤k≤K

E
[
dist(0, ∂L(xk, y

k
[m], zk))2

]
≤ νmax

K

K−1∑
k=1

θk +
w

b1

≤ 3νmax(Φ0 − Φ∗)

Kγ
+

6νmaxδ
2

b1γ
(

1

L
+

36

σAminρ
) +

w

b1
,
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where w = 12δ2 max{1, 6
σA
minρ

2 }, γ = min(χ, σHmin) with

χ ≥
√
170κGL
4α , νmax = max{ν1, ν2, ν3} and Φ∗ is a lower

bound of the function Φk. It implies that K and b1 satisfy

K=
6νmax(Φ0 − Φ∗)

εγ
, b1 =

12νmaxδ
2

εγ
(

1

L
+

36

σAminρ
)+

2w

ε
,

then (xk∗ , y
k∗

[m], zk∗) is an ε-approximate stationary point
of (1), where k∗ = arg mink θk.

Remark 2. Theorem 2 shows that given b2 = q =
√
b1,

η = 2ασmin(G)
3L (0 < α ≤ 1), ρ =

√
170κGL
σA
minα

and b1 =

O(ε−1), the online SPIDER-ADMM has the optimal IFO of
O(ε−

3
2 ) for finding an ε-approximate solution.

5.3. Convergence Analysis of Non-convex
SVRG-ADMM

In the subsection, we extend the existing nonconvex SVRG-
ADMM method (Huang et al., 2016; Zheng & Kwok, 2016b)
to the multiple variables setting for solving the problem (1).
The SVRG-ADMM algorithm is described in Algorithm 3
given in the supplementary document. Next, we analyze
convergence properties of the SVRG-ADMM algorithm,
and derive its optimal IFO complexity.

Lemma 3. Suppose the sequence {(xst , y
s,t
[m], z

s
t )
M
t=1}Ss=1 is

generated from Algorithm 3, and define a Lyapunov func-
tion:

Γst =E
[
Lρ(xst , y

s,t
[m], z

s
t )+(

3σ2
max(G)

σAminη
2ρ

+
9L2

σAminρ
)‖xst − xst−1‖2

+
9L2

σAminρb
‖xst−1 − x̃s‖2 + ct‖xst − x̃s‖2

]
,

where the positive sequence {ct} satisfies, for s =
1, 2, · · · , S

ct =


18L2

σAminρb
+
L

b
+ (1 + β)ct+1, 1 ≤ t ≤M,

0, t ≥M + 1.

Let M = n
1
3 , b = n

2
3 , η = ασmin(G)

5L (0 < α ≤ 1) and

ρ = 2
√
231κGL
σA
minα

, we have

1

T

S∑
s=1

M−1∑
t=0

(
σHmin

m∑
j=1

‖ys,tj − y
s,t+1
j ‖2 + χt‖xst+1 − xst‖2

+
L

2b
‖xst − x̃s‖2

)
≤ Γ1

0 − Γ∗

T
. (8)

where T = MS, χt ≥
√
231κGL
2α > 0 and Γ∗ denotes a

lower bound of function Γst .

Let θst = E[‖xst+1−xst‖2+‖xst−xst−1‖2+ 1
b (‖xst− x̃s‖2+

‖xst−1 − x̃s‖2) +
∑m
j=1 ‖y

s,t
j − y

s,t+1
j ‖2].

Theorem 3. Suppose the sequence {(xst , y
s,t
[m], z

s
t )
M
t=1}Ss=1

is generated from Algorithm 3. Let

ν1 = m
(
ρ2σBmaxσ

A
max + ρ2(σBmax)2 + σ2

max(H)
)
,

ν2 = 3L2 +
3σ2

max(G)

η2
, ν3 =

9L2

σAminρ
2

+
3σ2

max(G)

σAminη
2ρ2

,

and given M = n
1
3 , b = n

2
3 , η = ασmin(G)

5L (0 < α ≤ 1)

and ρ = 2
√
231κGL
σA
minα

, then we have

min
s,t

E
[
dist(0, ∂L(xst , y

s,t
[m], z

s
t ))

2
]
≤ 2νmax(Γ1

0 − Γ∗)

γT
,

where γ = min(σHmin,
L
2 , χt), νmax = max(ν1, ν2, ν3) and

Γ∗ is a lower bound of function Γst . It implies that the whole
iteration number T = MS satisfies

T =
2νmax(Γ1

0 − Γ∗)

εγ
,

then (xs
∗

t∗ , y
s∗,t∗

[m] , zs
∗

t∗ ) is an ε-stationary point of (1), where
(t∗, s∗) = arg mint,s θ

s
t .

Remark 3. Theorem 3 shows that given M = n
1
3 , b = n

2
3 ,

η = ασmin(G)
5L (0 < α ≤ 1) and ρ = 2

√
231κGL
σA
minα

, the non-
convex SVRG-ADMM has the optimal IFO complexity of
O(n+ n

2
3 ε−1) for finding an ε-approximate solution.

5.4. Convergence Analysis of Non-convex
SAGA-ADMM

In the subsection, we extend the existing nonconvex SAGA-
ADMM method (Huang et al., 2016) to the multiple vari-
ables setting for solving the problem (1). The SAGA-
ADMM algorithm is described in Algorithm 4 given in the
supplementary document. Next, we analyze convergence
properties of non-convex SAGA-ADMM, and derive its the
optimal IFO complexity.

Lemma 4. Suppose the sequence {xt, yt[m], zt}
T
t=1 is gen-

erated from Algorithm 4, and define a Lyapunov function

Ωt =E
[
Lρ(xt, yt[m], zt) + (

3σ2
max(G)

σAminη
2ρ

+
9L2

σAminρ
)‖xt − xt−1‖2

+
9L2

σAminρb

1

n

n∑
i=1

‖xt−1 − ut−1i ‖
2 + ct

1

n

n∑
i=1

‖xt − uti‖2
]
,

where the positive sequence {ct} satisfies

ct =


18L2

σAminρb
+
L

b
+ (1− p)(1 + β)ct+1, 0 ≤ t ≤ T − 1,

0, t ≥ T,

where p denotes probability of an index i being in It. Fur-
ther, let b = n

2
3 , η = ασmin(G)

17L (0 < α ≤ 1) and
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ρ = 2
√
2031κG

σA
minα

we have

1

T

T∑
t=1

(
σHmin

m∑
j=1

‖ytj − yt+1
j ‖2 + χt‖xt − xt+1‖2

+
L

2b

1

n

n∑
i=1

‖xt − uti‖2
)
≤ Ω0 − Ω∗

T
,

where χt ≥
√
2031κGL

2α > 0 and Ω∗ denotes a lower bound
of function Ωt.

Let θt = E[‖xt+1−xt‖2+‖xt−xt−1‖2+ 1
bn

∑n
i=1(‖xt−

uti‖2 + ‖xt−1 − ut−1i ‖2) +
∑m
j=1 ‖ytj − y

t+1
j ‖2].

Theorem 4. Suppose the sequence {xt, yt[m], zt}
T
t=1 is gen-

erated from Algorithm 4. Let

ν1 = m
(
ρ2σBmaxσ

A
max + ρ2(σBmax)2 + σ2

max(H)
)
,

ν2 = 3L2 +
3σ2

max(G)

η2
, ν3 =

9L2

σAminρ
2

+
3σ2

max(G)

σAminη
2ρ2

,

and given b = n
2
3 , η = ασmin(G)

17L (0 < α ≤ 1) and ρ =
2
√
2031κG

σA
minα

, then we have

min
1≤t≤T

E
[
dist(0, ∂L(xt, y

t
[m], zt))

2
]
≤ 2νmax(Ω0 − Ω∗)

γT
,

where γ = min(σHmin,
L
2 , χt) with χt ≥

√
2031κGL

2α > 0,
νmax = max(ν1, ν2, ν3) and Ω∗ is a lower bound of func-
tion Ωt. It implies that the iteration number T satisfies

T =
2νmax

εγ
(Ω0 − Ω∗),

then (xt∗ , y
t∗

[m], zt∗) is an ε-approximate stationary point of
(1), where t∗ = arg min1≤t≤T θt.

Remark 4. Theorem 4 shows that given b = n
2
3 , η =

ασmin(G)
17L (0 < α ≤ 1) and ρ = 2

√
2031κGL
σA
minα

, the non-convex

SAGA-ADMM has the optimal IFO of O(n + n
2
3 ε−1) for

finding an ε-approximate solution.

Remark 5. Our contributions on convergence analysis of
both the non-convex SVRG-ADMM and SAGA-ADMM are
given as follows:

• We extend both the existing non-convex SVRG-ADMM
and SAGA-ADMM to the multi-block setting for solving
the problem (1);

• We not only give its optimal IFO complexity of O(n+

n
2
3 ε−1), but also provide the specific and simple choice

on the step-size η and penalty parameter ρ.

All related proofs are provided in the supplementary docu-
ment.

Table 2. Real datasets
datasets #samples #features #classes

a9a 32,561 123 2
w8a 64,700 300 2

ijcnn1 126,702 22 2
covtype.binary 581,012 54 2

letter 15,000 16 26
sensorless 58,509 48 11

mnist 60,000 780 10
covtype 581,012 54 7

6. Experiments
In this section, we will compare the proposed algorithm
(SPIDER-ADMM) with the existing non-convex algorithms(

nc-ADMM (Jiang et al., 2019), nc-SVRG-ADMM (Huang
et al., 2016; Zheng & Kwok, 2016b), nc-SAGA-ADMM
(Huang et al., 2016) and nc-SADMM (Huang & Chen, 2018))

on two applications: 1) Graph-guided binary classification;
2) Multi-task learning. In the experiment, we use some
publicly available datasets1, which are summarized in Table
2. All algorithms are implemented in MATLAB, and all
experiments are performed on a PC with an Intel i7-4790
CPU and 16GB memory.

6.1. Graph-Guided Binary Classification

In the subsection, we focus on the binary classification
task. Specifically, given a set of training samples (ai, bi)

n
i=1,

where ai ∈ Rd, bi ∈ {−1, 1}, then we solve the following
nonconvex empirical loss minimization problem:

min
x∈Rd

1

n

n∑
i=1

fi(x) + λ‖Ax‖1, (9)

where fi(x) = 1
1+exp(biaTi x)

is the nonconvex sigmoid loss
function. We use the nonsmooth regularizer i.e., graph-
guided fused lasso (Kim et al., 2009), and A decodes the
sparsity pattern of graph, which is obtained by sparse pre-
cision matrix estimation (Friedman et al., 2008). To solve
the problem (9), we give an auxiliary variable y with the
constraint y = Ax. In the experiment, we fix the parameter
λ = 10−5, and use the same initial solution x0 from the
standard normal distribution for all algorithms.

Figure 1 shows that the objective values of our SPIDER-
ADMM method faster decrease than those of other meth-
ods, as CPU time consumed increases. Thus, these results
demonstrate that our method has a relatively faster conver-
gence rate than other methods.

1 These data are from the LIBSVM website
(www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/).



Faster Stochastic ADMM for Nonconvex Optimization

0 1 2 3 4 5 6 7

CPU time (seconds)

10-3

10-2

10-1

O
bj

ec
tiv

e 
m

in
us

 b
es

t nc-ADMM
nc-SADMM
nc-SAGA-ADMM
nc-SVRG-ADMM
SPIDER-ADMM

(a) a9a

0 5 10 15 20

CPU time (seconds)

10-4

10-3

10-2

10-1

O
bj

ec
tiv

e 
m

in
us

 b
es

t nc-ADMM
nc-SADMM
nc-SAGA-ADMM
nc-SVRG-ADMM
SPIDER-ADMM

(b) w8a

0 2 4 6 8 10

CPU time (seconds)

10-4

10-3

10-2

10-1

O
bj

ec
tiv

e 
m

in
us

 b
es

t nc-ADMM
nc-SADMM
nc-SAGA-ADMM
nc-SVRG-ADMM
SPIDER-ADMM

(c) ijcnn1

0 10 20 30 40 50

CPU time (seconds)

10-4

10-3

10-2

10-1

O
bj

ec
tiv

e 
m

in
us

 b
es

t

nc-ADMM
nc-SADMM
nc-SAGA-ADMM
nc-SVRG-ADMM
SPIDER-ADMM

(d) covtype.binary

Figure 1. Objective value versus CPU time of the nonconvex graph-
guided binary classification model on some real datasets.

6.2. Multi-Task Learning

In this subsection, we focus on the multi-task learning task
with sparse and low-rank structures. Specifically, given
a set of training samples (ai, bi)

n
i=1, where ai ∈ Rd and

bi ∈ {1, 2, · · · , c}, then let D ∈ Rn×c with Dij = 1 if
j = bi, and Dij = 0 otherwise. This multi-task learning is
equivalent to solving the following nonconvex problem:

min
X∈Rc×d

1

n

n∑
i=1

fi(X) + λ1
∑
ij

κ(|Xij |) + λ2‖X‖∗, (10)

where fi(X) = log(
∑c
j=1 exp(Xj,.ai))−

∑c
j=1DijXj,.ai

is a multinomial logistic loss function, κ(|Xij |) = β log(1+
|Xij |
α ) is the nonconvex log-sum penalty function (Candes

et al., 2008). Next, we change the above problem into the
following form:

min
1

n

n∑
i=1

f̄i(X) + λ1κ0‖Y1‖1 + λ2‖Y2‖∗ (11)

s.t. AX +B1Y1 +B2Y2 = 0,

where f̄i(X) = fi(X)+λ1
(∑

ij κ(|Xij |)−κ0‖X‖1
)
, and

κ0 = κ′(0). Here A = [Ic; Ic] ∈ R2c×c, B1 = [−Ic; 0] ∈
R2c×c and B2 = [0;−I]. By the Proposition 2.3 in Yao
& Kwok (2016), f̄i(X) is nonconvex and smooth. In the
experiment, we fix the parameters λ1 = 10−5 and λ2 =
10−4, and use the same initial solution x0 from the standard
normal distribution for all algorithms.

Figure 2 shows that objective values of our SPIDER-ADMM
faster decrease than those of the other methods, as CPU time

consumed increases. Similarly, these results also demon-
strate that our method has a relatively faster convergence
rate than other methods.
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Figure 2. Objective value versus CPU time of the nonconvex multi-
task learning on some real datasets.

7. Conclusion
In the paper, we propose a faster stochastic ADMM method
(i.e., SPIDER-ADMM) for nonconvex optimization. More-
over, we prove that the SPIDER-ADMM achieves a record-
breaking IFO complexity of O(n+ n1/2ε−1). Further, we
extend the SPIDER-ADMM to the online setting, and pro-
pose a faster online ADMM method (i.e., online SPIDER-
ADMM). As one of major contribution of this paper, we
give a new theoretical analysis framework for the nonconvex
stochastic ADMM methods with providing the optimal IFO
complexity. Based on our new theoretical analysis frame-
work, we study the unsolved optimal IFO complexity of the
existing non-convex SVRG-ADMM and SAGA-ADMM
methods, and prove they have the optimal IFO complexity
of O(n+ n2/3ε−1). In the future work, we will apply the
stage-wise stochastic momentum technique (Chen et al.,
2018) to our methods.
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