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Additional Resources

Additional knitting-related resources (the dataset, code and
overview videos of the machine knitting process) can be
found on our project page:
http://deepknitting.csail.mit.edu/

The Refiner Network

Our refinement network translates real images into regular
images that look similar to synthetic images. Its imple-
mentation is similar to Img2prog, except that it outputs
the same resolution image as input, of which illustration is
shown in Figure A.1.

Loss Balancing Parameters

When learning our full architecture with both Refiner
and Img2prog, we have three different losses: the cross-
entropy loss Lo g, the perceptual 1oss Lper, and the Patch-
GAN loss.

Our combined loss is the weighted sum
L = AceLcE + ApercLpere + AcaNLGAN (1)

where we used the weights: Acg = 3, Apere = 0.02/(128)2
and A\gan = 0.2. The losses Lper. and Agan are measured
on the output of Re finer, while the loss Acg is measured
on Img2prog.

The perceptual loss (Johnson et al., 2016) consists of the
feature matching loss and style loss (using the gram matrix).
If not mentioned here, we follow the implementation details
of (Johnson et al., 2016), where VGG-16 (Simonyan & Zis-
serman, 2014) is used for feature extraction, after replacing
max-pooling operations with average-pooling. The feature
matching part is done using the poo13 layer, comparing
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Figure A.1. The illustration of the Re f i ner network architecture,
where S#N denotes the stride size of # /N, IN_ReLU indicates
the Instance normalization followed by ReLU, Resblk is the
residual block that consists of ConvS1-ReLU-ConvS1 with short-
cut connection (He et al., 2016), Upsample is the nearest neighbor
upsampling with the factor 2, F' is the output channel dimension.
If not mentioned, the default parameters for all the convolutions
are the stride size of 2, F' = 64, and the 3 x 3 kernel size.

the input real image and the output of Refiner so as to
preserve the content of the input data. For the style matching
part, we use the gram matrices of the {conv1_2, conv2_2,
conv3_3} layers with the respective relative weights {0.3,
0.5, 1.0}. The measured style loss is between the synthetic
image and the output of Refiner.

For Lsan and the loss for the discriminator, the least-square
Patch-GAN loss (Zhu et al., 2017) is used. We used {—1,1}
for the regression labels for respective fake and real samples
insted of the label {0, 1} used in (Zhu et al., 2017).

For training, we normalize the loss Acg to be balanced ac-
cording to the data ratio of a batch. Specifically, for exam-
ple, suppose a batch consisting of 2 real and 4 synthetic
samples, respectively. Then, we inversely weighted the re-
spective cross entropy losses for real and synthetic data by
the weights of 4 and 2, so that the effects from the losses
are balanced. This encourages the best performance to be
expected at near o = 0.5 within a batch.

Data Augmentation

We use multiple types of data augmentation to notably in-
crease the diversity of yarn colors, lighting conditions, yarn
tension, and scale:

e Global Crop Perturbation: we add random noise to
the location of the crop borders for the real data images,
and crop on-the-fly during training; the noise intensity
is chosen such that each border can shift at most by
half of one stitch;

e Local Warping: we randomly warp the input images
locally using non-linear warping with linear RBF ker-
nels on a sparse grid. We use one kernel per instruction


http://deepknitting.csail.mit.edu/
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Figure A.2. Scale identification experiment. Top row: cropped input image at corresponding scales with the correct pixel scale in bold
with a light-gray background. Plot: pseudo-confidence curve showing a peak at the correct pixel scale (600).

and the shift noise is a O-centered gaussian with o be-
ing 1/5 of the default instruction extent in image space
(i.e. 0 = 8/5);

¢ Intensity augmentation: we randomly pick a single
color channel and use it as a mono-channel input, so
that it provides diverse spectral characteristics. Also
note that, in order to enhance the intensity scale invari-
ance, we apply instance normalization (Ulyanov et al.,
2016) for the upfront convolution layers of our encoder
network.

Pattern scale identification

Our base system assumes that the input image is taken at
a specific zoom level designed for our dataset, which is
likely not going to be true for a random image. We currently
assume this to be solved by the user given proper visual
feedback (i.e., the user would see the pattern in real-time as
they scan their pattern of interest with a mobile phone).

Here, we investigate the potential of automatically discover-
ing the scale of the pattern. Our base idea is to evaluate the
confidence of the output instruction map for different candi-
date scales and to choose the one with highest confidence.
Although the softmax output cannot directly be considered
as a valid probability distribution, it can serve as an approxi-
mation, which can be calibrated for (Guo et al., 2017). As a
proof of concept, we take a full 5 x 5 pattern image from our
dataset and crop its center at different scales from 160 pix-
els to 2000 pixels of width. We then measure the output of
the network and compute a scale pseudo-confidence as the
average over pixels of the maximum softmax component.

In Figure A.2, we show a sample image with crops at various

scales, together with the corresponding uncalibrated pseudo-
confidence measure, which peaks at around 600 pixels scale.
Coincidentally, this corresponds to the scale of our ground
truth crops for that image.

This suggests two potential scenarios: (1) the user takes a
much larger image and then that pattern image gets analysed
offline to figure out the correct scale to work at using a
similar procedure, and then generates a full output by using
a tiling of crops at the detected scale, or (2) an interactive
system could provide scale information and suggest the user
to get closer to (or farther from) the target depending on the
confidence gradient.

Data post-processing

As mentioned in the main paper, our framework does not en-
force hard constraint on the output semantics. This implies
that some outputs may not be machine-knittable as-is.

More precisely, the output of our network may contain in-
valid instructions pairs or a lack thereof. We remedy to
these conflicts by relaxing the conflicting instruction, which
happens in only two cases:

1. Unpaired CROSS instructions — we reduce such instruc-
tions into their corresponding MOVE variants (since
CROSS are MOVESs with relative scheduling), and

2. CRoSS pairs with conflicting schedules (e.g., both pair
sides have same priority, or instructions within a pair’s
side having different priorities) — in this case, we ran-
domly pick a valid schedule (note that its impact is only
local).



Table A.1. Performance comparison with larger scene parsing network from (Zhou et al., 2018). (d2) uses pre-training on Ima-
geNet (Russakovsky et al., 2015) and a much larger number of parameters (1.4M v.s. 51.4M).

Method Accuracy (%) Perceptual # Parameters

Full FG | SSIM | PSNR [dB] | (in Millions)
(d1)| Refiner + img2prog++ (v = 1/2) 94.01 | 80.30 | 0.899 23.56 1.4
(d2)| Large Scene Parsing w/ pre-training | 94.95 | 83.46 | 0.908 24.58 514

This is sufficient to allow knitting on the machine. Note that
STACK are semantically supposed to appear with a MOVE,
but they dont prevent knitting since their operations lead to
the same as KNIT when unpaired, and thus do not require
any specific post-processing.

Additional quantitative results

The focus of the experiments in the main paper was on
assessing specific trends such as the impact of the dataset
size, or the different behaviours of baseline networks, the
impact of mixing data types and the ratios of these.

As can be noted, we used a standard (residual) architecture
and tried to avoid over-engineering our network or its pa-
rameters. However, we provide here results that show that
we can obviously still do better by using more complex and
larger networks, to the detriment of having to train for a
longer time and resulting in a much larger model size.

In our baseline, we compared with a sample architecture
from (Zhou et al., 2018), which we made small enough
to compare with our baseline Img2prog implementation.
Furthermore, our baseline implementations were all trained
from scratch and did not make use of pre-training on any
other dataset.

Here, we provide results for a much larger variant of that
network, which we name Large Scene Parsing, and makes
use of pre-training on ImageNet (Russakovsky et al., 2015).
The quantitative comparison is provided in Table A.1, which
shows that we can achieve even better accuracy than our best
current results using our Refiner+Img2prog++ combi-
nation. However, note that this comes with a much larger
model size: ours has 1.4M parameters1 , Whereas Large
Scene Parsing has 51.4M . Furthermore, this requires pre-
training on ImageNet with millions of images (compared to
our model working with a few thousands only).

Additional qualitative results

We present additional qualitative results obtained from sev-
eral networks in Figure A.3.

'M for Million

Proof of Theorem 1

We first describe the necessary definitions and lemmas to
prove Theorem 1. We need a general way to measure the
discrepancy between two distributions, which we borrow
from the definition of discrepancy suggested by (Mansour
et al., 2009).

Definition 1 (Discrepancy (Mansour et al., 2009)). Let H be
a class of functions mapping from X to ). The discrepancy
between two distribution D1 and D5 over X is defined as

diSC'H('Z)l7 Dg) = hI,E?éXH ‘,CDI (h, h/) - ,CD2 (h, h/)| . (2)

The discrepancy is symmetric and satisfies the triangle in-
equality, regardless of any loss function. This can be used
to compare distributions for general tasks even including
regression.

The following lemma is the extension of Lemma 4 in (Ben-
David et al., 2010) to be generalized by the above discrep-
ancy.

Lemma 1. Let h be a hypothesis in class H, and assume
that L is symmetric and obeys the triangle inequality. Then

|‘C01(h7y) - ﬁT(h’7y)| S « (diSCH(stpT) + )‘) ) (3)

where \=Lg(h*,y)+Lrp(h*,y), and the ideal joint hypoth-
esis h* is defined as h*=arg miny, ¢4, Ls(h, y)+Lr(h,y).

Proof. The proof is based on the triangle inequality of L,
and the last inequality follows the definition of the discrep-
ancy.

|La(h,y) — L7(h,y)|
=a|Ls(h,y) — Lr(h,y)|
=a|Ls(h,y) — Ls(h*,h) + Ls(h*,h)
— Lp(h*,h) + Lp(h* h) — Lr(h,y) |
§a| |Ls(h,y) — Lg(h*, )|+
|Ls(h*,h) — Lp(h*, h)| + |Lr(h*,h) — Lo(h,y)| |
<al|Ls(h*,y)+|Ls(h*, h)—Lp(h*, h)|+Lr(h*,y)|

<a (discy(Ds, Dr) + A) . €]

We conclude the proof. O
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Figure A.3. Additional comparisons of instructions predicted by different version of our method. We present the predicted instructions as

well as a corresponding image from our renderer.

Many types of losses satisfy the triangle inequality, e.g., the
0—11loss (Ben-David et al., 2010; Crammer et al., 2008) and
l1-norm obey the triangle inequality, and [,,-norm (p > 1)
obeys the pseudo triangle inequality (Galanti & Wolf, 2017).

Lemma 1 bounds the difference between the target loss and
a-mixed loss. In order to derive the relationship between
a true expected loss and its empirical loss, we rely on the
following lemma.

Lemma 2 ((Ben-David et al., 2010)). For a fixed hypothesis
if a random labeled sample of size m is generated by

drawing Bm points from Dg and (1 — B)m points from Dr,
and labeling them according to ys and yr respectively, then
Sforany § € (0, 1), with probability at least 1 — § (over the
choice of the samples),

I‘é&(hv y) ‘Ca(h) y)| e(m, a, ﬁ) 5)5 (5)
where e(m, o, 3,0) = 1| 7 %2+ (11__023)2 log(2).

The detail function form of € will be omitted for simplicity.
We can fix m, «, 3, and § when the learning task is specified,
then we can treat €(-) as a constant.



Theorem 1. Let H be a hypothesis class, and S be a la-
beled sample of size m generated by drawing m samples
from Dg and (1 — B)m samples from Dy and labeling them
according to the true label y. Suppose L is symmetric and
obeys the triangle inequality. Let h € H be the empiri-
cal minimizer of h = argmin,, Lo (h,y) on S for a fixed
a € [0,1], and h}. = argming, L (h,y) the target error
minimizer. Then, for any § € (0, 1), with probability at least
1 — 6 (over the choice of the samples), we have

|[’T(ﬁ7y)_£T(h}ay)| < 2 (Oé (diSCH(Ds,DT) + /\) + g) ,
(6)
where ¢(m,a, 3,0) = \/2;1 (%2 n (11_:2)2) log(2), and

A= minhEH ‘Cs(hv y)+£T(h7 y)

Proof. We use Lemmas 1 and 2 for the bound derivation
with their associated assumptions.

ET(il‘v y)

< Lolh,y) + o (discy (Ds, Dr) + A), 7
(By Lemma 1)

< Lo(h,y) + o (discy (Ds, Dr) + A) + ¢, (8)
(By Lemma 2)

< La(hp,y) + o (disen(Ds, Dr) +A) + ¢, ©)
(h = argmin L, (h))

heH

< Lo(Wr,y) + a(disey (Ds, Dr) + A) + 2, (10)
(By Lemma 2)

< Lr(hy,y) + 20 (discy(Ds, Dr) +A) + 26, (11)
(By Lemma 1)

which concludes the proof. O

Theorem 1 does not have unnecessary dependencies for our
purpose, which are used in (Ben-David et al., 2010) such as
unsupervised data and the restriction of the model type to
finite VC-dimensions.
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