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Abstract
This paper introduces an efficient second-order
method for solving the elastic net problem. Its
key innovation is a computationally efficient
technique for injecting curvature information in
the optimization process which admits a strong
theoretical performance guarantee. In particular,
we show improved run time over popular first-
order methods and quantify the speed-up in terms
of statistical measures of the data matrix. The
improved time complexity is the result of an ex-
tensive exploitation of the problem structure and
a careful combination of second-order informa-
tion, variance reduction techniques, and momen-
tum acceleration. Beside theoretical speed-up,
experimental results demonstrate great practical
performance benefits of curvature information,
especially for ill-conditioned data sets.

1. Introduction
Lasso, ridge and elastic net regression are fundamental
problems in statistics and machine learning, with count-
less applications in science and engineering (Zou & Hastie,
2005). Elastic net regression amounts to solving the fol-
lowing convex optimization problem

minimize
x∈Rd

{
1

2n
‖Ax− b‖22 +

γ2
2
‖x‖22 + γ1 ‖x‖1

}
, (1)

for given data matrices A ∈ Rn×d and b ∈ Rn and reg-
ularization parameters γ1 and γ2. Setting γ1 = 0 re-
sults in ridge regression, γ2 = 0 yields lasso and let-
ting γ1 = γ2 = 0 reduces the problem to the classical
least-squares. Lasso promotes sparsity of the optimal so-
lution, which sometimes helps to improve interpretability
of the results. Adding the additional l2-regularizer helps to
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improve the performance when features are highly corre-
lated (Tibshirani et al., 2015; Zou & Hastie, 2005).

The convergence rates of iterative methods for solving (1)
are typically governed by the condition number of the Hes-
sian matrix of the ridge loss,C+γ2I, whereC = 1

nA
>A

is the sample correlation matrix. Real-world data sets of-
ten have few dominant features, while the other features
are highly correlated with the stronger ones (Gonen et al.,
2016; Tibshirani et al., 2015). This translates to a rapidly
decaying spectrum of C. In this paper, we demonstrate
how this property can be exploited to reduce the effect of
ill-conditioning and to design faster algorithms for solving
the elastic net regression problem (1).

1.1. Related work

Over the past few years, there has been a great attention to
developing efficient optimization algorithms for minimiz-
ing composite objective functions

min
x∈Rd

F (x) , f (x) + h (x) , (2)

where f (x) = 1
n

∑n
i=1 fi (x) is a finite sum of smooth and

convex component functions fi (x), and h (x) is a possibly
non-smooth convex regularizer. In machine learning appli-
cations, the function f typically models the empirical data
loss and the regularizer h is used to promote desired proper-
ties of a solution. For example, the elastic net objective can
fit to this form with fi(x) = 1

2

(
a>i x− bi

)2
+ γ2 ‖x‖22 ,

and h(x) = γ1 ‖x‖1 .

1.1.1. FIRST-ORDER METHODS

Standard deterministic first-order methods for solving (2),
such as proximal gradient descent, enjoy linear conver-
gence for strongly convex objective functions and are able
to find an ε-approximate solution in time O

(
dnκ log 1

ε

)
,

where κ is the condition number of f . This runtime can
be improved to O

(
dn
√
κ log 1

ε

)
if it is combined with

Nesterov acceleration (Beck & Teboulle, 2009; Nesterov,
2013). However, the main drawback of these methods is
that they need to access the whole data set in every itera-
tion, which is too costly in many machine learning tasks.

For large-scale problems, methods based on stochas-
tic gradients have become the standard choice for solv-
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ing (2). Many linearly convergent proximal methods such
as, SAGA (Defazio et al., 2014) and Prox-SVRG (Xiao &
Zhang, 2014), have been introduced and shown to outper-
form standard first-order methods under certain regularity
assumptions. These methods improve the time complex-
ity to O

(
d (n+ κ̃) log 1

ε

)
, where κ̃ is a condition num-

ber satisfying κ̃ ≥ κ. When the component functions
do not vary substantially in smoothness, κ̃ ≈ κ, and this
complexity is far better than those of deterministic meth-
ods above. By exploiting Nesterov momentum in different
ways (see, e.g., (Allen-Zhu, 2016; Defazio, 2016; Frostig
et al., 2015; Lin et al., 2015)), one can improve the com-
plexity to O

(
d
(
n+
√
nκ̃
)

log 1
ε

)
, which is also optimal for

this class of problems (Woodworth & Srebro, 2016).

1.1.2. SECOND-ORDER METHODS

Second-order methods are known to have superior perfor-
mance compared to their first-order counterparts both in
theory and practice, especially when the problem at hand
is highly nonlinear and/or ill-conditioned. However, such
methods often have very high computational cost per it-
eration. Recently, there has been an intense effort to de-
velop algorithms which use second-order information with
a more reasonable computational burden (see, e.g., (Agar-
wal et al., 2017; Byrd et al., 2016; Erdogdu & Monta-
nari, 2015; Moritz et al., 2016; Roosta-Khorasani & Ma-
honey, 2016; Xiao & Zhang, 2014; Xu et al., 2016) and
references therein). Those methods use techniques such
as random sketching, matrix sampling, and iterative esti-
mation to construct an approximate Hessian matrix. Lo-
cal and global convergence guarantees have been derived
under various assumptions. Although many experimental
results have shown excellent performance of those meth-
ods on many machine learning tasks, current second-order
methods for finite-sum optimization tend to have much
higher time-complexities than their first-order counterparts
(see (Xu et al., 2016) for a detailed comparison).

Apart from having high time complexities, none of the
methods cited above have any guarantees in the compos-
ite setting since their analyses hinge on differentiability of
the objective function. Instead, one has to rely on methods
that build on proximal Newton updates (see, e.g., (Ghan-
bari & Scheinberg, 2016; Lee et al., 2012; Liu et al., 2017;
Rodomanov & Kropotov, 2016)). However, these meth-
ods still inherit the high update and storage costs of con-
ventional second-order methods or require elaborate tuning
of several parameters and stopping criteria depending on a
phase transition which occurs in the algorithm.

1.1.3. RIDGE REGRESSION

For the smooth ridge regression problem, the authors
in (Gonen et al., 2016) have developed a preconditioning

method based on linear sketching which, when coupled
with SVRG, yields a significant speed-up over stochastic
first-order methods. This is a rare second-order method
that has a comparable or even better time complexity than
stochastic first-order methods. More precisely, it has a
guaranteed running time of O(d(n+κ

H
) log 1

ε ), where κ
H

is a new condition number that can be dramatically smaller
than κ̃, especially when the spectrum of C decays rapidly.
When d � n, the authors in (Wang & Zhang, 2017) com-
bine sub-sampled Newton methods with the mini-batch
SVRG to obtain some further improvements.

1.2. Contributions

Recently, the work (Arjevani & Shamir, 2017) shows
that under some mild algorithmic assumptions, and if the
dimension is sufficiently large, the iteration complexity
of second-order methods for smooth finite-sum problems
composed of quadratics is no better than first-order meth-
ods. Therefore, it is natural to ask whether one can develop
a second-order method for solving the elastic net problem
which has improved practical performance but still enjoys a
strong worst-case time complexity like the stochastic first-
order methods do? It should be emphasized that due to
the non-smooth objective, achieving this goal is much more
challenging than for ridge regression. The preconditioning
approach in (Gonen et al., 2016) is not applicable, and the
current theoretical results for second-order methods are not
likely to offer the desired running time.

In this paper, we provide a positive answer to this question.
Our main contribution is the design and analysis of a simple
second-order method for the elastic net problem which has
a strong theoretical time complexity and superior practical
performance. The convergence bound adapts to the prob-
lem structure and is governed by the spectrum and a sta-
tistical measure of the data matrix. These quantities often
yield significantly stronger time complexity guarantees for
practical datasets than those of stochastic first-order meth-
ods (see Table 1). To achieve this, we first leverage recent
advances in randomized low-rank approximation to gener-
ate a simple, one-shot approximation of the Hessian ma-
trix. We then exploit the composite and finite-sum struc-
ture of the problem to develop a variant of the ProxSVRG
method that builds upon Nesterov’s momentum accelera-
tion and inexact computations of scaled proximal opera-
tors, which may be of independent interest. We provide a
simple convergence proof based on an explicit Lyapunov
function, thus avoiding the use of sophisticated stochastic
estimate sequences.

2. Preliminaries and Notation
Vectors are indicated by bold lower-case letters, and ma-
trices are denoted by bold upper-case letters. We denote
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Table 1. Summary of different algorithms solving the elastic net
problem. Here, κ and κ̃ are conventional condition numbers satis-
fying κ ≤ κ̃, while κH is a new condition number defined w.r.t the
H-norm. When H is an approximate Hessian of the ridge loss,
κH is often much smaller than κ̃, especially on practical data sets.

Algorithm Time complexity 2nd-order

PGD O(dnκ log 1
ε ) no

FISTA O
(
dn
√
κ log 1

ε

)
no

ProxSVRG O
(
d (n+ κ̃) log 1

ε

)
no

Katyusha O
(
d(n+

√
nκ̃) log 1

ε

)
no

Ours O
(
d (n+ κ

H
) log 1

ε

)
yes

the dot product between x and y by 〈x,y〉 = x>y, and
the Euclidean norm of x by ‖x‖2 =

√
〈x,x〉. For a sym-

metric positive definite matrix H , 〈x,y〉H = x>Hy is
the H-inner product of two vectors x and y and ‖x‖H =√
〈x,x〉H is the Mahalanobis norm of x. We denote by

λi (A) the ith largest eigenvalue of A. Finally, λi denotes
the ith largest eigenvalue of the correlation matrix C.

In the paper, we shall frequently use the notions of strong
convexity and smoothness in the H-norm, introduced in
the next two assumptions.

Assumption 1. The function h (x) is lower-semicontinous
and convex and domh := {x ∈ Rd |h (x) < ∞}, is
closed. Each function fi is Li-smooth w.r.t the H-norm,
i.e, there exists a positive constant Li such that

‖∇fi (x)−∇fi (y)‖H−1 ≤ Li ‖x− y‖H , ∀x,y ∈ Rd.

Assumption 1 implies that∇f is L-Lipschitz:

‖∇f (x)−∇f (y)‖H−1 ≤ L ‖x− y‖H

for some L ≤ Lavg = 1
n

∑n
i=1 Li. As a consequence, we

have the following bound:

f (y) ≤ f (x) + 〈∇f (x) ,y − x〉+
Lavg

2
‖y − x‖2H .

Assumption 2. The function f (x) is µ-strongly convex
w.r.t theH-norm, i.e, there exists a positive constant µ such
that

f (λx+ (1− λ)y) ≤ λf (x) + (1 + λ) f (y)

− µλ (1− λ)

2
‖x− y‖2H

holds for all x, y ∈ Rn and λ ∈ [0, 1].

Assumption 2 is equivalent to the requirement that

f (y) ≥ f (x) + 〈∇f (x) ,y − x〉+
µ

2
‖y − x‖2H ,

holds for all x,y ∈ Rn. We will use both of these defini-
tions of strong convexity in our proofs.

At the core of our method is the concept of scaled proximal
mappings, defined as follows:

Definition 1 (Scaled Proximal Mapping). For a convex
function h and a symmetric positive definite matrix H , the
scaled proximal mapping of h at x is

proxH
h (y) = argmin

x∈Rd

{
h (x) +

1

2
‖x− y‖2H

}
. (3)

The scaled proximal mappings generalize the conventional
ones:

proxh (y) = argmin
x∈Rd

{
h (x) +

1

2
‖x− y‖22

}
. (4)

However, while many conventional prox-mappings admit
analytical solutions, this is almost never the case for scaled
proximal mappings. This makes it hard to extend efficient
first-order proximal methods to second-order ones. Fortu-
nately, scaled proximal mappings do share some key prop-
erties with the conventional ones. We collect a few of them
in the following result:

Property 1 ((Lee et al., 2012)). The following properties
hold:

1. proxH
h (x) exists and is unique for x ∈ domh.

2. Let ∂h (x) be the subdifferential of h at x, then

H
(
x− proxH

h (x)
)
∈ ∂h

(
proxH

h (x)
)
.

3. proxH
h (·) is non-expansive in theH-norm:∥∥proxH

h (x)−proxH
h (y)

∥∥
H
≤ ‖x−y‖H ∀x,y ∈ domh.

Finally, in our algorithm, it will be enough to solve (3) ap-
proximately in the following sense:

Definition 2 (Inexact subproblem solutions). We say that
x+ ∈ Rd is an ε-optimal solution to (3) if

h
(
x+
)

+
1

2η

∥∥x+ − y
∥∥2
H

≤ min
x∈Rd

{
h (x) +

1

2η
‖x− y‖2H

}
+ ε. (5)

3. Building Block 1: Randomized Low-Rank
Approximation

The computational cost of many Newton-type methods is
dominated by the time required to compute the update di-
rection d = H−1g for some vector g ∈ Rd and approx-
imate Hessian H . A naive implementation using SVD
would take O

(
nd2
)

flops, which is prohibitive for large-
scale data sets. A natural way to reduce this cost is to use



Curvature-Exploiting Acceleration of Elastic Net Computations

truncated SVD. However, standard deterministic methods
such as the power method and the Lanzcos method have run
times that scale inversely with the gap between the eigen-
values of the input matrix. This gap can be arbitrarily small
for practical data sets, thereby preventing us from obtain-
ing the desired time complexity. In contrast, randomized
sketching schemes usually admit gap-free run times (Halko
et al., 2011). However, unlike other methods, the block
Lanczos method, detailed in Algorithm 1, admits both fast
run times and strong guarantees on the errors between the
true and the computed approximate singular vectors. This
property turns out to be critical for deriving bounds on the
condition number of the elastic net.

Proposition 1 ((Musco & Musco, 2015)). Assume that
Ur, Σr, and Vr are matrices generated by Algorithm 1.
Let Ar = UrΣrV

>
r =

∑r
i=1 σiuiv

>
i and let A =∑d

i=1 σ̄iūiv̄
>
i be the SVD of A. Then, the following

bounds hold with probability at least 9/10:

‖A−Ar‖2 ≤ (1 + ε′) σ̄k∣∣u>i AA>ui − ū>i AA>ūi∣∣ ≤ ε′σ̄2
r+1, ∀i ∈ {1, . . . , r}.

The total running time is O
(
ndr log d(ε′)−1/2

)
.

Note that we only run Algorithm 1 once and ε′ = 1/2 is
sufficient in our work. Thus, the computational cost of this
step is negligible, in theory and in practice.

3.1. Aproximating the Hessian

In this work, we consider the following approximate Hes-
sian matrix of the ridge loss:

H = Vr
(
Σ2
r + γ2I

)
V >r +

(
σ2
r + γ2

)(
I − VrV >r

)
. (6)

Here, the first term is a natural rank r approximation of the
true Hessian, while the second term is used to capture infor-
mation in the subspace orthogonal to the column space of
Vr. The inverse ofH in (6) admits the explicit expression

H−1 = Vr
(
Σ2
r + γ2I

)−1
V >r +

1

σ2
r + γ2

(
I − VrV >r

)
,

so the evaluation ofH−1x has time complexity O (rd).

3.2. Bounding the Condition Number

We now turn our attention to studying how the approximate
Hessian affects the relevant condition number of the elastic
net problem. We first introduce a condition number that
usually determines the iteration complexity of stochastic
first-order methods under non-uniform sampling.

Definition 3. The average condition number of (1.1) is

κ
H

=
Lavg

µ
=

1
n

∑n
i=1 Li

µ
.

Algorithm 1 Randomized Block Lanczos Method (Musco
& Musco, 2015)

Input: Data matrixA ∈ Rn×d, target rank r, target preci-
sion ε′ ∈ (0, 1)

1: Let q = O(log d/
√
ε′), and draw Π ∼ Nd×r (0, I)

2: ComputeK=
[
AΠ

(
AA>

)
AΠ . . .

(
AA>

)q
AΠ

]
3: Orthonormalize columns ofK to obtainQ
4: Compute truncated r-SVD ofQ>A asWrΣrV

>
r

5: Compute Ur = QWr

Output: Ur, Σr, Vr

For the elastic net problem (1), the smooth part of the ob-
jective is the ridge loss

1

n

n∑
i=1

1

2

(
a>i x− bi

)2
+ γ2 ‖x‖22︸ ︷︷ ︸

fi(x)

.

Since we define smoothness and strong convexity of fi(x)
in theH-norm, the relevant constants are

Li = ‖H−1
(
aia

>
i + γ2I

)
‖2

µ = λd
(
H−1/2 (C + γ2I)H−1/2

)
.

For comparison, we also define the conventional condition
number κ̃, which characterizes the smoothness and strong
convexity of fi(x) in the Euclidean norm. In this case κ̃ =∑
i Li/(nµ), where

Li = ‖aia>i + γ2I‖22 and µ = λd (C + γ2I) .

It will become apparent that κ
H

can be expressed in terms
of a statistical measure of the ridge loss and that it may
be significantly smaller than κ̃. We start by introducing a
statistical measure that has been widely used in the analysis
of ridge regression (see, e.g., (Hsu et al., 2012) and the
references therein).
Definition 4 (Effective Dimension). For a positive con-
stant λ, the effective dimension of C is defined as

dλ =

d∑
i=1

λi
λi + λ

.

The effective dimension generalizes the ordinary dimen-
sion and satisfies dλ ≤ d with equality if and only if λ = 0.
It is typical that when C has a rapidly decaying spectrum,
most of the λi’s are dominated by λ, and hence dλ can be
much smaller than d.

The following lemma bounds the eigenvalues of the matrix
H−1/2 (C + γ2I)H−1/2, which can be seen as the effec-
tive Hessian matrix.
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Lemma 1 ((Gonen et al., 2016)). Invoking Algorithm 1
with data matrix 1√

n
A, target rank r, and target precision

ε′ = 1/2, it holds with probability at least 9/10 that

λ1

(
H−1/2 (C + γ2I)H−1/2

)
≤ 17

γ2
19 (λr + γ2)

≤ λd
(
H−1/2 (C + γ2I)H−1/2

)
≤ 2.

Equipped with Lemma 1, we can now connect κ
H

with dλ
using the following result.

Theorem 1. With probability at least 9/10, the following
bound holds up to a multiplicative constant:

κ
H
≤ min

(
dγ2
γ2
,
rλr +

∑
i>r λi

γ2
+ d

)
.

Proof. See Appendix B.

Since κ̃ = (
∑
i λi + dγ2)/γ2, κ

H
is reduced by a factor∑

i≤r λi +
∑
i>r λi

rλr +
∑
i>r λi

,

compared to κ̃. If the spectrum of C decays rapidly, then
the terms

∑
i>r λi are negligible and the ratio is approx-

imately
∑
i≤r λi/(rλr). If the first eigenvalues are much

larger than λr, this ratio will be large. For example, for the
australian data set (Chang & Lin, 2011), this ratio can be
as large as 1.34× 104 and 1.6× 105 for r = 3 and r = 4,
respectively. This indicates that it is possible to improve
the iteration complexity of stochastic first-order methods
if one can capitalize on the notions of strong convexity
and smoothness w.r.t the H-norm in the optimization al-
gorithm. Of course, this is only meaningful if there is an
efficient way to inject curvature information into the opti-
mization process without significantly increasing the com-
putational cost. In the smooth case, i.e., γ1 = 0, this task
can be done by a preconditioning step (Gonen et al., 2016).
However, this approach is not applicable for the elastic net,
and we need to make use of another building block.

4. Building Block 2: Inexact Accelerated
Scaled Proximal SVRG

In this section, we introduce an inexact scaled accelerated
ProxSVRG algorithm for solving the generic finite-sum
minimization problem in (2). We then characterize the con-
vergence rate of the proposed algorithm.

4.1. Description of the Algorithm

To motivate our algorithm, we first recall the ProxSVRG
method from (Xiao & Zhang, 2014): For the sth outer iter-
ation with the corresponding outer iterate x̃s, let x0 = x̃s

and for k = 0, 2, . . . , T − 1 do

vk = (∇fik (xk)−∇fik (x̃s)) / (npik) +∇f (x̃s) (7)
xk+1 = proxηh (xk − ηvk) , (8)

where ik is drawn randomly from {1, . . . , n} with prob-
ability pik = Lik/(nLavg). Since we are provided with
an approximate Hessian matrix H , it is natural to use the
following update:

xk+1 = proxH
ηh

(
xk − ηH−1vk

)
, (9)

which can be seen as a proximal Newton step with the full
gradient vector replaced by vk. Note that when h(·) is
the `1-penalty, ProxSVRG can evaluate (8) in time O(d),
while evaluating (9) amounts to solving an optimization
problem. It is thus is critical to keep the number of such
evaluations small, which then translates into making a suf-
ficient progress at each iteration. A natural way to achieve
this goal is to reduce the variance of the noisy gradient vk.
This suggests to use large mini-batches, i.e., instead of us-
ing a single component function fik , we use multiple ones
to form:

vk=
1

b

∑
ik∈Bk

(
∇fik (xk)−∇fik (x̃s)

)
/(npik)+∇f (x̃s) ,

where Bk ⊂ {1, . . . , n} is a set of indices with cardinality
|Bk| = b. It is easy to verify that vk is an unbiased estimate
of ∇f (xk). Notice that naively increasing the batch size
makes the algorithm increasingly similar to its determin-
istic counterpart, hence inheriting a high-time complexity.
This makes it hard to retain the runtime of ProxSVRG in
the presence of 2nd-order information.

In the absence of second-order information and under
the assumption that the proximal step is computed ex-
actly, the work (Nitanda, 2014) introduced a method called
AccProxSVRG that enjoys the same time complexity as
ProxSVRG but allows for much larger mini-batch sizes.
In fact, it can tolerate a mini-batch of size O

(√
κ̃
)

thanks
to the use of Nesterov momentum. This indicates that an
appropriate use of Nesterov momentum in our algorithm
could allow for the larger mini-batches required to balance
the computational cost of using scaled proximal mappings.
The improved iteration complexity of the scaled proximal
mappings will then give an overall acceleration in terms of
wall-clock time. As discussed in (Allen-Zhu, 2016), the
momentum mechanism in AccProxSVRG fails to acceler-
ate ProxSVRG unless κ̃ ≥ n2. In contrast, as we will see,
our algorithm will be able to accelerate the convergence
also in these scenarios. In summary, our algorithm is de-
signed to run in an inner-outer fashion as ProxSVRG with
large mini-batch sizes and Nesterov momentum to compen-
sate for the increased computational cost of subproblems.
The overall procedure is summarized in Algorithm 2.
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Algorithm 2 Inexact Accelerated Scaled Proximal SVRG

Input: x̃0,H , {Bk}Tk=0, η, τ
1: for s = 0, 1, . . . , S do
2: ∇f (x̃s)← 1

n

∑n
1 ∇fi (x̃s)

3: x0 ← z0 ← x̃s
4: for k = 0, 1, . . . , T − 1 do
5: yk ← 1

1+τ xk + τ
1+τ zk

6: vk ← ∇fBk
(yk)−∇fBk

(x̃s) +∇f (x̃s)
7: xk+1 ≈ proxH

ηh

(
yk − ηH−1vk

)
8: gk+1 ← 1

η (yk − xk+1)

9: zk+1 ← zk + τ (yk − zk)− τ
µgk+1

10: end for
11: x̃s+1 ← xT
12: end for
Output: x̃S

4.2. Convergence Argument

In this subsection, we will show that as long as the errors
in evaluating the scaled proximal mappings are controlled
in an appropriate way, the iterates generated by the outer
loop of Algorithm 2 converge linearly in expectation to the
optimal solution. Recall that in Step 7 of Algorithm 2, we
want to find an εk-optimal solution in the sense of (5) to the
following problem:

minimize
x∈Rd

1

2η

∥∥x− yk + ηH−1vk
∥∥2
H

+ h (x) . (10)

The next lemma quantifies the progress made by one inner
iteration of the algorithm. Our proof builds on a Lyapunov
argument using a Lyapunov function on the form:

Vk = F (xk)− F (x?) +
µ

2
‖zk − x?‖2H . (11)

Lemma 2. Let Assumptions 1–2 hold and let x? =
argminx F (x), η = 1/Lavg and τ =

√
µ/2Lavg. If the

mini-batch size is chosen such that b ≥ 60
√
Lavg/µ, then

for any k ∈ {0, . . . , T − 1}, there exists a vector ξk ∈ Rd
such that ‖ξk‖H−1 ≤

√
2ηεk and

EVk+1 ≤ (1− τ)EVk + τLavg E 〈ξk,x? − zk〉+ 5εk

+
τ

5
E {F (xk)− F (x?) + F (x̃s)− F (x?)} . (12)

Proof. See Appendix D.

Remark 1. Our proof is direct and based on natural Lya-
punov functions, thereby avoiding the use of stochastic es-
timate subsequences as in (Nitanda, 2014) which is al-
ready very complicated even when the subproblems are
solved exactly and H = I. We stress that the result in
Lemma 2 also holds for smaller mini-batch sizes, namely
b ∈

{
1, . . . , O(

√
Lavg/µ)

}
, provided that the step size η

is reduced accordingly. In favor of a simple proof, we only
report the large mini-batch result here.

Equipped with Lemma 2, we can now characterize the
progress made by one outer iteration of Algorithm 2.
Theorem 2. Let Assumptions 1–2 hold. Suppose that the
parameters η, b, and τ are chosen according to Lemma 2
and define ρ = 9τ/10. Then, if the errors in solving the
subproblems satisfy

εk ≤ (1− ρ)
k
V0

for all k ∈ {0, . . . , T − 1} and T ≥ (4 log c)/3ρ, where c
is a universal constant, then for every s ∈ N+,

E {F (x̃s)− F (x?)} ≤ 2

3
E {F (x̃s−1)− F (x?)} .

Proof. See Appendix E.

Remark 2. The theorem indicates that if the errors in solv-
ing the subproblems are controlled appropriately, the outer
iterates generated by Algorithm 2 converge linearly in ex-
pectation to the optimal solution. Since V0 depends on x?,
it is difficult to provide a general closed-form expression
for the target precisions εk. However, we will show below
that with a certain policy for selecting the initial point, it
is sufficient to run the solver a constant number of itera-
tions independently of x?. We stress that the results in this
section are valid for minimizing general convex composite
functions (2) and not limited to the elastic net problem.

5. Warm-Start
The overall complexity of Algorithm 2 depends strongly
on our ability to solve (10) in a reasonable computational
time. If one naively starts the solver at a random point,
it may take many iterations to meet the target precision.
Thus, it is necessary to have a well-designed warm-start
procedure for initializing the solver. Intuitively, the current
iterate xk can be a reasonable starting point since the next
iterate xk+1 should not be too far away from xk. However,
in order to achieve a strong theoretical running time, we
use a rather different scheme inspired by (Lin et al., 2015).
Let us first define the vector uk = yk − ηH−1vk for k ∈
{0, 1, . . . , T − 1} and the function

p (z,u) = h (z) +
1

2η
‖z − u‖2H .

Then, the kth subproblem seeks for xk+1 such that

p (xk+1,uk)− p
(
x?k+1,uk

)
≤ εk, (13)

where x?k+1 is the exact solution. We consider the initial-
ization policy

z0 = proxγh
(
xk −

γ

η
H (xk − uk−1)

)
, (14)
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which can be seen as one step of the proximal gradient
method applied to p (z,uk−1) starting at the current xk.

The following proposition characterizes the difference in
objective realized by z0 and x?k+1.
Proposition 2. Let z0 be defined by (14) with γ =
η/λ1 (H). Let κsub = λ1 (H) /λr (H) be the condi-
tion number of the subproblems. Assume that the errors
in solving the subproblems satisfy εk ≤ (1− ρ)

k
V0 for all

k ∈ {0, 1, . . . , T − 1}. Then,

p (z0,uk)− p
(
x?k+1,uk

)
≤ κsub

1− ρ
εk.

Proof. See Appendix F.

The proposition, together with (13), implies that it suffices
to find xk+1 such that

p (xk+1,uk)− p
(
x?k+1,uk

)
≤ 1− ρ

κsub

(
p (z0,uk)− p

(
x?k+1,uk

))
. (15)

This is significant since one only needs to reduce the resid-
ual error by a constant factor independent of the target pre-
cision. Note also that the condition number κsub is much
smaller than κ ≈ λ1(H)/(λd+γ2), and computing the gra-
dient of the smooth part of p (z,u) only takes time O (rd)
instead ofO (nd) as in the original problem. Those proper-
ties imply that the subproblems can be solved efficiently by
iterative methods, where only a small (and known) constant
number of iterations is needed. The next section develops
the final details of convergence proof.

6. Global Time Complexity
We start with the time complexity of Algorithm 2. Let
T (α) be the number of gradient evaluations that a subprob-
lem solver takes to reduce the residual error by a factor α.
Then, by Proposition 2, one can find an εk-optimal solution
to the kth subproblem by at most T (κsub/ (1− ρ)) gradi-
ent evaluations, where one gradient evaluation is equivalent
toO (d) flops. Consider the same setting of Theorem 2 and
suppose that the subproblems are initialized by (14). Then,
the time complexity of Algorithm 2 is given by:

O

(
d

(
n+ κ

H
+
√
κ
H
T
(
κsub
1− ρ

))
log (1/ε)

)
, (16)

where the first summand is due to the full gradient evalu-
ation at each outer loop; the second one comes from the
fact that one needsO(

√
κ
H

) inner iterations, each of which
uses a mini-batch of size O(

√
κ
H

); and the third one is the
result of O(

√
κ
H

) inner iterations, each of which solves a
subproblem that needs T (κsub/ (1− ρ)) gradient evalua-
tions. We can now put things together and state our main
result.

Proposition 3. Suppose that the approximate Hessian ma-
trix H is given by (6) and that Algorithm 2 is invoked with
f (x) = 1

2n ‖Ax− b‖
2
2 + γ2

2 ‖x‖
2
2 and h (x) = ‖x‖1. As-

sume further that the subproblems are solved by the accel-
erated proximal gradient descent method (Beck & Teboulle,
2009; Nesterov, 2013). Our method can find an ε-optimal
solution in time

O
(
d (n+ κ

H
) log (1/ε)

)
.

Proof. The task reduces to evaluating the term
T (κsub/ (1− ρ)) in (16). Recall that the iteration
complexity of the accelerated proximal gradient descent
method for minimizing the function F (x) = f(x) + h(x),
where f is a smooth and strongly convex function and h
is a possibly non-smooth convex regularizer, initiliazed
at x0 is given by

√
κ log F (x0)−F (x?)

ε , where κ is the
condition number. By invoking the about result with
F (x) = p (x,uk), x? = x?k+1, x0 = z0, κ = κsub, and ε
is the right-hand side of (15), it follows that the number of
iterations for each subproblem can be bounded by

O (
√
κsub log (κsub/(1− ρ))) . (17)

In addition, each iteration takes timeO (rd) to compute the
gradient implying the time complexity

O

(
d
(
n+ κ

H
+ r
√
κsub
√
κ
H

log
κsub
1− ρ

)
log

1

ε

)
.

Selecting r such that κ
H
≥ κsub completes the proof.

We can easily recognize that this time complexity has the
same form as the stochastic first-order methods discussed
in Section 1.2.1 with the condition number κ̃ replaced by
κ
H

. It has been shown in Theorem 1 that κ
H

can be much
smaller than κ̃, especially, when C has a rapidly decaying
spectrum. Note also that κsub is available for free to us
after having approximated the Hessian matrix.

7. Experimental Results
In this section, we perform numerical experiments to ver-
ify the efficacy of the proposed method on real world
data sets (Chang & Lin, 2011; Guyon et al., 2008). We
compare our method with the coordinate descent algo-
rithm (BCD) (Tibshirani et al., 2015) and several first-
order methods: FISTA (Beck & Teboulle, 2009) with
optimal step-size; Prox-SVRG (Xiao & Zhang, 2014)
with epoch length 2n/b as suggested by the authors;
Katyusha1 (Allen-Zhu, 2016) with epoch length 2n/b,
Katyusha momentum τ2 = 0.5/b as suggested by the
author; and our method with epoch length 2n/b. Since
Katyusha1 can use a mini-batch of size

√
n without

slowing down the convergence, we set b =
√
n for all
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Figure 1. Spectrum of the matrix C for different data sets.
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Figure 2. Suboptimality versus the number of epochs.

stochastic methods unless otherwise stated. Finally, to
make a fair comparison, for each algorithm above, we tune
only the step size, from the set η × {10k, 2 × 10k, 5 ×
10k|k ∈ {0,±1,±2}}, where η is the theoretical step size,
and report the one having smallest objective value. Other
hyper-parameters are set to their theory-predicted values.
All methods are initialized at 0. For the subproblems in Al-
gorithm 2, we just simply run FISTA with

√
κsub log κsub

iterations as discussed previously, without any further tun-
ning steps. The value of r is chosen as a small fraction of
d so that the preprocessing time of Algorithm 1 is negli-
gible. Note that the available spectrum of C after running
Algorithm 1 also provides an insightful way to choose r.

Figure 2 shows the suboptimality in objective versus the
number of epochs for different algorithms solving the elas-
tic net problem. We can see that our method systematically
outperforms the others in all settings, and that there is a
clear correspondence between the spectrum of C in Fig. 1
and the potential speed-up. Notably, for ill-conditioned
data sets such as australian and cina0, all the first-
order methods make almost no progress in the first 100
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Figure 3. Suboptimality versus runtime.

epochs, while our method can find a high-accuracy solu-
tion within tens of epochs, demonstrating a great bene-
fit of second-order information. On the other hand, for a
well-conditioned data set that does not exhibit high curva-
ture such as real-sim, ProxSVRG is comparable to our
method and even outperforms Katyusha1. This agrees
with the time complexities summarized in Table 1.

For runtime comparisons, we only report the performance
of BCD and our method since they outperform the others by
a large margin. We observe that for problems with small or
medium dimensions, it is useful to have BCD as subproblem
solver in our method since BCD is very effective in solving
LASSO-type problems. However, for high-dimensional
problems, BCD needs to loop over d coordinates, which
can be excessive since we only need to reduce the error of
the subproblem by a small constant factor. For this reason,
we use BCD as subproblem solver for australian and
cina0, and FISTA for gisette and real-sim. The
runtime plots in Fig 3 demonstrate that curvature informa-
tion offers significant acceleration over one of the state-of-
the-art methods for solving the elastic net problem.

8. Conclusions
We have proposed and analyzed a novel second-order
method for solving the elastic net problem. By carefully
exploiting the problem structure, we demonstrated that it
is possible to deal with the non-smooth objective and to
efficiently inject curvature information into the optimiza-
tion process without (significantly) increasing the computa-
tional cost per iteration. The combination of second-order
information, fast iterative solvers, and a well-designed
warm-start procedure results in a significant improvement
of the total runtime complexity over popular first-order
methods. An interesting direction for future research would
be to go beyond the quadratic loss.
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