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Abstract

Variance reduction is crucial in stochastic esti-
mation and optimization problems. Antithetic
sampling reduces the variance of a Monte Carlo
estimator by drawing correlated, rather than in-
dependent, samples. However, designing an ef-
fective correlation structure is challenging and
application specific, thus limiting the practical
applicability of these methods. In this paper,
we propose a general-purpose adaptive antithetic
sampling framework. We provide gradient-based
and gradient-free methods to train the samplers
such that they reduce variance while ensuring
that the underlying Monte Carlo estimator is
provably unbiased. We demonstrate the effec-
tiveness of our approach on Bayesian inference
and generative model training, where it reduces
variance and improves task performance with lit-
tle computational overhead.

1. Introduction

The problem of computing expectations that are too com-
plex to be evaluated analytically is ubiquitous in machine
learning. To address this difficulty, Monte Carlo estimation
underlies the majority of modern machine learning algo-
rithms. Instead of computing the exact expectation, Monte
Carlo estimators draw samples from the underlying distri-
bution and use them to compute an empirical mean. When
the number of samples is sufficiently large, this empirical
mean will approach the expectation according to the law of
large numbers. Despite this guarantee, Monte Carlo esti-
mators can still deviate substantially from the true expecta-
tion when the sample size is small.

The crux of Monte Carlo estimation is variance. According
to Chebyshev inequality, the estimation error is bounded
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by the variance of the estimator. Thus, with lower vari-
ance we could achieve better estimation error guarantees.
Increasing the number of samples is the most direct way to
decrease the variance but at the cost of additional compu-
tation. Hence, a variety of variance reduction techniques
have been proposed in the literature. Classic approaches
include baselines (Weaver & Tao, 2001), control vari-
ates (Greensmith et al., 2004), importance sampling (Neal,
2001), rejection sampling, Rao-Blackwellization (Grisetti
et al., 2007) etc. These techniques modify the underlying
distribution, but still rely on the basic idea of taking in-
dependent and identically distributed (i.i.d.) samples and
computing their empirical mean.

However, i.i.d. sampling is neither necessary nor opti-
mal. Antithetic sampling methods (Hammersley & Mor-
ton, 1956) forgo the i.i.d. sampling construction. Given a
fixed number of samples, antithetic sampling attempts to
Jjointly select all of them at once so that they are more rep-
resentative. An intuitive example is sampling without re-
placement: drawing k objects without replacement is guar-
anteed to provide a more complete picture of the underly-
ing space (compared to i.i.d. sampling) because it avoids
redundancy by construction. In fact, sampling without re-
placement provably reduces variance. The reduction, how-
ever, is modest.

Although a more effective, general-purpose antithetic sam-
pling strategy is desirable, it is actually impossible. We will
prove a no-free-lunch result: no antithetic sampling strat-
egy can work better than sampling without replacement for
a natural class of Monte Carlo estimation problems. There-
fore, we cannot use a single antithetic sampling strategy
and achieve significant variance reduction for every estima-
tion problem; antithetic sampling must tailor to the specific
problem at hand.

In this paper, we propose a general framework to learn an
antithetic sampling distribution that automatically adapts to
the underlying Monte Carlo estimation problem. The key
idea is to construct a flexible, parametric family of joint
probability distributions over a set of samples that is both
learnable and guarantees the unbiasedness of the resulting
estimator. We then propose learning methods that choose a
joint distribution to minimize the variance of the estimator.
We provide both a gradient-based learning scheme which
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takes full advantage of recent advances in automatic differ-
entiation, and a gradient free version when differentiation
is not possible.

We demonstrate the effectiveness of our method on a di-
verse set of problems that benefit from low variance Monte
Carlo estimation, including numerical computation of ex-
pectations, likelihood estimation for variational Bayesian
inference, and training of generative adversarial networks
by stochastic gradient descent. For all of these tasks, our
method successfully reduces variance, which in turn leads
to improved performance on standard metrics for each task.
In addition, the computational overhead of our method is
small. By amortizing the cost of training the antithetic sam-
pler, we still achieve superior performance when baseline
methods are given the same amount of wall-clock time.

2. Background

It is common in machine learning to evaluate expectations
p = Ep)[f ()] for some function f and distribution p(z)
on some sample space z € X. In addition, we often want to
optimize the expectation 1(¢) = E, ) [f(2; ¢)] as a func-
tion of some parameters ¢. To do so, first-order optimiza-
tion methods such as gradient descent need to estimate the
related expectation Vyu(¢) = Ep,,)[V f(z; ¢)]. Stochastic
estimation and optimization problems of this form are ubiq-
uitous in Bayesian inference, reinforcement learning, vari-
ational inference, risk minimization, etc (Bishop, 2006).

It is almost always too expensive to evaluate p =
E, ) [f ()] exactly (e.g., analytically). In this case, Monte
Carlo estimation is widely used:

1 & e
Ep(w)| fz )= fip(aim) (D)

m

where T1.m = X1, ", Tm i p(z) are m independent,
identically distributed samples from p(z). We will denote
this i.i.d. distribution as x1.,, ~ p(T1.m)-

For any m > 1, /i is an unbiased estimator of u, meaning
that ., y[ftf(21:m)] = p. Chebychev’s inequality pro-
vides (probabilistic) guarantees on how far [i can be from
W

Varp(e,.,.) iy (1:m)]

Pr{|jif(@1m) — 1l > € < ) @)

Variance plays a paramount role in Monte Carlo estimation.
The smaller the variance, the more concentrated /i is around
w. For i.i.d. samples 1., ~ p(T1.m)

Varp(z) [f(.%')]

m

Varp(:clzm) [ﬂf (‘rl:m)] =

so we can increase m to reduce variance. However this
is usually expensive, as the computational cost increases

(linearly) in m. It is therefore useful to design methods
that reduce variance without increasing m.

2.1. Variance Reduction Techniques

Given the importance of Monte Carlo estimation and vari-
ance reduction, a significant number of techniques have
been applied to diverse problems (L’Ecuyer & Owen,
2009). Example include stratified sampling (Neyman,
1934), control variate / baselines (Greensmith et al.,
2004), importance sampling (Neal, 2001), rejection sam-
pling (Grover et al., 2018), Rao-Blackwellization (Grisetti
et al., 2007), etc.

In this paper, we build on antithetic sampling (Geweke,
1988; Wu et al., 2019), a classic variance reduction tech-
nique that has received less attention in the ML literature.

2.2. Antithetic Sampling

In the classic Monte Carlo estimator [if(z1.m) =
1/m>", f(x;), the samples x1, - - - , 2., are sampled in-
dependently from p(x). However, ii.d. sampling is not
necessary nor optimal. In fact, whenever they are sam-
pled from a joint distribution g(x1.,,) that preserves the
marginals, i.e. it satisfies ¢(x;) = p( i) Vi=1,--- m,
our Monte Carlo estimator fif(1.,) is unbiased because

Eg(or.) l E ] = LS Elf@)] )
1=1

The core idea of antithetic sampling is to forgo i.i.d. sam-
pling and use a joint distribution ¢(z1.,,) such that

Vary (g, [ir (T1:m)] < Varp,.,,)[ff(21m)]

For example, when p(z) is symmetric (i.e. p(z) =
p(—2x)), such as a zero-mean Gaussian, a classical choice
for g(x1,x2) is given by the following process: sample
x1 ~ p(x), then set o = —x; (hence the name anti-
thetic). It is easy to see that g(xz1) = ¢(z2) = p(x1).
This strategy works perfectly if f is an odd function, i.e.
f(=z) = — f(x), because we are guaranteed to have

Only two samples are required to estimate the expecta-
tion exactly. On the other hand, if f is an even func-
tion f(—z) = f(z), then this strategy backfires because
f(x1) = f(x2), so xo is redundant and antithetic sampling
doubles the variance compared to i.i.d. sampling.

As the previous example indicates, the variance of our esti-
mator under an antithetic distribution ¢(z1.,,) depends on
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the function f. The natural question is: is there an anti-
thetic sampling distribution that performs well for any f?
We will now prove that the answer is yes and no: there are
antithetic sampling distributions that always reduces vari-
ance, however, they only reduce variance by a very small
amount in the worst-case.

2.3. No-Free-Lunch of Antithetics

We first suppose z € X only takes a finite set of values.
We define gs(21.,,) as the following sampling without re-
placement distribution: draw x1 ~ p(x), and draw

xo X p(x)l(z # 1)
x3 x p(x)l(z # x1)(x # 22)

Since Vi, g5 (z;) = p(x), sampling without replacement is
an antithetic sampling method. In addition, it is guaranteed
to improve variance (Sukhatme, 1957) compared to i.i.d.
sampling.

Sampling without replacement always reduces variance,
but only by a tiny amount. It is only an effective strategy
if the probability of sampling repeated elements is large,
which rarely happens in practice. In fact, no antithetic dis-
tribution can do much better, as shown by the following
theorem.

Theorem 1 (No Free Lunch). Let p(x) be a uniform distri-
bution on X, where X is a finite set. Let q be any antithetic
distribution q(x1,xs) where 11,29 € X. Let F be the set
of functions X — R such that Vary,, ,\[iif(71:2)] # 0,
then

max Varq(wl:z)[lff(l’l:?m >1— L (5)
FeF Vary(, ,)lif(r1:2)] Xl —1
For sampling without replacement, for any f € F
V. i : 1
ar(lsr(xl:Q)[/’Lf(xl-2)H -1 (6)

Vary(e,.,) iy (1:2)] X -1

Theorem 1 proves that given any antithetic sampling dis-
tribution, there exists an estimation problem (a distribution
and a worst case function f), such that it only improves
variance by a tiny amount compared to i.i.d. sampling. In
fact, for the uniform distribution p(x), sampling without
replacement is the mini-max optimal antithetic distribution
(i.e., it is optimal for the worst-case function f). There-
fore, the antithetic sampling method must be adapted to the
function f. Manually designing good antithetic distribu-
tions requires detailed knowledge of f and p(zx), which is
almost always not available when f is complex (e.g., the
gradient of a deep neural network). An adaptive method is
therefore necessary.

3. Gaussian-reparameterized Antithetics

To develop an adaptive antithetic sampler, our strategy is to
define a family of antithetic samplers gg (1. ), and choose
the parameters 6 to adapt to the specific distribution p(x)
and integrand f. We will now focus on the case where X’
is continuous.

The first roadblock is that for antithetic sampling to be un-
biased, we need the marginals of gg(x1.,,,) to satisfy
qo(wi) = p(z;), Vi=1,---,m (7
We now show that for a large set of distributions p(x) it is
possible to define a flexible family of parameterized distri-
butions gy that satisfy this property by construction.

Suppose z is univariate with density p(z). Let F'(x) denote
its cumulative density function (CDF), sampling = ~ p(x)
can be achieved by “inverting” the CDF via u ~ U[0, 1],
x = F~1(u). Let ® denote the CDF of the standard Gaus-
sian distribution (0, 1). By the same argument, it is easy
to see that we can alternatively sample from x ~ p(z) via
the following process

e~N(0,1) , 2=F1d(e)) := g(e) (8)

where g = F'~1 o ®. Therefore an expectation with respect
to p(z) can be converted into an expectation with respect
to a standard Normal € ~ N (¢; 0, 1) by the law of the un-
conscious statistician:

Ep@) [f (@)] = En(e0,1)[f(9(€))]

More generally, when p(x) is a multivariate density, we
will assume that & ~ p(x) can be equivalently obtained
as = g(e) for e ~ N(0, I;), where I denotes an d x d
identity matrix and g is a suitable function. This means that
is possible to sample from p(x) by transforming some sim-
ple random variables €, e.g., obtained using random num-
ber generation primitives in a programming language. This
is a very mild restriction on p(x). Although the theory is
general, in the experiments we will consider the most prac-
tically relevant case where g(-) can also be evaluated effi-
ciently.

We can define a family of antithetic samplers that satisfy
the marginalization property of Eq.(7) as follows.

Definition 1. Let x be a continuous random vector with
density p(x) that can be sampled by x = ¢(€) for € ~
N(0, I). A Gaussian antithetic of order m for p(x) is the
Sfamily of distributions qg(x1,- - ,x,,) defined implicitly
by the following sampling procedure

(ela"' 7€m) NN(Oyza)

wi:g(ﬁi), i:17"'7m
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where ¥y € R™>™d s positive-definite matrix parame-
terized by 0 that is constrained to have d x d identity blocks
on the diagonal:

def
Yo € Dunbiased = {% € R™>™M4 53w 0 N7 =1y

VI=(id+1,--,id+d),i=1,---,m} 9)

When z ~ p(z) is obtained by inverting CDFs as in equa-
tion (8), the family resembles a Gaussian copula (Durante
& Sempi, 2010), a classic approach to build joint distribu-
tions with known, fixed marginals.

Our estimator for p1 = I, (4)[f()] remains unchanged
compared to Eq.(1), except we use antithetic (not i.i.d.)
samples &1, ~ qo(T1, -+ , Tpm)

pr@in) = = () (10)
i=1

1 & -
E;fog(ei) = fifog(€rm) (1D

A Gaussian-reparameterized antithetic distribution satisfies
several desirable properties.

Proposition 1. Let qg(x1.n) be a  Gaussian-
reparameterized antithetic of order m for p(x). Then for
any k:

1. For any Y9 € Xnbiased, the estimator (10) is unbi-
ased

qu(ml:nw,) [:&‘f(wllm)] = ]Ep(m) [f(:l!)]

2. If ¥g = L4, the Gaussian-reparameterized antithetic
is equivalent to i.i.d sampling.

3. Given a Cholesky decomposition X9 = L@LGT, we can
sample from qg(x1.,,) by drawing m iid. samples
8= (01, ,0m)T from N(0, 14), and 1., = Lg¥.

Proof. See Appendix O

Property 1 guarantees that for any choice of 6 the corre-
sponding estimator is unbiased, i.e., it will give the right an-
swer in expectation. Property 2 guarantees that under mild
conditions, there is a choice of § where the performance
is no worse than i.i.d. sampling. Property 3 states that
drawing samples from gg(@1.,,) is not expensive. Given
a Yy € R™¥*md e only have to compute the Cholesky
decomposition once, whose time complexity is O(m3d?).
If we draw k batches of samples, the time complexity be-
comes O(m3d> + km?d?). The cost can thus be amortized
and is comparable to i.i.d sampling when k& > md.

3.1. Parameterizing Gaussian Antithetics

To facilitate the design of optimization algorithms over
Yo € Xunbiased, W€ provide an explicit parameterization
of the feasible set 3 npiaseq in Definition 1. To simplify
the notation, we will use a slightly more abstract definition
than in the previous section. Specifically, we will consider
the matrix ¥ € R™¥*™d a5 a m x m matrix where each
element belongs to the ring of d x d matrices.

Let M be the ring of d x d matrices, and e be its identity
element. We rewrite the definition of X piaseqd in EQ.(9)
as:

S unbised = {X € M™X™ S - 0,5, = e,Vi}  (12)

To find a parameterization for ¥ piased We let € > 0 be
any real number. Given any § € M""*™, we turn it into an
element of 3 piaseq With the function v defined by

Y =el + 6007, 6cMmx™
Y(0) = diag(X)~1/?Sdiag(2)~7/2 (13)

where diag(2) sets all entries of X to zero except the di-
agonal, and A~'/2 is obtained from the Cholesky decom-
position A = A/2AT/2 for a positive semidefinite matrix

A.

The following proposition shows this parameterization is
both correct (i.e., every parameter § € M™>*™ maps into
Y unbiased) and lossless (i.e., every X € X npiased Can be
obtained from a 6§ € M"*™),

Theorem 2. For any € > 0, the map 1 defined in Eq.(13)
is a surjection from M™*™ into 3 nbiased-

Therefore we can optimize 6 over the space of m x m ma-
trices M"*™ and use ¥ (0) to produce the corresponding
Yo € Yunbiased that we need for our antithetic distribution.

4. Learning an Antithetic Distribution

In the previous section we defined a family of antithetic
distributions A(0, X) where Xy € Zyppiased- Proposition
(1) guarantees that it can perform as well as i.i.d., but the
question is of course if we can do better. In this section, we
discuss how to find the optimal § € M™*™ (equivalently,
find the best ¥ € ¥ piased) by optimization, leveraging
the parameterization of 3 ,piased Via 1 from Theorem 2.

Given that the antithetic estimator is unbiased, a natural
optimization criterion is for our estimator /i s (x1.1m) to have
small variance:

eeg[%igm Varqe (®1:m) [/:Lf (wlzm)]

= En(erm:0.00)) [(ifog(€1:m) — 1)?]
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where the equality follows from the definition x; = g(¢;).
When f is vector-valued (e.g., a gradient) we can minimize
the trace of the covariance

pmin tr (Covgy ) [t (@im)])

= Ex(ermio@) |litsos(€1m) = l*] (14

Eq.(14) involves the value of p, which is generally not
known. An estimate of y is helpful but not required. This
is because by Proposition (1), p does not depend on 6, so
we can rewrite (14) as

2
|

. ~ 2
min Exepnio.00) |liroa(erm)ll’] = Il

feMmxm
L is thus a additive constant with no effect on the minimiza-
tion of Eq.(14). We can, in fact, choose any constant in
place of u. Nonetheless, 1 (or a good approximation to p)
is an effective control variate (Greensmith et al., 2004) and
reduces the variance when estimating Eq.(14) from sam-
ples.

We can use a bootstrap method to estimate p: we sam-
ple multiple antithetic batches 1, @y )
go(x1.m); for each antithetic batch we can compute
fi (1., V). We can average over these estimate

~

-1 . i
o= E;qu(xl:m( )) (15)

as an approximation to u. Instead of minimizing
s (®1:m) — pl?, we minimize ||jif(210m) — /il Intu-
itively, this choice is also appealing because we are en-
couraging the empirical average for a batch of size m to
approach the average of a larger batch of size mk.

Notation: For convenience of notation we abbreviate
liifog(€1:m) — pl|?* as ¢(€1.m). We make its dependence
on f, g and p (which is replaced with j1) implicit. Our goal
is to minimize Enr(c,.,..0,1(6)) [#(€1:m)]-

There are several methods to minimize Eq.(14). In particu-
lar, we use different methods depending on whether f o g is
differentiable with respect to €. If it is differentiable, then
¢ (€1.m) will also be differentiable with respect to each €;,
and we can use gradient based optimization. Otherwise we
will have to use gradient free optimizers.

4.1. Gradient Based Variance Minimization

Suppose V. f o g(€) can be computed, then we can also
compute the gradient of V¢,¢(€1.,). Then we can min-
imize Eq.(14) by reparameterization (Kingma & Welling,
2013). For any parameter § € M™*™, because 1(0)
is positive definite, we can compute its Cholesky de-
composition (proved in Appendix) as L(f) = ()2

Then for & ~ MN(0,I), L(6)d will be distributed as
N(0,1(9)). Therefore we can rewrite our optimization ob-
jective Eq.(14) as

En(s:0.0)[#(L(6)3)] (16)

which we can minimize with stochastic gradient descent.
VeEn(s:0,1) [¢(L(0)8)] = En(s,0,1) [Vad(L(0)6)]

4.2. Gradient Free Variance Optimization

When the gradient V¢ f o g(€) is not available (e.g., a black
box function or g is not differentiable), we can use the re-
inforce estimator.

VH]E./\/'(el;m;O,Zg)[¢(€1:n1)] (17)
= E/\/(el,,,L;O,Eg) [¢(€1:m)v0 1OgN(€1:m; 0, 29)]

If computing f o g is expensive, then we can use the im-
portance sampled reinforce estimator. Let (€., ) be any
distribution such that ¢(€1.,, )N (€113 0, Xg) /7 (€1: ) is fi-
nite, then the gradient of Eq.(17) is

¢(€1:m)N(€1:m; 07 29)

£ T(elzm)

Vo log N(€1.m;0,%0)
(18)

r(€1:m)

We can draw a set of samples €;.,,(*) from 7(€;.,,) and
store the values ¢(61;m(i)) for each 7. We can use this same
set of samples to repeated compute the gradient Eq.(18) and
reuse the qb(el;m(i)) we computed.

5. Reducing Computation Cost for Adaptive
Antithetic

Even though we can find a good antithetic distribution by
optimizing Eq.(14), this is itself a stochastic optimization
problem that can be expensive. The time invested in find-
ing a good gy needs to payoff in terms of reduced number of
samples required. In this section we propose several strate-
gies to reduce the computational overhead of adaptive an-
tithetic sampling in practice. Combining these approaches,
we are able to achieve superior wall-clock time in our ex-
periments compared with i.i.d. and other baselines despite
of the overhead of training gy.

5.1. Reduction of Parameter Count

Our parameterization of the feasible space by 1/ has sev-
eral desirable properties as shown in Theorem 2. However,
6 € M™*™ (or equivalently R"™?*™d) has m?d? learnable
parameters, and becomes infeasible to use for large m or d.

To reduce m, we do not perform antithetic sampling on
the entire batch. Instead we define antithetic distributions
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over micro-batches of size k, and i.i.d. sample m/k micro-
batches as follows:

iid

Tik, The1:2ks ~ Tm—ktlm ~ ¢o(T1k)  (19)
~—  —— —_———

micro batch 1 micro batch 2 micro batch m/k

Then because we only have to parameterize k& dimensional
Gaussian antithetic distributions, § € M***_ This reduces
number of parameters to k%d>.

We can further reduce the number of trainable parameters
by choosing 6 € MF*¥ for some k' < k. Even for very
small &/, the model still has many free parameters because
each element belongs to the matrix ring M. In experiments
we observe that we can even find good ¥ with ¥’ = 2. For
most of our experiments on high dimensional problems, we
choose k = 8, and § € MF*2. The number of parameters
will be 2kd?.

To reduce d, we note that Theorem 2 (Appendix A) is still
true if instead of using the ring M in Eq.(12,13), we use
the subring of block diagonal matrices M. That is, given
any partition of {1,--- ,d}, we use the ring consisting of
matrices of the following form

A e R4, A;; = 0if 4, j belong to different partitions

We show in the appendix that v is still a surjection into
3 unbiased Under this new ring. The previous strategies are
sufficient for our experiments, but this strategy could be
necessary for even higher dimensional problems.

5.2. Amortization of the Learning Cost

Monte Carlo estimates are widely used in stochastic op-
timization frameworks. In these applications we are not
estimating I, ) [f ()] for a single f, rather we have a se-
quence of related estimation problems

Ep@[f1(@)], - By [fr ()]

For example, for stochastic gradient descent, f;(x) is the
gradient at the ¢-th iteration. Learning the antithetic distri-
bution for every f; is clearly infeasible, however, assuming
ft and fi1q are similar, any ¢y that achieves small vari-
ance on the estimation of E,,[f:(x)] is also likely to
achieve small variance on the estimation of Eg)[fi11].
Then what we can do is to choose a subset of time steps
{t1,---} € {1,---,T} and update gy by Eq.(14) only on
these time steps. The cost of each update can be amortized
over [t;,t;+1]. In particular, if updates are exponentially
sparse (e.g., an update every t; = 2° steps), then the over-
head of finding ¢* is almost negligible. We show in our ex-
periments that this leads to very good performance on deep
learning tasks trained with stochastic gradient descent.

6. Experiments

We test our adaptive Gaussian antithetic on three tasks. The
first one is a controlled synthetic task, where we verify
that our model demonstrates expected behavior. The sec-
ond task is Bayesian inference, where we reduce variance
and achieve better estimation of the posterior. The third
task is improving stochastic gradient descent training of
generative adversarial networks, where we reduce variance
and obtain quantitative improvements in terms of inception
scores for the same wall-clock time.

6.1. Simple Estimation Problems

In this section we estimate several simple functions to vi-
sualize the behavior of our model. In both problems we
use a one dimensional X and a one dimensional function
f X — R. We choose p(z) as N(0,1), and antithetic
batch size m = 2. gg(x1,22) is a two dimensional Gaus-
sian we can easily visualize by contour plots.

The two functions we choose are f; = e + 2 sin(z) and
fa = 3. In Figure 1(A, B) we plot the optimal antithetic
distribution ¢*(x1, z2) that minimizes variance. This distri-
bution is found by grid search over all possible parameters
(up to precision 1072). For f; the antithetic distribution
found by our model is identical to the optimal antithetic
distribution (found by grid search). For fs, the optimal
sampling distribution has singular covariance: x; = —x2
with probability 1 under ¢*(z1, z2). Eq.(13) only param-
eterizes Gaussians with full rank covariances, so we can-
not exactly represent ¢*(z1, x2). Nonetheless our method
learns a good approximation to ¢*.

—4 -2 0 2 4
(A) Best covariance for f;

4 4
2 2
0 0 \
-2 -2
-4 -4
-4 -2 0 2 4 -4 -2 0 2 4

(C) Learned covariance for f;

-4 -2 0 2 4
(B) Best covariance for f,

(D) Learned covariance for f,

Figure 1: Top: Best covariance for optimal antithetic Gaus-
sian ¢* (21, x2) found by grid search. Bottom: Covariance
found by our adaptive learning method.
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6.2. Application to Variational Bayes

In Bayesian estimation problems we often have an unob-
served variable z € Z, and an observed variable x € X.
Given a likelihood p(x|z) and a prior p(z), the objective

is to either estimate log p(x) or the posterior p(z|z) =

p(z|z)p(z)
p(=)

to compute p(x) or log p(x).

. For both applications, the major challenge is

A typical way to estimate logp(x) is to use importance
sampling. Let ¢(z) be any distribution on Z. We can obtain
the evidence lower bound (ELBO) to the log likelihood

el

log p(x) = log B2y [p(x]2)] = log Eq(s) [

plz,2)] o
q(z) ]'_ L)

The bound is exact if ¢(z) = p(z|x), so we can maxi-
mize L(x) over a set of candidate importance sampling
distributions ¢(z) to obtain the tightest bound. This pro-
cedure is usually known as stochastic variational inference
(SVI) (Hoffman et al., 2013). However, ¢(z) is usually a
simple distribution for computational reasons, so ¢(z) sel-
dom approximates p(z|x) well. As aresult, £(x) is usually
a loose bound.

2 By(z) [103‘

To address this limitation, (Burda et al., 2015) proposed
using multi-variable importance sampling

is 1 T, z;
L¥(x) = Eq(zl)"'q(zm,) [log o Z (q(zl))] (20)

where it is guaranteed that £(xz) < L*(z) < logp(x).
In fact we do not have to use a factorized distribution

q(z1) -+ ,q(2zm), which would correspond to i.i.d. sam-
pling. Instead, we can use a correlated joint distribution
qo(z1,- -+, zm), as long as it has the right marginals.

anti _ 1 p(wvzi)
L (ar:) = qu(zh-",zm) [log o XZ: (=) ] 21

L9 () still lower bounds log p(x) as long as gy is an
antithetic distribution for ¢(z) because

anti 1 P\, i
L3 (2) <108 Egy (21, 201) [mz ((z))]

q
1 p(@, z)
=log— > E,
Ong q<’[ a(2)

Therefore we can optimize over Gaussian-reparameterized
antithetic distributions gy to maximize £"*(x) because it
is a lower bound to log p(x) for any choice of gy.

} = logp(x)

To find a good antithetic distribution gy we train on a small
set of a, and apply the learned gy to previously unseen in-
puts . We find that gy generalizes well across different .

Therefore, the cost of learning gy is negligible when it is
amortized over multiple estimation problems for log p(x).

6.2.1. DATASET AND EVALUATION

We first train a variational autoencoder on MNIST and Om-
niglot for the pretrained model ¢(z|x), p(x|z). We eval-
uate whether our antithetic sampler can achieve a tighter
bound £2"% on log p(x), where z are images in the test
set. As our baselines, we use i.i.d. sampling to achieve
lower bound £%*(x) as in Eq.(20). We also compared with
negative sampling introduced in section 2.2.

Since the objective L2 i5 3 function of x, we also eval-
uate the generalization of our model by training the anti-
thetic sampler on a small set (100) of & but evaluate on a
large number (1000) of samples, such that both the variance
of this estimation and the additional computation overhead
is negligible.

Our method VS negative sampling

Our method VS iid sampling
on mnist i

on mnist

14.0% 14.0%

12.0% 12.0%
10.0% 10.0%
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6.0% 6.0%
4.0% 4.0%

2.0% 2.0%
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Figure 2: For each sample « in the test set, we compute
the difference between our lower bound £2"* and lower
bound obtained by baseline methods. A positive difference
indicates that our method is better. Left: Histogram of
the difference between our method and negative antithetic.
Right: Histogram of the difference between our method
and i.i.d. sampling £®. Negative bins only account for 5%
of all data. This means that for almost all samples x in the
test set, our method obtains a larger (tighter) lower bound
to log p(x) compared to both baselines.

6.2.2. RESULTS

Our results for MNIST are shown in Figure 2. The quanti-
tative results for MNIST and Omniglot are shown in the
Appendix. We consistently obtain larger (better) lower
bound compared to baseline methods. In particular, our
method shows strong generalization ability, although it is
trained on a small number of x, we still achieve good per-
formance (large £2"%(x)) for almost every  in the test set.
If we amortize the cost of learning gy over approximately
1000 estimation tasks, our improvement comes with negli-
gible overhead.

6.3. Application to GAN Training

Let X C RF be the space of images with k pixels, and
Z C R? be the space of latent vectors. We are given an
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empirical distribution (i.e. set of images) pqata(x) on X,
and a simple distribution p(z) on Z (e.g. Gaussian). Gen-
erative Adversarial Net (GAN) (Goodfellow et al., 2014)
and its variants (Radford et al., 2015; Arjovsky et al., 2017;
Gulrajani et al., 2017; Mao et al., 2017) has two sets of
functions: a set of generator functions {G : Z — X'} that
“generates” images by mapping latent vectors in Z into im-
ages X, and a set of discriminator functions {D : X — R}
that maps an image X to a real number R.

Training a generative adversarial net consists of two objec-
tives: find a generator that generates images that are indis-
tinguishable to the discriminator, and find a discriminator
that better distinguishes generator images G(z), z ~ p(z),
and input images pdata (). A typical training objective is

mén max L(G,D) =E,,.,.x)D(®)] — Ep)[D(G(2))]

To optimize this objective the typical approach is by joint
stochastic gradient descent.

VeL(G,D) = —E,)[VaD(G(2))]

vD‘C(G> D) = Epdata(z) [VDD(w)] - Ep(z) [VDD(G(Z))}
Ghew = Gold — VaL(Gola, Dola)
Dhew = Dola — VpL(Gold, Dora)

However computation of both VgL(G,D) and
VpL(G,D) require Monte Carlo estimation of ex-
pectations. Usually this is achieved by i.i.d. samples of
Z1,- ,Zm ~iid. P(z), and samples (that may not be
iid) @1, T ~ Ddata(T).

VeL(G, D)~ —% ZVGD(G(zi))
VbL(G, D)~ - VpD(@) — -3 VpD(G(z)

It has been empirically observed that large variance in the
estimation of Vo £(G, D) and VpL(G, D) hurts train-
ing. (Brock et al., 2018; Chavdarova et al., 2018) decrease
the variance of gradient estimation to significantly improve
training outcome (measured by FID/inception score). In
particular, (Brock et al., 2018) reduces variance by using a
larger batch size m; (Chavdarova et al., 2018) uses stochas-
tic variance reduced gradient (SVRG). However, SVRG is
computationally expensive, and it is usually more efficient
to increase batch size m instead.

Our method can be naturally applied to this setup. In-
stead of increasing batch size, we antithetically sample
T1.m. We use exponentially infrequent updates to g de-
scribed in Section 5.2, while for each update, we optimize
with Eq.(14) until convergence. The intuition is that as
training progresses and the model converges, training be-
comes increasingly stable; it is more likely that a gy that

achieves low variance for V¢ £(G, D), can also achieve
low variance for VG L(Gpew, Dnew). Overall, our over-
head is small enough, such that our method has more effi-
cient wall clock time compared to increasing batch size and
other baselines.

Dataset and Evaluation Metrics We train WGAN-GP
(Gulrajani et al., 2017) on MNIST dataset and FashionM-
NIST. For comparison we use i.i.d. sampled z1,--- , Z,,
and negative sampling described in Section 2.2.

To evaluate the performance of the learned generator G we
use inception score (Salimans et al., 2016). Let n € N be
the space of labels (e.g. digit class). We train a classifier
r(n|x) that maps each image € X to a distribution on
the label space. Consider the joint distribution r(x,n) =
r(x)r(n|x) where r(x) is defined by x = G(z), z ~ p(2),
inception score computes exp Dk, (r(n|x)||r(n)).

Results The results for MNIST and FashionMNIST are
shown in Figure 3 in the Appendix. Given the same batch
size m our method out-performs baseline methods on the
variance of gradient estimation and inception score. When
m is small, our method provides a marginal improvement,
which does not justify the overhead. However, as soon as
the batch size is large enough (e.g. 64), our method yields a
significant improvement. Even when we take into account
computation overhead of learning gy, our method still out-
performs baseline methods by a large margin.

7. Conclusion

Variance reduction is a key challenge whenever Monte
Carlo estimators are used in practice. In this paper, we
investigated the use of antithetic sampling, a classic vari-
ance reduction technique that is currently not widely used
in machine learning. We provided a general framework to
automatically learn a good antithetic distribution based on
the novel Gaussian-reparameterized antithetic family. Our
approach provides provably unbiased estimates and strikes
a good balance between flexibility and ease of training with
gradient-based or gradient-free methods. Although there is
a computational cost associated with learning a good an-
tithetic family, we demonstrated empirically that it can be
amortized and the variance reduction it affords pays off in
terms of wall-clock time. Antithetic sampling can be easily
combined with other techniques such as importance sam-
pling, control variates, etc. Exploring synergies between
these orthogonal strategies is an exciting direction for fu-
ture work. Our methods have limitations with high dimen-
sional random variables, we take it as future work to further
reduce the number of parameters in order to increase scal-
ability.



Adaptive Antithetic Sampling for Variance Reduction

Acknowledgements

This research was supported by Toyota Research Institute,
NSF (#1651565, #1522054, #1733686), ONR (N0O0014-
19-1-2145), AFOSR (FA9550-19-1-0024), Amazon AWS,
and JP Morgan.

References

Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein gan.
arXiv preprint arXiv:1701.07875, 2017.

Bishop, C. M. Pattern recognition and machine learning.
springer, 2006.

Brock, A., Donahue, J., and Simonyan, K. Large scale gan
training for high fidelity natural image synthesis. arXiv
preprint arXiv:1809.11096, 2018.

Burda, Y., Grosse, R., and Salakhutdinov, R. Im-
portance weighted autoencoders. arXiv preprint
arXiv:1509.00519, 2015.

Chavdarova, T., Stich, S., Jaggi, M., and Fleuret, F.
Stochastic variance reduced gradient optimization of
generative adversarial networks. 07 2018.

Durante, F. and Sempi, C. Copula theory: an introduc-
tion. In Copula theory and its applications, pp. 3-31.
Springer, 2010.

Geweke, J. Antithetic acceleration of monte carlo integra-
tion in bayesian inference. Journal of Econometrics, 38
(1-2):73-89, 1988.

Goodfellow, 1., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Bengio,
Y. Generative adversarial nets. In Advances in neural
information processing systems, pp. 2672-2680, 2014.

Greensmith, E., Bartlett, P. L., and Baxter, J. Variance re-
duction techniques for gradient estimates in reinforce-
ment learning. Journal of Machine Learning Research,
5(Nov):1471-1530, 2004.

Grisetti, G., Stachniss, C., and Burgard, W. Improved tech-
niques for grid mapping with rao-blackwellized parti-
cle filters. IEEE transactions on Robotics, 23(1):34-46,
2007.

Grover, A., Gummadi, R., Lazaro-Gredilla, M., Schuur-
mans, D., and Ermon, S. Variational rejection sampling.
In Proc. 21st International Conference on Artificial In-
telligence and Statistics, 2018.

Gulrajani, 1., Ahmed, F., Arjovsky, M., Dumoulin, V., and
Courville, A. C. Improved training of wasserstein gans.
In Advances in Neural Information Processing Systems,
pp. 5767-5777, 2017.

Hammersley, J. and Morton, K. A new monte carlo tech-
nique: antithetic variates. In Mathematical proceedings
of the Cambridge philosophical society, volume 52, pp.
449-475. Cambridge University Press, 1956.

Hoffman, M. D., Blei, D. M., Wang, C., and Paisley, J.
Stochastic variational inference. The Journal of Machine
Learning Research, 14(1):1303-1347, 2013.

Kingma, D. P. and Welling, M. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114,2013.

L’Ecuyer, P. and Owen, A. B. Monte Carlo and Quasi-
Monte Carlo Methods 2008. Springer, 2009.

Mao, X., Li, Q., Xie, H., Lau, R. Y., Wang, Z., and
Paul Smolley, S. Least squares generative adversarial
networks. In Proceedings of the IEEE International
Conference on Computer Vision, pp. 2794-2802, 2017.

Neal, R. M. Annealed importance sampling. Statistics and
computing, 11(2):125-139, 2001.

Neyman, J. On the two different aspects of the represen-
tative method: the method of stratified sampling and the
method of purposive selection. Journal of the Royal Sta-
tistical Society, 97(4):558-625, 1934.

Radford, A., Metz, L., and Chintala, S. Unsupervised rep-
resentation learning with deep convolutional generative
adversarial networks. arXiv preprint arXiv:1511.06434,
2015.

Salimans, T., Goodfellow, 1., Zaremba, W., Cheung, V.,
Radford, A., and Chen, X. Improved techniques for
training gans. In Advances in Neural Information Pro-
cessing Systems, pp. 2234-2242, 2016.

Sukhatme, P. V. Sampling theory of surveys with applica-
tions. The Indian Society Of Agricultural Statistics; New
Delhi, 1957.

Weaver, L. and Tao, N. The optimal reward baseline for
gradient-based reinforcement learning. In Proceedings
of the Seventeenth conference on Uncertainty in artificial
intelligence, pp. 538-545. Morgan Kaufmann Publishers
Inc., 2001.

Wu, M., Goodman, N., and Ermon, S. Differentiable anti-
thetic sampling for variance reduction in stochastic vari-
ational inference. 2019.





