A question of mass

Jeremy Bernstein®
(Received 7 May 2010; accepted 17 August 2010)

We present a pedagogical discussion of spontaneous symmetry breaking, the Goldstone theorem,
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“The quantity of any matter is the measure of it by its
density and volume conjointly.... This quantity is what I
shall understand by the term mass or body in the discussions
to follow. It is ascertainable from the weight of the body in
question. For I have found by pendulum experiments of high
precision, that the mass of a body is proportional to its
weight; as will hereafter be shown.” Isaac Newton'

When I took freshman physics as a sophomore at Harvard
in 1948, this definition of mass was still used in our text-
book. As it happens, the previous year I had taken a philo-
sophically oriented course in modern physics given by the
philosopher-physicist Philipp Frank. He introduced us to the
work of his fellow Austrian philosopher-physicist Ernst
Mach. Therefore I knew of Mach’s devastating critique in his
book, The Science of Mechanics,1 and how it had influenced
Einstein. Newton’s definition of mass is circular. What is
density? How does it is apply to the photon, which has no
mass?

When I began writing my Ph.D. thesis in the early 1950s,
I would have described myself as an “elementary particle”
theorist rather than as a nuclear theorist. Elementary particles
were considered to not consist of anything else, whereas the
atomic nucleus consists of neutrons and protons, which were
taken to be elementary particles. There were not that many
elementary particles known at the time. In addition to the
neutron and the proton, there was the photon, the electron,
and the neutrinos. The positron was known, and most physi-
cists, Feynman being a notable exception, believed that the
antiproton would be found once accelerators were suffi-
ciently energetic. A few years earlier, a “heavy electron” had
been discovered that had some of the properties of the elec-
tron, including its weak and electromagnetic interactions, ex-
cept that it was about two hundred times more massive and
unstable. For various reasons that no longer make any sense,
it was first called the mu meson and then eventually the
muon. It seemed to serve no purpose and when I. I. Rabi
heard of it, he asked, “Who ordered that?”

Rabi’s pique was understandable. In the 1930s, a theory of
the nuclear force had been proposed. It had to account for
satisfying two conditions. First, the nuclear force was very
short ranged and acted only when the neutrons and protons
were practically on top of each other. Second, it had to be
much stronger than the electrical force; otherwise, the posi-
tively charged protons, which repel each other, would tear
the nucleus apart. As it is, heavy nuclei with many protons
tend to fission spontaneously. Both of these conditions could
be satisfied if a fairly massive particle was exchanged be-
tween the neutrons and protons and among themselves. The
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strength of this interaction was postulated to be large com-
pared to the electrostatic force. It was also shown that the
range r of this force was related to the mass m of the particle
being exchanged. From the uncertainty principle for energy
and time, with the energy uncertainty equal to mc?, we have
mc*~felr, and thus its mass was predicted to be about 400
times larger than that of the electron. This mass, unlike the
mass of the muon, seemed to have a connection to the dy-
namics. The muon had something like the correct mass, but it
only interacted electrically and weakly, and thus it was the
wrong particle. The right particle was called the pi-meson or
the pion. Why did it not show up in cosmic rays rather than
the muon? The answer turned out to be very simple. The
pion, when it was not absorbed in the atmosphere, decayed
into a muon and neutrinos. When accelerators became suffi-
ciently powerful, they produced pions in droves. At the time
I was writing my thesis, pion physics was flourishing. But
then, the roof fell in.

Particles that no one anticipated also began to show up in
droves in cosmic rays. They became known as “strange par-
ticles” because they were. There was the K meson, which
came in a charged and neutral variety, and hyperons, which
had masses greater than the proton or neutron. The latter
category includes a lambda particle, which is neutral, a
sigma particle with charges plus, minus, and zero, and a xi
particle with charges zero and minus. These were the lowest
mass particles, which were repeated in higher mass replicas.
In short, it was a particle zoo. It took strong nerves to see any
pattern, a pattern that might reflect an underlying symmetry.

At the time, there was a clear idea of how such a symme-
try might appear. The neutron and proton were prime ex-
amples. They had many properties in common including
their spins, which were identical, and their masses, which did
not differ by much. The neutron was a bit heavier and de-
cayed into a proton, an electron, and an antineutrino. Sup-
pose we imagined a world in which electromagnetism was
switched off. In this world, the neutron and proton would
have the same mass and would collapse into a doublet. The
three pi mesons, plus, minus, and zero charge, would col-
lapse into a triplet. A symmetry would emerge, which was
called “isotopic spin,” which is invariance under the group
SU(2). The predictions were reasonable, and hence isotopic
spin was a useful approximate symmetry. Maybe something
analogous could be found for the strange particles.

The trouble was that the mass differences were too great.
Although the mass difference of the neutron and proton was
only a fraction of a percent of the mass of either particle, the
K mesons had nearly four times the mass of the pions. It took
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an act of faith to see how these objects fitted into some kind
of symmetric structure. But Murray Gell-Mann took the leap.
He proposed a symmetry that was a generalization of isoto-
pic spin, SU(3), and suggested that if the various mass dif-
ferences were neglected, the known particles could be orga-
nized in multiplet structures. For example, the known scalar
mesons, including a newly discovered particle that was
called the eta, fitted into an octet. The known hyperons fitted
into a tenfold decuplet, but there was one missing. It was
given the name ()~ and its properties were predicted. When it
showed up with these properties, the lingering doubts about
this scheme vanished and Gell-Mann was awarded a well-
deserved Nobel Prize. It was a textbook example of a sym-
metry and its breaking.

This kind of symmetry breaking is nearly as old as the
quantum theory itself. Eugene Wigner and Herman Weyl, for
example, studied the role of group theory in quantum me-
chanics. The idea was that the description of a quantum me-
chanical system could be split into two contributions—a
Hamiltonian that exhibits the symmetries of the group plus a
second Hamiltonian that did not. If the later is “small,” then
some aspects of the original symmetry would still be appar-
ent.

As an example, consider the group of rotations in three-
dimensional space called SO(3). These rotations are gener-
ated by the orbital angular momentum. Suppose one part of
the Hamiltonian contains only a central force. This part is
invariant under rotations, which means that the angular mo-
mentum operators commute with this part of the Hamil-
tonian. The eigenstates are both eigenstates of the energy and
the angular momentum. If, for example, the nuclear force
that binds the neutron and proton together is represented by a
central force, then the ground state of the deuteron would be
an S-state. But it isn’t. It has a small percentage of the D
state, which manifests itself in the fact that the deuteron has
a quadrupole moment. The rotational symmetry is broken in
this case by adding a tensor force. The total angular momen-
tum, which includes the spin, is conserved, but the purely
orbital part is not. Nonetheless, it is still useful to expand the
wave functions in eigenfunctions of the angular momentum.

In the isotopic spin example, the neutron-proton system in
the absence of electromagnetism shows symmetries under
the group of special unitary transformations SU(2). Once
electromagnetism is included, the symmetry is broken, but
nonetheless, there are still some useful manifestations. Like-
wise, the elementary particles in the absence of symmetry
breaking are invariant under the special unitary group SU(3).
If this symmetry is broken, it is still possible to derive rela-
tions among the masses, but their origin was still unex-
plained. However, in the early 1960s, Yoichiro Nambu and
others showed that a second kind of symmetry breaking was
possible in quantum mechanics, which was called spontane-
ous symmetry breaking. To see what it means, we consider
an example that has nothing to do with quantum mechanics.

Consider the equation

d*f(x)/dx* = x> + cx. (1)

If ¢=0, Eq. (1) is symmetric under x inversion: x——x. We
drop the integration constants and obtain
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Fx) = 1/12x% + ¢/6x°. (2)

The solution with ¢ #0 is not x inversion symmetric. This,
lack of symmetry is in the spirit of Wigner-Weyl symmetry
breaking. But consider

d*f(x)1dx* = x*. (3)
Equation (3) is x-inversion symmetric. The solution is
fx)=1/12x*+ Bx + C. (4)

Unless B is zero, the solution does not have the same sym-
metry as Eq. (3). The symmetry has been “spontaneously
broken” by the choice of solution, determined by the initial
conditions.

To see how spontaneous symmetry breaking works in
quantum mechanics and to understand the consequences, we
consider an example, the self-interactions of a complex sca-
lar field, ®(x,1)=D,(x,1)+iP,(x,1), where P, are real
fields. This field describes a charged spinless particle. It is
the simplest example that I know, and it is the one that was
first considered historically. See, for example, Ref. 2. It will
lead us to the Higgs mechanism.

We begin by exhibiting the Lagrangian of a free complex
scalar classical field, which corresponds to a particle with a
mass m. To make the notation more compact, I will employ
the usual convention of setting c=1. Thus

L= ﬁfb(x)*éfb(x) - m*®(x) D(x)
= (0D/91) (9D/dt) — (V)T (VD) — m* DD, (5a)
and the corresponding Hamiltonian is
H=(9®/91)" 9D/t + (VD) o VD) + m*>dd. (5b)

We shall be interested in minimizing the energy. The kinetic
terms are always positive definite, and therefore to minimize
the energy associated with H, we must take the fields to be
constants in spacetime.

The Lagrangian in Eq. (5a) yields the field equation

(&, - V2= m*)®(x) =0, (6)

where I have simplified the notation by using x for {x,7}. The
solutions of the field equations for individual particle and
antiparticle states with momentum p have energies \p*+m?,
which establishes the interpretation of m as a particle mass.

The Lagrangian is invariant under the global gauge trans-
formation ® — exp(iA)®, where A is a real number. It is not
invariant under the spacetime dependent or local gauge
transformation ® —exp(iA(x))®. Under an infinitesimal
transformation, a term is added to the Lagrangian of the
form, with A , standing for the derivative with respect to the
puth coordinate

SL=iA,,(3,¢' - ¢'d,¢) =

If we think of A as a dynamical variable, then we can write
down the Euler-Lagrange equation for A as

9,6LI8A,, = SLISA. 8)

Aspd e (7)

The term on the left is the divergence of the current gener-
ated by the local gauge transformation, and the term on the
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right vanishes, and hence the current generated this way is
conserved. This argument is a variant of what is known as a
Noether theorem.

From the Noether theorem, we have

9 =V - J(x,0) + 9/t o(x,1) =0, (9a)

0= f d’xd,J,. (9b)

If nothing strange happens at the boundary in space, Eq. (9b)
reduces to

0= 4/t J dPxJ(x,0)= 0, (10)

where Q is the spatial integral of the charge density J,(x,1).
We now want to quantize this theory. Thus we write

d(x) = f Pk(b" D, (x) + 4, @, (x)). (11)

Here, ® in the integral can be taken as a shorthand for the
Fourier transform coefficients, say, exp(ikx), with some suit-
able normalization. The a and b coefficients are annihilation
operators, and their conjugates are creation operators. The
only nonvanishing commutators of the a and b operators are

[ap.a,, 1= 8 (k= K') =[by.b,,"]. (12)
The momentum 7(x) conjugate to ® is given by

7(x) = 7 (P (x))
=—ih J Pkay(b®, 7 (x) —a, O, (x).  (13)

Equation (13) yields the commutation relation
[P@),11(y)]=ifdx - y). (14)

The charge can be written in terms of the a and b operators
as

0= f d*pla,’a,—b,'b,). (15)
From Eq. (15), it follows that

[0.9]=D (16)
so that

exp(iAQ)D exp(—iAQ) =exp(iA)D. (17)

Thus the charge generates the global gauge transformation,
that is, ® transforms under unitary transformations generated
by the operator exp(iAQ).

The Hamiltonian in normal ordered form with a' and 4" to
the left of @ and b is given by

H= f dPkoy(a, ap+ b, by). (18)
We have dropped an additive constant. Additive constants to
the Hamiltonian do not change the physics because we are

concerned with energy differences and not with absolute en-
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ergies. (In contrast, an additive constant to the Lagrangian
changes the action, and thus the transition amplitudes that
are calculated with path integrals. We must make sure that
additive constants do not change the physics by eliminating
any constants.)

The vacuum state |0) is that state for which the energy is
minimum. If it has the property that (0|H|0)=0, it follows
that from equations such as (0]a;a,|0)=0 that

ayf0) = b|0) =0, (19)

and thus both the Hamiltonian and the charge operators act-
ing on this state are zero. We also have the obvious property

(0]®|0y = 0. (20)

So far the particle mass has been specified without any
explanation for its origin. We now want to introduce mass
generation through spontaneous symmetry breaking. We in-
troduce a new Lagrangian

L= 1/2&M<D(X)Tau¢>(x) +m22®(x) D (x)
- NA(DT(x)D(x))>. (21)

Several properties of this Lagrangian are evident. First, the
term proportional to m? is not a mass term. Compare the sign
to the sign in the mass term in Eq. (5a). Instead, it is a
self-interaction term. Second, the Lagrangian is invariant un-
der global gauge transformations but not local ones. There is
a conserved current as before and a conserved charge. But
does this charge annihilate the vacuum, that is, Q|0)=0 as
before, and if not what does this mean? Here we run into the
question of what is the vacuum.
We recall the equation

[0.9]=, (22)

which also holds here. Equation (22) implies that if Q does
not annihilate the vacuum, then it must be that

(0]¢|0) # 0. (23)

Equation (23) means that @ cannot have a particle interpre-
tation because we cannot build up the single particle states
by the creation operators acting on the zero particle vacuum
state.

We recall from the discussion following Eq. (5a) that the
energy is minimized for constant fields, and it is therefore
determined by minimizing the potential. Let us consider the
classical potential

V==m?2(DTD) + N4(DT D)2, (24)

Clearly one extremal is when ®=0. Quantum mechanically
we want to replace this condition by the condition that the
vacuum expectation value of the potential is a minimum. We
shall see that in this case, there is no unique answer.

Let us warm up with a simpler case, which will illustrate
the issues. We consider a real field ® and the potential

V=—m?2®? + N4D*. (25)

The potential and ® are all functions of the spacetime point
x. At the minima of the vacuum expectation value of the
energy, they are constants, and hence we can find a condition
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on ® that minimizes the potential for all x. We take the
derivative with respect to @ and set it equal to zero. Thus

O(m> - A\D?) =0. (26)
Equation (26) has three solutions,
d =0, + Vm?/\. (27)

Equation (27) corresponds to the values of the potential at 0,
which is a local maximum and *1/4 m2/\, two distinct
minima with the same energy. If we pick the one with the
positive minimum for @, then for this vacuum

(0|®|0) = Vm* N =v. (28)

Equation (28) shows that ® does not have the usual particle
interpretation and suggests that we introduce a new field 7 to
describe the fluctuations of ® away from its constant vacuum
value v. We have

n=®-v. (29)
In terms of 7, the Lagrangian becomes

L=1/2d,md,m—-m, 7 = \v’ = 1/4\n* + m*/4x, (30)
where

m,= V’W. (31)

This choice of vacuum has produced an 7, a particle with
a nonzero mass and some peculiar self interactions. But note
that the ® — —® symmetry of the original Lagrangian in Eq.
(21) has been broken spontaneously. There is no trace of it in
the transformed Lagrangian. The last term, which is a con-
stant, also deserves further comment. If we were considering
a Hamiltonian, we could add a constant term with no mis-
givings. But as I have mentioned, the Lagrangian is different.

From it, we define the action [ ;ILdt. If we add a constant to
the Lagrangian, it adds a term proportional to the time dif-
ference in the action. We had better eliminate this term if we
want a sensible theory.

With this example in mind, we now return to the complex
fields with the continuous global gauge transformation in-
variance. As we shall see, this invariance brings in something
new. The way to deal with this case is to write

D= 1\2(D, +iD,), (32)

where @, , are real fields. In terms of these fields, the La-
grangian becomes

L=1/2(9,®))* + 1/2(9,®,)* + 12m*(d] + D)
— 1/4N(D? + D3)°. (33)
The minima are given by the condition that
O + B =mH\ =0’ (34)

The phase is undetermined. We choose the phase so that at
the minimum,

&, =\Vm*/\, P,=0. (35)

We can then displace @, by its vacuum expectation value in
the vacuum defined by this choice of phase and thus write
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O(x) = (1/ 2)[v + n(x) + i&(x)]. (36)

We can rewrite the Lagrangian in terms of these fields.
There will be self-interaction terms of {7, & as well as inter-
actions between them and the additive constant. What inter-
ests us is the “kinetic” term L,

Ly =1/2(3,8* + 1/2(d,m)* = m* P, (37)

which shows that the new £ field is massless and the # field
has mass m.

Let us review what we have done. We began with a La-
grangian for a complex field of zero mass, which was glo-
bally gauge invariant. We broke this gauge invariance spon-
taneously and found two interacting real scalar fields. One of
these fields has mass zero, and the other has acquired a mass.
Is this result some freakish artifact of this Lagrangian, or are
we in the presence of a more general phenomenon? The an-
swer is the latter. We have found a realization of what is
known as the Goldstone theorem.

I will not try to give a detailed proof of this theorem here
but only state what it is. There are fine points that I will
discuss shortly. Suppose you have a theory with a certain
number of conserved currents, and these currents give rise to
conserved charges that generate some set of gauge transfor-
mations. If one of these charges has a nonvanishing expec-
tation value so that the gauge symmetry is broken spontane-
ously, then necessarily it will give rise to a mass zero, spin
zero particle—the ¢ in the example we have discussed. On its
face, this result would appear to rule out theories of this kind
in elementary particle physics because there are no such par-
ticles. However, there is a loophole, and through it we will
drive a truck. The loop hole is Lorentz invariance.

Needless to say, we want all our theories to be Lorentz
invariant, but they need not be “manifestly” Lorentz invari-
ant. A case in point is electrodynamics. This theory is cer-
tainly Lorentz invariant. When Einstein had to choose be-
tween Newtonian mechanics and electromagnetism, he chose
the latter precisely because it was relativistic. But electro-
magnetism is not manifestly Lorentz invariant in the follow-
ing sense. The photon field A, is not well-defined. The
theory is invariant under gauge transformations of the form
A,—A,+d,A, where A is a function of the spacetime point
x. This invariance precludes terms such as A A, in the La-
grangian, and thus the photon has no mass.

To define the theory, we must select a gauge. Two popular
gauges are the Lorenz gauge,3 with d,A#=0, and the Cou-
lomb gauge with V-A=0. The Lorenz gauge condition is
manifestly Lorentz invariant, and the Coulomb gauge is not.
You can use either gauge to carry out calculations. You will
get the same answers for any physical quantity, and these
answers will be Lorentz covariant.

The proof of the Goldstone theorem that most clearly
makes use of the manifest Lorentz covariance is due to
Walter Gilbert.* Gilbert has an interesting history. He got his
Ph.D. in physics from Abdus Salam and then switched into
biology. In 1980, he won the Nobel Prize for chemistry. It
was during his physics period when he published this proof.
For degails, an interested reader can read my 1974 review
article.
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The first people to use the gauge loophole were Peter
Higgs,2 Francois Englert, and Robert Brout.® Many of the
points were later clarified by G. S. Guralnik, C. R. Hagen,
and T. W. B. Kibble.” I will stay within the confines of the
electrodynamics of charged scalar particles for the moment
so as to use the work we have already done.

We can write the Lagrangian as

L=-1/4(3/dx,A"(x) - (d/dx,AMx))*
- ((9/dx, + ieA“(x))@T(x))((?/ﬁxM —ieAMx)p(x))
+m* (x)p(x) — 1/2(¢" (x) p(x))*. (38)

The first part of the Lagrangian is the free electromagnetic
part, and the last part is the bosonic part we have already
seen. The middle part is the coupling term.

As before, it is convenient to split ¢ into its real and
imaginary parts and use the two-dimensional notation

D =(P),P,). (39)
To simplify the notation, we shall introduce the 2 X 2 matrix
q,
)
=\, o) (40)

By using the Noether techniques I described earlier, we find
the conserved current,

J,=i[(9/9x, D(x)gP(x) +eDP(x) - P(x)A*(x)], (41)

whose charges generate global gauge transformations. We
can now break this invariance spontaneously and make the
same choice of vacuums as before. That is, we minimize the
scalar boson potential as we have done in our previous ex-
amples. What is new here is the vector potential, which did
not enter our previous discussion. The result is

9/ 9x"(9/x,A%(x) - (d/x,A*(x))
=m?[(1/m) d/dx,,&(x) = A*(x)]. (42)

By this point, the reader may wonder where is all this
formalism leading? Behold, you are about to witness a
miracle.

It is at this point we must choose a gauge for A*(x). It is
convenient to use the Lorenz gauge d/ dx*A*(x)=0. Equation
(42) can then be written as

319x [ Ix* A*(x)] = m*[AM(x) — (1/m) 9/dx*E(x)].  (43)
We define a new field B*(x) by
BF=AM(x) — (1/m) 9/dx"&(x). (44)

From the field equations, this &(x), unlike the previous ex-
ample beginning with Eq. (33), obeys the equation of an
uncoupled zero mass boson—the Goldstone boson,

919x° 919x"&(x) = 0. (45)

If we make the substitution of Eq. (44) into Eq. (43) and use
Eq. (45), we obtain

X’ 919x°B* = m>B™. (46)

The “photon” has morphed into a vector meson with mass.
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Let us summarize what we have done. The electrodynam-
ics of a charged boson with a spontaneously broken gauge
symmetry in the manifestly covariant Lorenz gauge yields
results consistent with a Goldstone theorem. We obtain an
uncoupled massless Goldstone scalar boson &, a massive sca-
lar boson 7, and a massive vector meson B - Because these
masses have the same origin, there is a relation between
them. Because the Goldstone particle is uncoupled, it is also
unobservable and can be ignored.

What happens in the Coulomb gauge where V-A=0? I
won’t go though the steps but summarize the results. There is
no Goldstone theorem because the gauge is not explicitly
covariant and no Goldstone boson. There is a massive scalar
boson 7 and a massive vector meson B,,.

The first person to make full use of these ideas was Steven
Weinberg in 1967.% To appreciate what he did, we must set
the context. In 1934, Fermi produced the first modern theory
of B-decay. He was an expert in quantum electrodynamics,
and hence it was natural for him to use it as a template. In
quantum electrodynamics the current of charged particles J#
interacts with the electric field A#* with a coupling of the
form J#A#. Thus charged currents do not act directly with
each other but only by the exchange of photons. Because
there was apparently no equivalent of the photon for the
weak interactions such as S-decay, Fermi directly coupled a
current J#, for the “nucleons,” the neutron and proton, with
a current J*, for the “leptons,” the electron and neutrino, that
is, J#\J*,. This phenomenological theory worked very well.
One could use it to calculate, for example, the energy spec-
trum of the electrons emitted in 8-decay. But it came to seem
anomalous. The “strong” interaction between nucleons, as
Yukawa proposed in the prequark days, took place with the
exchange of mesons, the electromagnetic interactions with
photons, and presumably gravitation with gravitons. There
was a suggestion of using the same meson that produced the
strong interactions to produce the weak ones. This idea was
abandoned. But in the 1950s, it was suggested that one or
more weak heavy photons might do the trick. There were
two problems. None had been observed, and the theory that
was being proposed did not make any sense.

The former difficulty was easily disposed of. Because the
contact theory with the currents coupled directly to each
other worked well phenomenologically, it had to be that
these weak mesons were very massive—too massive, it was
argued, for the generation of accelerators that then existed to
produce them. When they finally were produced, it turned
out that their masses were about a hundred times greater than
the nucleon masses. The second difficulty was qualitatively
different. In the theories that were then being proposed, the
weak mesons were being put in “by hand.” They were just
massive particles whose masses had no particular origin. If
one tried to calculate anything beyond the lowest order phe-
nomenology, we obtained terrible infinities. These infinities
were much worse than those in quantum electrodynamics,
which could be swept under the rug by renormalization. In
short, the theory did not make any sense. Theorists were left
grasping for straws. Then came Weinberg.

Jeremy Bernstein 29



The “electroweak” theory of Weinberg plays on the
themes we have discussed but at a higher register. The un-
derlying Lagrangian consists of massless vector mesons,
three of which—the two charged ones and the neutral one—
are coupled to the scalar bosons. In addition, there is the
photon, which is not coupled to these bosons. Then there are
the bosons themselves, which are self-coupled as well. This
Lagrangian has a global gauge symmetry, but the symmetry
group is non-Abelian. In the examples that I have discussed,
the effect of the global gauge transformation is to multiply
the fields by a numerical phase. These examples are Abelian,
and therefore it does not matter in which order two of these
transformations are performed. In the non-Abelian case, it
does matter. The latter case complicates the formalism but
does not change the underlying methodology. Once again the
gauge symmetry is broken spontaneously. The coupled vec-
tor mesons acquire masses, while the photon remains mass-
less and there are massive scalar bosons. Apart from the fact
that this method unifies two otherwise disparate interactions,
it also cures the nonrenormalization issue.

There was always a sort of canary in the mineshaft inter-
action. It was the v reaction v+v— W*+W~. A neutrino and
an antineutrino interact and produce a pair of weak vector
mesons. No one proposed to measure this reaction, but its
calculation should nonetheless make sense. When this calcu-
lation is done in the conventional theory with no scalar
bosons and the masses being put in by hand, the cross sec-
tion increases without limit as the neutrino momentum ap-
proaches infinity. Here there are no issues of infinities caused
by going to higher order, but rather there is a violation in the
limit that quantum mechanics imposes on the magnitude of
such cross sections due to the conservation of probability.

Weinberg observed that there is a contribution in the elec-
troweak theory from the scalar bosons to this process, which
cancels the terms that violated the quantum limit and renders
the cross sections reasonable. He conjectured that the theory
was renormalizable, which was proven in detail by Martinus
Veltman and his student Gerhard t’Hooft.

The alert reader will notice that something is missing in
this discussion. All the leptons have mass including the neu-
trinos, to say nothing of the masses of the neutrons and pro-
tons. What is the origin of their masses? Hopefully, the
reader will indulge me in a bit of personal reminiscence. For
two years in the late 1950s I was a postdoc at Harvard. Julian
Schwinger was the leading light in theoretical physics at the
time. We, the postdocs and junior faculty, audited whatever
course he happened to be teaching. The material was always
original. The lectures were on Wednesdays, and afterward
the small group of us would have lunch with Schwinger at
Chez Dreyfus in Cambridge. We would be joined by another
small group from MIT that included Vikki Weisskopf. If
Schwinger had any new ideas, he would try them out on
Wiesskopf. As it happened on this occasion, he had devel-
oped a “theory of everything.” Some of this theory survives
in the work of other people. In 1962, he published a paper on
“Gauge invariance and mass.” In it he raised the question of
whether one could have a massive vector meson in a theory
that had an underlying gauge invariance. This possibility is
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not exactly what we have been discussing, but it inspired P.
W. Anderson to use these ideas in condensed matter
physics.lo Anderson used language in a nonrelativistic con-
text, which is very similar to what we have been discussing.

I remember a lunch in which Schwinger began by saying
to Weisskopf, “Now I will make you a world.” The “world”
was written down on a few paper napkins, one of which I
saved. In any event, one of the things that he said, which has
stuck with me ever since, was that scalar particles were the
only ones that could have nonvanishing vacuum expectation
values. He then went on to say that if you couple one of

these to a fermion W by a coupling of the form ®WW, then
this vacuum expectation value would act like a fermion
mass. This sort of coupling is how mass generation is done in
principle for the fermions. All particles in this picture would
acquire their masses from the vacuum. We are a long way
from Newton.

I have avoided so far the use of the term Higgs boson—the
analog in the electroweak theory of the 7. Certainly, Higgs
deserves the credit for first exhibiting the mechanism in the
context of scalar electrodynamics. But as I have tried to
show, it took other people to make it work. The Higgs boson
is what is being looked for at CERN. If they find it, we shall
all be happy and relieved. And if not? I am reminded of a
story about Einstein. He had just received a telegram with
the news that the eclipse expeditions had confirmed his gen-
eral relativity prediction about the Sun bending starlight. He
was very pleased with himself and showed the telegram to
one of his students, Ilse Rosenthal-Schneider. She asked him
what he would have done if the telegram had contained the
news that the experiments disagreed with the theory. He re-
plied, “Da kont mir halt der lieber Gott leid tun-die theorie
stimmt doch. (Then I would have been sorry for the dear
Lord. The theory is right).”
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Gravitational Lensing

This sculpture depicts gravitational lensing by dark matter. The cause of lensing is represented here by a cluster of
Mobius strips, the subtle aspects of which allude to not-yet-understood properties of dark matter. Installed at the
East Lansing (MI) High School, the sculpture honors the sustained achievements in physics education by John
Plough and colleagues. It is intended to remind students of the many unsolved problems in astrophysics and
cosmology that remain to be attacked by new generations of scientists. This sculpture was created by Jens Zorn,
Professor of Physics at the University of Michigan.
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