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This paper describes sofive created to search for and analyze pairs of duplicate genes within

a genome. The process is based on a program that uses aligned amino acid sequences to gener-
ate a corresponding alignment of the underlying nucleotide sequences and perform a codon by
codon comparison of the nucleotides. Obsdrmumbers of nucleotide substitutions can be

used to mad inferences about the ages of gene duplicatients and the &dcts of natural

selection acting on duplicate genes.

1 Introduction

Duplicate genes are found in a wideiety of oganisms, including yeast vascular
plants, and \ertebrate’®3. The aistence of these duplicates has implications for
comparatre genomics, suggestingremues of research based on searching for
orthologous genes, and nyadiseases are often associated with gene duplications.
The study of duplicate genes may also shed lighvvolutonary processes; the dou-
ble genome duplicationypothesi¥® is a conjecture that twrounds of complete
genome duplication pvided the “rav material” for morphological inn@tions that

led to the establishment of thertebrate genome.

Possible sources of multiple copies of a gene range from tandem duplication,
which often leads to a cgpof just a single gene, to chromosomal rearrangements
that duplicate and rearrangedar sections of the genome, to polyploidization, in
which the entire genome is duplicated. But what happens to duplicate genes that
have become figd in a population? Under what might be termed the classical
model?, there are tw possible dites for a pair of duplicate genes: moselijkone
gene acquires deleterious mutations that cause it to be silent@urére situations
a mutation will be beneficial and one of the copiestadn a n& function. Recently
a third possibility has been suggested: mutations accumulate in both copies, partially
degrading each gene until at some point the fignes hae partitioned the functions
of the original gen&. This nev model, called duplication, deneration, comple-
mentation (DDC), accounts for thact that there are more functioning duplicates in
extant oganisms than can bemained by the classic model, and is also consistent
with the obseration that may genes hee a modular structure that adle for inde-
pendently mutable subfunctions.
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We recently performed a series of computatiomgkeeéments designed to shed
light on the origin and subsequenrbkition of duplicate gené$.For these eperi-
ments we constructed databases with the complete sedilaftde coding sequences
for nine diferent species. A heuristic similarity search program compared each
sequence tovery other sequence from the same genome to locate potential dupli-
cates. ¥ then subjected each pair to further analyses based otmmmation of
nucleotide substitutions.

This paper describes the sofite we deeloped for thesexperiments The ne
section is a description of a program that compargs lanmbers of pairs of genes.
The input to the program is a stream of aligned amino acid sequences, and the output
is a set of aligned nucleotide sequences with codons placed according to the amino
acid alignment. \& then describe mothe nucleotide sequences can be processed to
estimate the accumulation of nucleotide substitutiorescviclude by summarizing
some of the results of ouxgeriments.

2 A Genome-Wide Search for Duplicate Genes

Figure 1 is anerview of the flav of information in our search for duplicate genes.
The starting point is a collection of protein sequencesgta-format. \& created a
local database containing all the sequences from a genome, and then used BLAST
to compare each sequenceverg other sequence from that genome. BLASTesgrv
two roles in this process: it does the similarity search that locates pairs of similar
genes, and it also produces an alignment of the amino acid sequences of those pairs.
blast2align is a Perl script thatteacts the sequence IDs, similarity score, and align-
ment for each pair found by BLAST

The central application in this process is a program named ntatigaaEh pair
of sequences, ntalign uses the BLAST output as a guide to align the underlying
nucleotide sequences so later steps in the processaame the sequences codon
by codon, for gample to infer hav mary substitutions ha occurred since the
sequences derged from a common ancestor (methods for estimating numbers of
nucleotide substitutions are discussed in the section).

By using the amino acid alignment to direct the nucleotide alignmenveig a
frame shifts that wuld thrav off the comparison of codonsofFexample, consider
this fragment of an amino alignment and the corresponding nucleotide alignment
generated when the BLAST output is used as a guide:

GNEQ .. O GGA- - - AATGGACAA. . .
GINS-... O GGCACAAACTCA- --. ..

If the nucleotide sequences are aligned direatithout respect to codon boundaries,
an algorithm might produce a féifent alignment, one which has more matches and
a smaller internalap:
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Figure1: Analysisof Duplicate Genes. File names consist of the common name
for a species and amtension that identifies the type of informatiow i$ file con-
taining a set of &sta formatted amino acid sequences, .nt isstaFformat nucle-
otide sequence file, .paml is a set of pairs of aligned nucleotide sequences, and
is a Matlab format data containing data points and the visualization commands
display them. BLAST and formatdb are applicationailable from NCBI.
blast2align and mldi§ are Perl scripts; ntalign and cubit are C++ applications.
Source code for our Perl and C++ programs/@lable from the project web site
(http://csi.uorgon.edu/projects/genetics/nfgif.
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GG AAATGGACAA. . .
GGCACAAACTCA- . . .

But this second alignment could not be used to analyze nucleotfdesddes in
codons because the one-charactgy otroduces a frame shift and a codon-based
analysis that processes the sequences three characters at a time will be misled.

Two parameters can be used to filter pairs to be analyzed. The program will
ignore a match if the alignment score produced by BLASTois&than a specified
cutoff value. Users can also filter out sequences thed ttw may matches; for our
experiments, we were interested in looking at duplicates that occur outside multi-
gene &milies, so we analyzed pairs of genes only if both genes haafifaver
high-quality matches.

We were concerned that the amino acid alignments meg imaluded some
arbitrary placements on either side ofegp gSuppose the twsequences to be aligned
are of the formAXA andAZA, whereA designates a substring that has a good match
in the other sequenck,andZ are substrings that do not match well, &rid longer
thanX. During the alignment, one or morags will be inserted neag, resulting in
one of these three patterns:

AX- A A-X-A A- XA
AVWA AUVWA AUVA

HereZ has been reritten as the concatenation of stringisvV andW. If there is little
or no information to guide the match betweéandZ the placement of theags in
the shorter sequence can be rather arbitrary; agnshbwe, the alignment algo-
rithm may align X with the kggnning, middle, or end of Z.oTaddress this problem
the ntalign application has an option thatokes a “@p e&pansion” algorithm. &
define an anchor to be a site where both sequencesh®msame amino acid. Before
aligning the underlying nucleotides, we look on each side afpafay a rgion that
begins with an anchor and in whichdvout of the seen amino acids (including the
anchor) are anxact match. The probability of twout of sgen random amino acids
being the same is less than 5%e \ten discard thesegiens so thg are not
included in the aligned nucleotide sequences.

A potential problem with thisx@erimental design is the inclusion of pseudo-
genes and transposable elements in the data set. If a gene is silenegdgaligli-
cation it can accumulate random mutations aj #tation, so including the
comparison of pseudogenes with functioning genes can lead to a biased estimate of
substitutions that &ct coding sequences. One of the inputs to ntalign is a list of
sequence IDs that should be ignored; these sequences are filtered out before counting
the number of matches.

Not shavn in Figure 1 are marother programs and data files that are an impor-
tant part of the werall process. W made xtensive use of the programs in the
SEALS packagé when creating the initial sequence database, controlling BLAST
runs, and at other stages of the procesw\bte seeral additional Perl scripts that
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Time Diffs Subst
tp ATGTATTCA Original sequence

t;,  ATGTATTCA  Duplication 0 0
ATGITTTCA

t, ATGIATTCA  Single substitution 1 1
ATGITTTCA

t3 ATGTATTCA  Multiple substitution 1 2
ATGICTTCA

ty, ATGTATTCT  Single substitution 2 3
ATGICTTCA

ts ATGICTTCT Corvemgent substitution 1 4
ATGICTTCA

Figure 2: Nucleotide Substitutions. Changes at each time period are indicated in
boldface. The number of obsex diferences and the cumulai number of sub-
stitutions is gien on the right.

interact with the SEALS programs to manage this process. Details of the complete
process plus source code for our Perl scripts and C++ programs can be obtained from
the project web site at http://wwesi.uorgon.edu/projects/genetics/ntdif

3 Estimation of Numbers of Nucleotide Substitutions

As illustrated in Figure 2, the number of obsatvdiferences between tw
sequences is Ity to be less than the number of substitutions the¢ leacurred

since the sequenceweiged from a common ancestét time t, there has been one
change, and the number of obsshdiferences equals the number of substitutions.

At t5 there hge been tw substitutions, lit the second occurred at the same site as
the first so only one dérence is obseed. By t; two more substitutions ke
occurred, bt one of them was a change that caused the sequences to ha the

same nucleotide at an already modified site. The goal is to compute an estimate of
the number of substitutions thatveaoccurred as a function of the number of
obsened diferences.

In protein-coding sequences, a substitution that does not lead to a change in the
amino acid sequence issgnonymous, or silent, substitution. Mutations that cause a
change in the protein anensynonymous, or replacement substitutions. &r example,
if the codonGCC changes t&GCA the substitution is syngmous since both are
codons for alanine,ub the change fror@CC to GTC is nonsynogmous because the
amino acid generated by theamnsequence will hae a aline.



Pacific Symposium on Biocomputing 6:167-178 (2001)

In a lage-scale analysis\nlving several pairs of genes the sequences in one
pair hare a diferent length than sequences in another. phius the goal is to com-
pute the number of substitutions per site or number of substitutions per codon.

In our search for duplicate genes we usedl different techniques for estimat-
ing numbers of substitutions, a method first introduced Li, d Lué and later
refined by Li¢ and the maximum lidihood method of Goldman andaivg® While
maximum likelihood is the preferred method, it is much morgemsve computa-
tionally, making it dificult to compare the hundreds of thousands of sequence pairs
identified by BLAST We implemented L8 method as part of the ntalign application
and used it as an initial filter to identify pairs of sequences that shouiciréned
more closely with maximum lédihood. The mldis program shen in Figure 1 is a
script that selects pairs based on the initial estimates produced by ntalign, finds the
corresponding aligned nucleotide sequences, and launches the maxiedihodik
prograni® for that pair

Li’s method bgins by characterizing positions within a codon as being nonde-
generate, tofold deyenerate, or fourfold denerate, depending on whether zero,
two, or four substitutions can be made at that site without changing the cadon. F
example, in the codoAAT, the first tvo sites are nondenerate becauseyachange
is nonsynoymous. The third site is tfold degenerateT O C causes no change
becaus@®AT andAAC are both codons for asparaginet ® 0 A andT O G result
in changes becaus#®A andAAG are codons for lysine.

Each obsemd diference is classified according to the type of site where it
occurs and whether it isteansition (a change from purine to purine grrimidine to
pyrimidine, i.e. A= G or C = T) or atransversion (ary other change). In this
paper we use aeetor notation when describing the number of sites and the number
of transitions and tranevsions:

N = [hy, n,, nyC Number of sites of type {0, 2, 4} .
P = [Py Py P,C Number of transitions attype sites.

Q = [Qp Q, QL Number of transersions at-type sites.

The number of sites of each type and the numbers of @sbéansitions and
trans\ersions are used to computeotestimates of the number of nucleotide substi-
tutions: the number of syngmous substitutions per syngnous site, denotel,
and the number of nonsyngmous substitutions per nonsyryomous site, denoted
Ka_6.8

Two codons being compared may novéndghe same number of sites of each
type. For example, consider a pair of sequences where one contains the A&Gtion
and the other contai$AT. ACT is a codon for threonine, andyathange in the last
position gies another codon for threonine, so this codon hasibmdgenerate sites
and one fourfold dgenerate siteN ,~t = [2, 0, 1C. AAT is a codon for asparagine.
One change in the third sitevgs another asparagine codont khe other tw
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GTT (Vval) Figure 3: Evolutionary Paths. A
§ QO graph shwing transformations betwe
N}/O‘,V ‘()\‘07 GTT andGAA, assuming one mutati
4 at a time. The edge labels shthe rela
GTA (Vval GAT (Asp) tive frequeng of the correspondir
o o o amino acid changes and the classi
0‘\% g tion of the change as norginerate
2 Q'.’-’ twofold degenerate, or fourfold den
GAA (Glu) erate.

changes lead to lysine codons, @, = [2, 1, OC. To handle these situations, the
algorithm for counting the number of sites of each type usesvérage of the
counts from each input sequence. So for thisrgle,

N = (NacT +Npar)/2 = [2,050.5C

When there are twor three obseed diferences between a pair of codons the
catgyorization of the ditrences depends on the order in which the chanvgbged.

As an gample, suppose we are comparin@ sequences where the codons are cur-
rently GTT andGAA. Suppose the ancestral sequenes@TT and as the result of
two independent mutations this codon changedS#A in one of the current
sequences. If the change at the third site occurred first, the series of caedons w
GTT O GTAO GAA, hut if the change at the second site occurred first the series
was GTT O GAT O GAA. In the first series the change at the third sibeld be
added toQ, because it is a transision and the third site @TT is fourfold dgen-
erate. But in the second series the change at the thirdaitd e classified aQ,
because the third site BAT is twofold degenerate. The ddrence at the second site

is classified ax), because changes in the second site are nongyiowis in this
case, and thus the dwchoices for counting the obseds diferences are
Q=0,01CorQ = [1,1,0C.

Li et aP used a table ofxpected frequencies of amino acid changes to weight
the diferent paths (Figure 3). The cumuwatifrequeng of a series of mutations is
the product of the indidual frequencies along each edge. In tkengple, one path
from GTT to GAA has a frequerycof 1.0x 0.128 = 0.128, and the other path has a
frequeng of 0.004x 0.382 = 0.015. The relatie probabilities are thus

0.128/(0.128+ 0.015 = 0.893
for the series in which the traresgion occurred at the fourfold glnerate site and

0.015/(0.128+ 0.015 = 0.107
for the series in which the traresgion occurred at the tfold degenerate site. The
relative probabilities are used to weight the transition and teas®n \ectors, so for
this pair of codons the obsex diferences ar€® = [1.0, 0.107 0.893_.

The preious &xample assumed one of the current codoas the ancestral
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codon and the mutations both occurred in the same sequence. But the peltti
weights do not depend on the ancestral state; as long as we assuniertnecdid
arose through tevindependent mutations the calculation of the redatieights does
not depend on whichevtex is used as the starting point.

In order to mak genome-scale sequence comparisons, ntalign usés 64
table of precomputel, P, andQ vectors, so the algorithm that counts and classifies
differences simply has to do a table lookup using ¢tadons as table indices, com-
pute the sum o, P, andQ over all codons, and then calculdtgandK, using the
vector sums.

Our method for counting and classifying thefatiénces between pairs of
codons is based on a data structure we dadiffexence cube, ann-dimensional cube
in which each grtex is labeled by a codon. It is basically m#limensional binary
hypercube, xcept node labels are 3-letter codon strings insteaebdfbinary num-
bers. The labels are arranged so adjacent nodes are labeled by codontethett dif
exactly one site.

For ary pair of codons, the number of dimensions in the correspondifey-dif
ence cube is defined by the number dedifg sites. Thexample in Figure 4 shes
the 3D diference cube for the pair of coddB$T andAAA. Note that the tw differ-
ences betwee@TT andGAA used in thexample of Figure 3 are represented in one
of the faces of the 3D cube.

The following algorithm, based on a common algorithm for creating a binary
hypercubé, will create the dftrence cube for a pair of cododandY:

d=0;
cube = node(X);
fori=1.3:
if X;#Y;
d=d+1
expand(cube,i,Y)
The number of dimensiortkis initialized to 0, and the cube is initialized as a single

node labeled by one of the codons (the notatmige(X) means “create a wenode
with labelX"). The loop iterates\er each of the three sites. At a site where tlee tw

ATT ATA Figure 4. Difference Cube for GTT
and AAA. Since this pair of codons has
GTA differences at all three sites the resulting
cube has three dimensions. The “front”
face of this cube is the 2D cube (i.e.
AAA square) for the pair of codo®&TT and

GAA.
GAT GAA

GTT
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codons difer, the cube is)@panded by making a complete duplicate of each current
node, adding an edge between eadstiag node and the corresponding node in the
copy, and changing thidh position in the label in eachwenode to bey;. When the
loop terminatesl will be the dimension of the resulting cube.

From then-dimensional dierence cube for a pair of codons it is clear there are
n! unique paths, each of lengthbetween the twvertices for the codons. Each step
on a path treerses a diérent dimension. Starting from one codon, there rare
choices for the first stemy—1 for the second step, @o to one choice for the last
edge. The paths can be enumerated by creating all permutations of the list of dimen-
sionsl...d.

Using the abee method for constructing a féifence cube for a pair of codons,
the table of codon dirences is bilt with the folloving algorithm:

for X O { AAA, AAT, ..., GGG}
for Y O{ AAA, AAT, ..., GGG}

C = difference_cube(X,Y)

assign_frequencies(C)

Ny y = differences(X,Y)

for path O permutations(1...dim(C))
w = w + weight(path)

for path O permutations(1...dim(C))
Py y += transitions(path,w)
Qx y += transversions(path,w)

After constructing the diérence cube and assigningpected frequencies to each
edge in the cube we compute the sum of raddtiequencies of all the paths. Then
each path is treersed agin, this time counting the number of transitions and trans-
versions along the path and weighting the counts as a fraction of the total weights.

Stop codons are not usually included in comparisons of coding sequeutces, b
they can occur as intermediate nodesr Example, when counting the téfences
betweenAAA andTAT, intermediate states afAT (asparagine) anthA (stop). Ve
assign anxpected frequencof 0 to aly edge connected to &nex labeled with a
stop codon, which leads to a cumwlatfrequeng of 0 for ary path that includes this
vertex. The net dect is that paths through stop codons are not included in the path
weight calculation.

4 The Evolution of Duplicate Genes

We used the process outlined in Figure 1 to analyze gene duplicateariaty of
model species, including lwer's yeast $accharomyces cerevisiae), nematode
(Caenorhabditis elegans), thale cressArabidopsisthaliana), and seeral \ertebrates,
including humanKomo sapiens) and mouseMus musculus)®®. After using BLAST
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to identify pairs of similar amino acid sequences, we ran ntalign to process the
underlying nucleotide sequences and calcukateand K, for each pairWe then

used the maximum léihood method to recompute the estimated numbers of substi-
tutions for those pairs witK ; < 99. To distinguish between the estimates computed
by each program, we will useaigs notation and refer to the maximumelikood
estimates of the number of syryamous substitutions per syngnous site aslg and
nonsynogmous substitutions per nonsyyomous site asly; .

4.1 Age Distribution of Duplicate Genes

If we assume the number of syiyomous substitutions per syngmous site is pro-
portional to the age of a gene duplicatioere we can plot a histogram d§ values

to get the age distrniltion of duplicate genes. In all species, most duplicates appear to
be quite young, witldg<0.1.1°

There is an interesting peak in the age distiitm of Arabidopsis genes at
ds = 0.8, indicating there are geral pairs of duplicate genes of a similar age. This
peak might beeédence in support of polyploidization Arabidopsis.* Assuming an
estimated silent site substitution rate of 6.1 mutations per site per milliortyears
date this peak at about 65 million years ago.

Our analyses ofertebrate genomes did not sheuch a peak. If there are a
large number of duplicates remaining from a double genome duplication before the
divergence of ray-finned and lobe-finned fishes 430AM¥ silent-site substitution
rate of 2.5 mutations/site/MYmight lead to a peak in the age disitibn at around
dg = 2.2. However, it would be dificult to male ary conclusions based on such a
high value ofdg.

4.2 Relaxed Selection Following Duplication

By plotting d, as a function ofig we can get anverall viev of how natural selec-

tion acts on duplicate genes. #ig assuminglg is a measure of the age of a pair of

duplicates, aalue ofdy < dg implies selection agnst amino acid changing substi-

tutions,dy, = dg indicates relagd selection, and, > dg means selection for pro-

tein evolution. Both the classic model and the DDC model described in the

introduction predict a period immediately fallmg a duplication when the genome

should be able to tolerate a highgtee of nonsynogmmous substitutions in one mem-

ber of a duplicate pair because the other member is still functioning at full strength.
Figure 5 shws a log-log plot ofdy, vs.dg for C. elegans. The diagonal is a plot

of dy = dg, so points near the line are pairs lesscéd by selection agnst amino

acid changes. In this plot, and in the plots for all the other species we studied, there

are some pairs alse the diagonal at smatlg values, bt most are bels, implying



Pacific Symposium on Biocomputing 6:167-178 (2001)

Figure 5. Duplicate Genes
in C. elegans. A plot of the
ol C. elegans ] number of nonsyngmous
substitutions per nonsyngn
mous site dy) vs. the number
of synorymous substitutions
per synogmous site dg) for
pairs of C. elegans genes.
Points belw the diagonaldy,
< dg) imply the genes ha
been subjected to purifying
selection aginst amino acid
changes.
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that almost as soon as yharise gene duplications are subjected to selection pres-
sure®®

5 Summary

This paper described a method of searching for and analyzing pairs of duplicate
genes within a genome. At the heart of the process is a computer program that uses
aligned amino acid sequences to generate the corresponding alignment of the under-
lying nucleotide sequences in order to compare coddarglifces. The program
includes an dicient table-dnen implementation of a method for estimating num-
bers of nucleotide substitutionglues computed by this approximate method can be
used to identify pairs that should beamined more closelyNumbers of substitu-

tions can be used to malknferences about the ages of gene duplicatiente and

the efects of natural selection acting on duplicate genes. Other analyses, including
stochastic models of the birth and death rates of duplicate genes and a discussion of a
potential role played by gene duplication in speciation, can be found in our forth-
coming papet®
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