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New computational models of the kinetics of natural site substitutions in proteins
are described based on the underlying physical chemical properties of the amino
acids. The corresponding reduction in the number of adjustable parameters allows
us to analyze site-heterogeneity. Applying this evolutionary model to various data
sets allows us to identify the important factors constraining molecular evolution,
providing insight into the relationship between amino acid properties and protein
structure.

Introduction

Despite the large and growing number of solved protein structures, we still do
not understand the basic forces that determine a protein’s three dimensional
fold. The role of hydrophobicity has been emphasized by a number of re-
searchers, but the extent of its effects and the importance of other factors such
as side-chain volume and local structure propensity are still widely debated.
A more detailed question is the effect of local environment on the importance
of these factors. What amino acid characteristics are important in solvent-
exposed locations as compared to solvent-buried positions, or for residues in
alpha helices vs. coils?

Much has been learned through directed site-mutagenesis, where the effects
of various substitutions on protein function and/or stability are examined.
Creating, verifying, purifying, and characterizing these mutant proteins is a
time-consuming process, however, limiting the number of substitutions that
can be studied. Even worse, researchers are often interested in looking at
key structural or active site residues that are unrepresentative of more general
locations in the protein. With these problems, it is difficult to construct a data
set of artificial substitutions large enough to analyze general tendencies.

Researchers have only recently been able to perform site-mutagenesis tests,
but nature has been doing so for billions of years. In addition, all the experi-
ments done by evolution were performed in vivo. The difficulty is in analyzing
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nature’s data base. Researchers have tried several methods to solve this prob-
lem based on the observation that evolution has held structure and function
largely constant over geologic time scales and over widely varying sequences.
It is likely that attributes preserved during evolution are the ones that are im-
portant in conserving structure and function. For instance, Scheraga, Nakai,
Tomii, and their respective coworkers examined the correlations between the
many amino acid properties, and investigated simple linear correlations of these
properties with substitution rates.!~3 We used a similar approach to analyze

our previously-derived structure-dependent substitution matrices®?°

Correlation analyses performed on substitution matrices have several limi-
tations. One of these is the lack of a rigorous theoretical basis for the analysis.
More fundamentally, the construction of these matrices generally assume that
all locations in the protein are equivalent and that all prolines are equally-likely
to mutate to alanine independent of position in the protein. In reality, the ab-
solute and relative substitution rates will depend on many specific features
of the given residue and location, including solvent exposure and secondary
structure, tertiary contacts, and functional significance.5~19 While there is a
high degree of sequence plasticity, there are many locations under selective
pressure to preserve specific physical-chemical properties or even amino acid
identities. While models of evolution have been developed that include hetero-
geneity of substitution rates!'! these models often tend to assume that the ratio
between the various substitution rates at each location is relatively constant
and that only the magnitude of the rates changes. In fact, a given amino
acid change may represent a conservative substitution in some instances and
a highly deleterious substitution in others.

One approach to deal with this distribution is to divide the protein into
different site classes on the basis of local structure and surface accessibility, and
calculate specific matrices for the various classes5®919 This ignores variations
in the selective pressure at different locations that share local conditions so that
different substitution rates due to functional considerations and packing con-
straints are averaged. An alternative approach is to consider the amino acid
residues observed in each position in order to construct separate substitution
models for each site!? The limited data available at each location makes it dif-
ficult to use these models to gain qualitative and quantitative understandings
of the relationship between amino acid properties and protein structure and
function. Recently an approach has been developed, which we call a Hidden
States Model (HSM).1%13=18 In this approach, each location in the protein is
assumed to belong to one of a set of possible site classes, each corresponding
to a separate substitution matrix. The identity of the site class describing
any particular site is unknown (and thus “hidden”), and can only be deter-
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mined probabilistically; each site class is assigned an a prior: probability that
any protein location would be in that class . We can use maximum-likelihood
methods to optimize the entire set of substitution matrices and corresponding
a priori probabilities. The problem with this approach is the explosion in the
number of adjustable parameters that must be simultaneously determined.

Rather than develop a HSM for the substitution rates at various locations
based on the identity of the amino acids and attempt to correlate the various
substitution rates with changes in physical-chemical parameters, a number of
investigators have constructed substitution rates as a direct function of the
underlying properties of the amino acids. Two different approaches have
been explored. One approach 1118 is based on the fact that similar amino
acids tend to replace each other more frequently than dissimilar amino acids.!?
Substitution rates can then be used to determine what defines “similar” and
“dissimilar”, that is, what properties nature considers sufficiently important
to conserve. We have been pursuing a different approach based on concepts
from structural biology, where we imagine that there is a propensity for dif-
ferent amino acids in different locations and that substitutions to amino acids
with higher propensities would be favored.>!¢ In this approach, it is the rel-
ative propensities of the respective amino acids that matter rather than their
similarities; evolution favors conservative substitutions because of a statistical
propensity for changes between relatively high-propensity amino. Both of these
methods greatly reduces the number of adjustable parameters so that multi
site-class HSMs can be optimized for protein datasets of only modest size. In
addition, the interpretation of the substitution rates are straight-forward in
that the models are already based on the physical-chemical properties.

In earlier work, we showed that our models can better represent the evolu-
tionary patterns of specific sets of proteins than traditional substitution matri-
ces 16 and showed how these models could be used in phylogenetic analyses?%
In this paper, we analyze what these substitution models can say about the
nature of the selective pressure occurring at various locations in the protein.
Optimizations were done over a general protein data set, and various subsets
determined by secondary structure and surface accessibility. In agreement with
earlier work, we found hydrophobicity to be an important factor in all local
environments, especially in exposed positions. We also observed an interesting
variations in the importance of hydrophobicity over different secondary struc-
tures, with exposed a-helices demonstrated the strongest dependence followed
closely by exposed [(-sheets. Most locations, especially turns and coils, pre-
ferred smaller residues in agreement with the idea that larger residues with
more conformational flexibility are disfavored for entropic reasons.
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Methods

We first review our model for site substitutions as described elsewherel6:20,17

We encompass the distribution of selective pressure at various locations in the
protein by assuming that each location under consideration can be described
by one of a number of possible site-classes Si. We do not know which location
belongs to which particular site-class. Instead, we imagine that each location
has an a priori probability P(k) of belonging to site class S. As all locations
must belong to some site class, > P(k) = 1. The rates of substitution from
amino acid A; to amino acid A; for locations in site class Sy are described
by substitution matrix Mi’fj. Each site class has its own distinct substitution
matrix. The model consists of the set of substitution matrices and a priori
probabilities for all of the various site classes.

As mentioned in the introduction, we represent the substitution rates en-
coded in ]V[fj as a function of the properties of amino acids A; and .4;, rather
than their identities. ~We assume that the “fitness” Fj(A4;) of amino acid
A; for any location described by a particular site class S can be expressed
as a simple linear or quadratic form of a set of physical-chemical parameters
such as hydrophobicity, bulk, and local structure propensity. Fy ;(A;), the
contributions to the fitness function due to physical-chemical property [, are
assumed to be either of the linear form Fj, ;(A;) = au qi(A;) or the quadratic

2
form Fy;(A;) = axy (ql(Ai) — qzst> , where ¢;(A;) represents the value of

the physical-chemical parameter [ for amino acid A;, and ax,; and qult are

parameters that depend upon the site class Si. The linear fitness function is
appropriate when there is a general tendency for that physical-chemical factor
to be either favored or disfavored at that site. The quadratic form would be ap-
propriate when there is either an optimal parameter value (for positive ay ;) or
most non-optimal value (for negative oy ;). The total fitness is the sum of the
terms reflecting the various physical-chemical factors, as Fy,(A;) = >, Fr(As).

For the physical-chemical parameters ¢;(.A;) in the above equations, we use
the four orthogonal property indices developed by Scheraga and coworkers,
correlated predominantly with alpha helical and turn propensity («/turn),
bulk-related factors (volume, molecular weight, etc.), beta sheet propensity,
and hydrophobicity! The a/turn index is negatively correlated with a-helical
propensity and positively correlated with turn propensity - i.e. amino acids
with high a-helical propensities tend towards negative values, and amino acids
with high turn propensities tend towards positive values. The bulk-related and
(-sheet propensity indices are positively correlated with their factors, so large
residues such as Trp and high (3-sheet propensity residues such as Val will have
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large, positive values in their respective indices. The hydrophobicity index is
negatively correlated with hydrophobicity, meaning hydrophilic residues have
high positive values in this index.

We assume that the probability P (A;) of any given amino acid 4; occur-
ring at any location described by a site class k is given by a Boltzmann relation
Pi(A;) = e(AD /(52,, el (Av))where i’ is an index over all amino acids. This
expression can be considered a definition of the fitness Fy(A;). We consider
the substitution rate as equal to the product of a site-class dependent attempt
rate v, and a relative probability of fixation in the population of the species.
We consider that the relative probability of all favorable substitutions are con-
stant while unfavorable substitutions to less-fit amino acids are accepted at an
exponentially-decreasing function of the difference in fitness values. The value
of Mi’; corresponding to a substitution from amino acid 4; to A; in a location
described by site class Sy is then given by Metropolis kinetics:

MEo— 1V | Fi(Aj) > Fi(A) 0
1] Uy, e(FA-(Aj)—Fk(.Ai)) ‘ Fk(A]) S Fk(Az)

The Metropolis scheme is the only kinetics scheme ensuring a Boltzmann dis-
tribution and detailed balance and where a favorable substitution is always
accepted at the maximum rate.

As the physical-chemical parameters {q;(A;)} for all of the amino acids
are fixed, the model is completely defined by the a priori probabilities { P(k)},
the fitness parameters {ay;} and {qu)lt}, and the maximum substitution rates
{vr}. The various substitution matrices are calculated using equation 1, and
the entire set of parameters optimized as described before. %16 The log-
likelihood of the data given the model is calculated by considering each location
n in a set of aligned sequences separately and calculating P ({An}|MZk j), the
probability of observing present-day amino acids {.A,,} at that location in the
various protein sequences, given that this location belongs to site class Si. As
we do not know the identity of the site class specific for each location, we can
calculate P({A,}), the overall probability of the observed amino acids being
observed at site n, by multiplying the conditional probabilities P ({AnHMfJ)
by the a priori probability P(k) and summing over all possible classes, as
P({A,}) = > P({A}|MF;) P(k). Summing the logarithm of this probabil-
ity over all locations provides us with a measure of the log likelihood for the
database of observed sequences given the model. The parameters of the model
were then optimized for the dataset using a sequential quadratic programming
algorithm 2! from the NAG software package (Numerical Algorithms Group
Ltd, Oxford, UK). The ability of a given model to represent the data is pre-
sented as a @ value, defined by @ = log[P(Model)] — log[P(Random)|, where
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log[P(Model)] is the log of the probability that the given model would produce
the data, and log[P(Random)] is a constant representing the probability that
the data would result from purely neutral drift with no selective pressure.

Results

One use of our simple models is to determine what amino acid indices con-
tribute the most to the fitness functions. For this purpose, a general protein
data set was constructed by selecting 42 proteins of length greater than 80
residues from the list constructed by Hobohm and Sander?? all with 6 to 11
homologs of 30% or greater sequence identity listed in the HSSP database?3
The average number of homologs for each protein was 10.5. A multiple align-
ment and unrooted phylogenetic tree was created for each set using the program
ClustalV2* The sequence, structure, and surface accessibilities were found by
use of the DSSP program on the corresponding PDB files?%26 r-helices were
included with a-helices, 31¢-helices and bends were included with turns, while
(-bridges were included with coils. Residues were considered exposed if greater
than 18% of their surface area was exposed to solvent.

Models with two site classes were optimized where F}, was a function of
all four of Scheraga’s orthogonal indices. These models used quadratic fitness
functions for each index in each site class, separate vy, values for each site class,
and two P(k) values, one for each site class. As the two P(k) values must sum
to one, there were a total of nineteen adjustable parameters. This process
was carried out for the total ensemble of data points, as well as independently
for subsets of the data based on secondary structure and solvent accessibil-
ity. These models, although they have 20 times fewer parameters than our
substitution matrices, seemed to encompass most of the details captured by
our matrices, achieving from 51 to 74% of the Q value of the more complete
substitution matrix optimized over the same data set. In each case, we calcu-
lated how much each physical chemical parameter contributed to the variance
of the fitness values of the different amino acids for each of the site classes.
The data set was broken into fifths, and parameters optimized separately for
each subset; the values, reported in Table I, represent the mean as found from
these 5 trials.

For exposed residues, hydrophobicity seemed to be the most important
constraint. The most populated site class for exposed residues had a large
fraction of the total variance dependent on preserving hydrophilicity, with the
bulk-related index a distant second. As we have suggested earlier, the reason
for the importance of conserving hydrophilicity in exposed residue positions is
likely the reverse hydrophobic effect, that is, the tendency of the protein to
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Table 1: Importance of different parameters for various site classes. Percentage of variances
from fitness functions depending on the amino acid properties listed, for the data sets on the
left. This was done for each data set with a 2 site class model, the site class and percentage
occupancy denoted in the 2nd and 3rd columns respectively. v values represent the maximal
acceptance rate of mutations for that site class and data set, in arbitrary units. Bold faced
numbers are those variances that contributed over 25% of the total. A plus (+) indicates a
positive correlation (i.e. either a quadratic function with a positive maxima or a negative
minima) with that index in 3 of 5 trials, two symbols (++) indicates a positive correlation
in 4 of 5 trails, and a (+++) indicates a positive correlation in all 5 trials. Similarly, a
minus (—) implies a negative correlation (i.e a quadratic function with a negative maxima

or positive minima) in 3 or 5 trials, (——) in 4 of 5, and (— — —) in all 5.
site Percentage of variance accounted by
data sct class % occ vy a-helix, turn bulk-related 3-sheet hydrophobicity
cxposed T 65 2.09 3 (+++) 23 (— — —) 1(—) 74 (+++)
2 35 0.94 32 (—) 10 (4) 9 (++) 49 (— — —)
buried 1 56 0.85 6 (+++) 76 (——) 3 (+++) 15 (+++)
2 44 1.61 18 (— — —) 14 (+++4) 32 (+++) 35 (—— —)
cxposed T 59 2.99 03 (— — ) 6 (— — ) 2 (——) 92 (+++)
a-helix 2 41 1.05 47 (— — —) 4(—) 9 (+++) 40 (+)
exposed T 53 2.01 1(—) 17 (— — —) T(—) 82 (+++)
3-sheet 2 47 1.09 15 (——) 26 (—) 22 (+++4) 36 (—)
exposed T 65 252 5 (+++) 53 (— — —) 6 (— — —) 36 (++1)
turn 2 35 0.81 22 (+) 29 (——) 3 (+++) 46 (—)
exposed 1 62 2.20 9 (+++) 36 (— — —) 1(——-) 54 (+++)
coil 2 38 0.62 45 (++) 24 (— — —) 1 (+) 29 (——)
buried T 11 2.1% 22 (— — ) 0.5 (—) 50 (++1) 27 (— — )
a-helix 2 56 0.85 02 (———) 79 (——) 0 (++) 20 (+++)
buried T 56 1.02 7(—) 70 (— — —) 8 (+++) 15 (—)
[3-sheet 2 44 1.94 9 (——) 36 (+) 12 (+++4) 43 (— — —)
buried T 60 1.04 5 () 63 (——) 9 (+) 23 (—)
turn 2 40 0.76 33 (+) 19 (——) 28 (—) 20 (—)
buried T 58 1.05 9 (—) 52 (——) 11 (++) 28 (—)
coil 2 42 0.76 49 (+) 13 (—) 1(—) 34 (——)

avoid stabilizing alternative conformations in which these residues are buried?
Although hydrophobicity was also an important factor for the second site class,
the preference was for hydrophobic residues. In addition, this hydrophobicity
factor was significantly modified by an almost equally strong preference for
residues with high a-helical propensity (the a/turn index is negatively corre-
lated with a-helical propensity).

The importance of hydrophobicity differed for different exposed secondary
structures. In the site class where hydrophilic residues were most strongly
preferred, exposed a-helices showed the greatest dependence on hydrophobic-
ity, with the importance for exposed (3-sheets somewhat lower, and even lower
importance for exposed coils and turns. This might reflect the relative im-
portance of hydrophobicity in maintaining these various exposed secondary
structures. This conclusion agrees with our previous conclusions and those
of other groups that secondary structure propensity appears to be of little
importance compared to patterns of hydrophobicity in maintaining structures,
especially in a-helices. %2728 In all cases except exposed a-helices, one exposed
site class showed a preference for hydrophobic residues. For exposed a-helices,
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the second site with a weaker dependence on hydrophobicity showed a strong
tendency for large a-helix propensity (corresponding to a negative value of the
a/turn index). In general, exposed locations showed at most moderate con-
cern for (G-sheet propensity compared to these other factors, even in (-sheets.
Coils, and to a lesser extent turns, showed a propensity for amino acids with
a strong turn propensity, and a corresponding tendency to avoid residues with
a-helical propensity, indicative of the need for the protein to interrupt regular
structures.

The situation for buried residues was somewhat different, with hydropho-
bicity competing with bulk and (-sheet propensity for importance. This
demonstrates the importance of packing interactions in the protein interior,
as well as the greater tendency for J-sheets to be buried, where their struc-
ture cannot be constrained by patterns of hydrophobicity. Surprisingly, buried
a-helices exhibited a strong positive dependence on (-sheet propensity. This
preference of buried a-helices for residues with high 8-sheet propensity would
mean these two structures would exert similar selective pressures on their con-
stituent amino acids. This fact could help explain why secondary structure
prediction algorithms have such a difficult time differentiating between buried
a-helices and (3-sheets.

In order to more completely unravel the site heterogeneity for hydropho-
bicity and the bulk-related indices, we further investigated models with 11
site-classes, each with a different fixed optimal parameter. Each site-class was
quadratic in the same single parameter, with qut values spaced at regular in-
tervals and fixed « values. v was considered a global parameter representing
the maximum substitution rate for all site classes. Thus, the only variables in
this model were the single average v value and the site class probabilities P(k).
Figure 1 shows these results for different surface accessibility and secondary
structure classes.

A small fraction of exposed locations, 17%, preferred hydrophobic residues.
(The reduced fraction compared with the population of exposed locations in
site class 2 from Table 1 is likely due to the incorporation of locations with
strong a-helical propensity into this latter site class.) In contrast, buried
locations had a much less stringent requirement, as shown in Figure 1, where
buried residues have a significant population preferring slightly hydrophilic
residues, indicative of the greater complexity of selective constraints in the
protein interior. This heterogeneity of locations can explain why we found
hydrophobicity more conserved in exposed locations than in buried locations
in earlier work?

There was a general tendency against bulky residues in all secondary struc-
tures and surface accessibilities. One possible explanation for this result is
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Figure 1: The fraction of locations in the protein classified as a member of the particular site
class with a given value of optimal hydrophobicity or bulk index qut7 for various subsets of
the general protein data base.

that during folding large side chains experience a steep loss of conformational
entropy. Large side chains with more conformational entropy would have a
greater tendency to destabilize the folded state. There is greater variation in
the optimal size for buried residues as would be expected given the heterogene-
ity of packing interactions. Interestingly, both buried a-helices and (-sheets
show a bimodal distribution within the negative range of the bulk-related index
(preferring smaller residues). This suggests these buried secondary structures
have at least two distinct environments preferring small residues - one with
a preference for very small residues, and another preferring only moderately
small residues.

Discussion

Our study demonstrates that the hydrophobicity index was the dominant fac-
tor for exposed positions while the bulk-related index was dominant for buried
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residues. This observation held over all secondary structures. The importance
of hydrophobicity in exposed positions has not been as emphasized as has its
role in the hydrophobic protein core. This may be an indication that the reverse
hydrophobic effect has more of a key role than previously thought. Another in-
teresting observation was the differing importance in the hydrophobicity index
over exposed secondary structures. Exposed a-helices showed the strongest
contribution of hydrophobicity, followed by exposed [(-sheets and finally by
turns and coils. This difference may reflect the importance of hydrophobicity
in maintaining exposed secondary structures. Almost all types of locations
showed heterogeneity in hydrophobicity, with some exposed locations prefer-
ring hydrophobic residues, especially in (-sheets, and with a large fraction of
internal locations preferring hydrophilic residues.

Exposed a-helices showed a preference for residues with high a-helical
propensity, while buried a-helices had a preference for residues with high -
sheet propensity, suggesting the importance of considering the location of the
protein surface when predicting local structure. Our results also showed both
buried and exposed locations tend to disfavor large, bulky residues, consistent
with the idea that bulky residues are disfavored due to their large loss in side-
chain entropy upon folding.
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