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Microarray data routinely contain gene expression levels of thousands of genes.

In the context of medical diagnostics, an important problem is to �nd the genes

that are correlated with given phenotypes. These genes may reveal insights to

biological processes and may be used to predict the phenotypes of new samples.

In most cases, while the gene expression levels are available for a large number

of genes, only a small fraction of these genes may be informative in classi�cation

with statistical signi�cance. We introduce a nonparametric scoring algorithm that

assigns a score to each gene based on samples with known classes. Based on these

scores, we can �nd a small set of genes which are informative of their class, and

subsequent analysis can be carried out with this set. This procedure is robust to

outliers and di�erent normalization schemes, and immediately reduces the size of

the data with little loss of information. We study the properties of this algorithm

and apply it to the data set from cancer patients. We quantify the information in

a given set of genes by comparing its distribution of the score statistics to a set

of distributions generated by permutations that preserve the correlation structure

among the genes.

1 Introduction

Simultaneous measurements of expression levels for thousands or even tens of
thousands of genes have become feasible through the DNA microarray tech-
nology. These high-throughput methods measure the abundance of mRNAs
transcribed during gene expression through the process of hybridization. The
gene expression patterns in the microarray data have already provided some
valuable insights in a variety of problems, and it is expected that knowledge
gleaned from microarray data will contribute signi�cantly to advances in fun-
damental questions in biology as well as in clinical medicine. 1�5;7;8;11�13

While the most obvious patterns in expression levels can be detected even
through visual inspection, there is much more information encoded in the data.
Systematic and sophisticated methods for extracting all the signi�cant infor-
mation are necessary to take full advantage of the technology. For instance, it
is common to discard the measurements when the fold di�erence is less than
a certain threshold level, if that level is considered to be within the range of
noise in the data. However, we know that many biological processes of interest
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involve small fold changes below such cut-o� levels. On the other hand, it may
be tempting to assign signi�cance to an expression pattern which may sup-
port a particular hypothesis, when there is a reasonable probability that the
pattern may have been observed due to chance. Clearly, both the laboratory
techniques and data analysis techniques need to be improved.

One application of microarray data is characterization of di�erent cell
types. Alon et al. (1999) analyzed a data set consisting of the gene expres-
sions in 40 tumor and 22 normal colon tissue samples, and found coherent
patterns and clustering in di�erent families of genes.2 Golub et al. (1999) de-
veloped methods for identifying new cancer classes and making prediction for
the classes to which new tumors belong, thus demonstrating molecular classi-
�cation of cancer by gene expression monitoring. Ross et al. (2000) described
how gene expression pro�les characterize patterns of phenotypic variation in
the 60 cancer cell types.12 Alizadeh et al. (2000) studied the diversity of gene
expression in di�use large B-cell lymphoma and were able to identify previously
undetected and clinically signi�cant subtypes of cancer.1

A problem that arises in this context is the following. What genes are
useful for classi�cation and how many of them should be used for predicting
the classes of new samples? Identi�cation of the informative genes is bene�cial
in that those genes may reveal insights into the biological process. It is also
important to pre-process the data and reduce its size, as one of the major
problems in studying the microarray data is the high dimensionality due to a
large number of genes. A part of the data that contains no useful information
should be excluded as soon as possible so that more detailed analysis, such
as Self-Organizing Map (SOM) 10, hierarchical clustering 6, or construction of
relevance network 4 can be carried out. In the SOM approach, this reduction
step is particularly signi�cant, in order to prevent nodes from being attracted
to large sets of invariant genes.

To eliminate those genes that are likely to be insigni�cant, one can con-
struct a �lter, for example, a variation �lter that excludes genes with less than
�ve-fold variation across the collection of samples 7 or a variation �lter with
some threshold numbers for both relative and absolute changes.14

We propose a nonparametric scoring algorithm that is more systematic and
robust. It is more re�ned than the ones previously described, yet is fast and
simple to understand. Because this scheme uses only the ranks rather than the
actual expression levels, there may be a slight loss of information. However, in
return we gain a valid test with robustness to outliers, normalization schemes,
and systematic errors such as chip-to-chip variation.
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Figure 1: Microarray data have a large number of genes for few patients. Data are divided

into two groups, with n1 and n2 patients in groups 1 and 2, respectively.

2 Method

Typical microarray data consist of expression levels for a large number of genes
on a relatively small number of samples. For each gene, we have the expression
levels for all the patients. We assume that the data contain no missing value;
if there are missing values, we may use a variety of methods, for example, an
EM-type algorithm11, to impute the values. We assume that there are a total
of n patients in two groups, with n

1
patients in the �rst group and n

2
in the

second group. The same approach as presented below can be extended easily
to the case of more than two groups.

2.1 Algorithm

We �rst sort the data so that the patients in the �rst group are on the left and
those in the second group are on the right, as shown in Figure 1. Then, for
each gene, we compute a score that captures the extent to which the gene is
di�erentially expressed in the two groups. First, we assign 0's to the n1 patients
in group 1 and 1's to the n2 patients in group 2. Then we sort the expression
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levels from the smallest to the largest, at the same time permuting the 0's and
1's along with the expression levels so that the resulting sequence of 0's and 1's
indicates the group membership of the patients having the ordered expression
levels. How closely the 0's and 1's are grouped together is a measure of the
correspondence between the expression levels and the group membership. If a
particular gene can be used to divide the groups exactly, one would observe a
sequence of all 0's followed by all 1's, or vice versa.

As an example, consider the following case. Suppose we have n = 6; n1 = 3,
and n2 = 3: Then we have

Patients: 1 2 3 4 5 6

Expression Levels: 95 106 20 74 69 271

Groups: 0 0 0 1 1 1

After sorting:

Expression Levels: 20 69 74 95 106 271

Groups: 0 1 1 0 0 1

Based on this sequence, we can compute a score statistic that measures
the disorder of 0's and 1's for each gene in the following way. We de�ne the
score to be the smallest number of swaps of consecutive digits necessary to
arrive at a perfect splitting, with all the 0's on the left and all the 1's on the
right. In the above example, we have the score of 4 as seen below.

score: data: positions swapped

0 1 1 0 0 1

+1 0 1 0 1 0 1 3 and 4

+1 0 0 1 1 0 1 2 and 3

+1 0 0 1 0 1 1 4 and 5

+1 0 0 0 1 1 1 3 and 4

This score can be shown to be an extreme case of the Kendall's � a statistic
in which the ranks are collapsed to two categories.9

aKendall's Rank Correlation CoeÆcient � is a nonparametric measure of association

based on the number of concordances and discordances in paired observations. Concor-

dance occurs when paired observations vary together, and discordance occurs when paired

observations vary di�erently.
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Then we can write

Score =
X
i2N2

X
j2N1

h(xj � xi);

where Ni represents the set of indices belonging to group i and h(x) is the
indicator function

h(x) =

�
0; if x � 0;
1; if x > 0:

This formulation can be interpreted as counting, for each element in the
second group, the number of elements in the �rst group that are larger, and
summing these numbers. (Equivalently, one can count the number of smaller
elements in the second group compared to each of the �rst group.)

It is easy to notice that we have de�ned the score above in such a way
that both a low and a high score indicate a di�erentially expressed gene. This
was a result of moving the 0's to the left rather than allowing them to move
to either side. We could have used the symmetry to de�ne a score that is the
minimum of the two possible arrangements, but we chose the former way so
that we have a symmetric distribution of scores. The maximum score is n1n2,
which happens when the digits are completely in reverse. In that case, n1
digits need to be moved n2 spaces away, or vice versa, for the total of n1n2
swaps.

2.2 Application

We apply this algorithm to the leukemia data analyzed by Golub et al. (1999).7b

This data set contains 38 bone marrow samples of acute leukemia patients,
belonging to two groups. There are 27 patients with acute lymphoblastic
leukemia (ALL) and 11 acute myeloid leukemia (AML). High-density oligonu-
cleotide microarrays containing 7129 probes for 6817 human genes were used.

When we run our algorithm on this data set, we �nd that there is in fact
one gene, Zyxin, that has the score 0; that is, it splits the two classes exactly.
Zyxin is known to encode proteins for cell adhesion. Next best scores are 2
(Cystatin C), 5 (Leukotriene C4 synthase and Elastatse 2), and 6 (Cystatin A
and CD33 antigen).

In Figure 2, we have plotted on the left the pro�le of a gene, randomly
selected among the genes with scores in the middle of the range. The �rst
27 patients on the x-axis belong to the ALL group and the remaining 11 to
the AML group. Clearly, this gene makes no distinction between the two

bThis data set is publicly available at http://www.genome.wi.mit.edu/MPR/
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Figure 2: We plot the expression levels for two di�erent genes. There are 38 patients,

indicated on the x-axis, �rst 27 of which are in group 1 (ALL) and the remaining 11 are in

group 2 (AML). Sp2 transcription factor on the left had a score close to half the maximum,

hence among the least informative. Zyxin had a score of 0: its expression level is uniformly

low for the �rst 27 patients and higher for the rest.

groups. On the right, we plotted the pro�le of Zyxin, which has uniformly low
expression levels for the �rst group and higher levels for the second group.

If the gene had been completely independent of the classi�cation, the
chance of having a gene with score 0 or the maximum n1n2 is 2n1!n2!=n! �
1:66� 10�9. Since there are only 6817 genes, this is already indicative of the
presence of informative genes.

2.3 Testing for Signi�cance

With this score statistic, we can order the genes according to their potential
signi�cance. However, in choosing a subset of genes for further analysis, it
is usually not clear how many genes should be included in the set. On the
one hand, we would like the set to be small so that computational burden is
lighter in subsequent analysis; on the other hand, we do not want to exclude
information that might be contained in additional genes.

We can �rst see howmuch information is contained in the original data. We
can do this by plotting the distribution of scores from the data, and comparing
it to the null distribution that one would obtain if the genes were independent
of the classi�cation.

Some care must be taken when calculating the null distribution. One is
tempted to compute it by generating many random sequences of n

1
0's and

n
2
1's and then �nding the distribution of their scores. No simple formulas
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seem to exist for this distribution in general, but it is not diÆcult to �nd the
number of con�gurations of 0's and 1's that will give a particular score. c

However, this is not the correct null distribution. Implicit in this approach
is the assumption that all the genes are independent. This is in contrast to a
well-known fact that the gene expressions are correlated among genes, a fact
we also verify from the data.

To compute the null distribution while preserving the correlation structure
of the data, we generate a random permutation of the entire columns, keeping
all the expression levels for each patients together. From this one permutation,
we calculate the distribution of the score statistics from all 7129 probes. In Fig-
ure 3, we show the distributions of the scores from the original data and from
one realization of the column-permuted data. The original data gives heavier
tails as expected, indicating that many genes are di�erentially expressed in the
two classes. Next, we randomly permute the data this way many times, gener-
ating many such distributions. A p-value can then be computed by comparing
the distribution from the original data to the set of distributions obtained from
the randomly column-permuted data.

One way of comparing the distribution of the scores from the original
data to those from the permuted data is to compute, for ith permutation, the
quantity

Si =

n1 n2X
j=0

(fi(xj)� f�i (xj))
2

; i = 1; : : : ;M;

where f�i is the average of all distributions except the ith one,

f�i (xj) =
1

M � 1

MX
k=1;k 6=i

fk(xj);

and M is the number of permuted data sets (M = 10000 in the following).
Si is thus the measure of how much the ith distribution is di�erent from the
average of all the other distributions. We use a sum of squared di�erences
here, but some other metric also can be considered. Because genes are not
independent, it is diÆcult to use large sample theory common in statistics.

Based on the Si values, the observed correlation between the expression
levels and the group distinction is signi�cant with the p-value of 0.0053 for

c There is yet another way of formulating the algorithm, which is helpful for computing

this distribution. We consider distributing n1 balls into n2 + 1 bins. Then the score is the

smallest number of moves we need in order to have all the balls on the left, with a score of

1 for each move of a ball to the next bin. We can see from this formulation that for the

score k, the corresponding frequency in the distribution is the number of integer solutions

fxigi=1;:::;n2+1 that satisfy
Pn2

i=1
i xi+1 = k under the constraint

Pn2+1

i=1
xi = n1.
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Figure 3: The distribution of scores from the original data is more spread out, with heavy tails

indicative of predictive genes; the other distribution with smaller variance is one realization

of randomly permuted data. The dotted lines indicate histograms and the smooth lines are

obtained using robust locally linear �ts.

the original data. This veri�es our expectation that the data contains useful
information in distinguishing the two groups. We note that this value is very
large compared to 1:66 � 10�9, which was obtained above for a single gene.
Assessing the p-value for a pattern in the data must be done with caution in
order to avoid gross underestimates.

In Figure 4, we show the changing p-values as the more signi�cant genes
are successively deleted from the data. When 440 genes are eliminated, the
p-value goes up to 0.01; 440 is about 6% of the data. So, in the absence of
other information regarding the data, 5% of the data seems to be a reasonable
number for further analysis. It is true that much fewer genes may be suÆcient
in categorizing the samples with known classes; in fact, we saw that a single
gene gives a perfect split in this data set. However, by including 5% of the
genes, we are building in redundant information for more accurate and robust
prediction of new samples. We �nd that included among the top 5% of the
genes are all 50 that were chosen by Golub et al. (1999) using another metric
for identifying informative genes. When the number of excluded genes goes
beyond several hundred, we must be careful in comparing the distributions, as
signi�cance can result from the tails of the score distribution being too thin.
We remedy this situation by leaving out the tails in computing Si and rescaling
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Figure 4: The p-value for the data rises as an increasingly larger number of the most sig-

ni�cant genes are deleted. The p-values are in comparison to the 10000 randomly column-

permuted samples.

the distribution appropriately before comparing.

3 Discussion

We emphasize that in order to get the p-value, we compare the distribution of
the score statistics from the given data to the distributions generated by per-
muting entire columns while keeping the gene to gene correlation �xed. If we
had assumed independence among genes, the distributions from the permuted
data would look quite di�erent, and would give us lower p-values. In Figure
5, we plotted two distributions, one assuming independence among genes (on
the left), and the other without such assumption (on the right). We see that
the distributions are more uniform when independence is assumed. Underesti-
mating the p-value assigns more signi�cance than warranted by the data and
should be avoided.

The nonparametric method introduced here has several advantages. An
important feature is its robustness. Because it uses ranks rather than actual
expression levels, it is more robust to outliers. There is a long sequence of
steps in the laboratory as well as in the image analysis before a single number
is produced for an expression level, and there are many potential sources of
error. That the expression levels are often unreliable is evident in the fact
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lation structure for the genes, the resulting distributions are more varied. (50 distributions

are plotted for each case)

that individual observations are often thrown away on the basis of poor image
quality.

Microarray data are usually normalized before any analysis is carried out.
There are a variety of such methods. A common rescaling, for example, is
to make the overall intensities for each chip the same, in order to reduce the
chip-to-chip variations.7 However, our nonparametric method is not a�ected
by any of the normalization steps, since order of the expression levels are left
unchanged.

This fast and simple method is a formal approach for reduction of di-
mensionality in the data. It can be used as a �lter that is more re�ned and
systematic than those that simply look at the relative or absolute changes in
fold variation. Therefore, when the classi�cation is known for a set of samples,
this nonparametric approach may be bene�cial as a �rst step.

Related work in progress includes extensions of nonparametric approaches
to other aspects of microarray data analysis, as well as correct estimates of
p-values in di�erent types of data sets.

Acknowledgments

We thank the anonymous referees for their comments. This work is supported
in part by grants ST32-AI07358 for P. J. P. and R01-AI28076 for M. P. and
M. B. from the National Institutes of Health.

Pacific Symposium on Biocomputing 6:52-63 (2001) 



References

1. Alizadeh A. A., Eisen M. B., Davis R. E., Ma C., Lossos I. S., Rosenwald
A., Boldrick J. G., Sabet H., Tran T., Yu X., et al., Distinct types
of di�use large B-cell lymphoma identi�ed by gene expression pro�ling.
Nature 403, 503-511 (2000)

2. Alon U., Barkai N., Notterman D. A., Gish K., Ybarra S., Mack D. &
Levine A. J., Broad patterns of gene expression revealed by clustering
analysis of tumor and normal colon tissues probed by oligonucleotide
arrays. Proc. Natl. Acad. Sci. USA 96, 6745-6750 (1999)

3. Botstein D. & Brown P., Exploring the new world of the genome with
DNA microarrays, Nature Genetics (Supp.) 21, 33-37 (1999)

4. Butte A. & Kohane I., Mutual information relevance networks: func-
tional genomic clustering using pairwise entropy measurements. Paci�c
Symposium on Biocomputing, 18-29 (2000)

5. DeRisi J., Penland L., Brown P. O., Bittner M. L., Meltzer P. S., Ray
M., Chen Y. D., Su Y. A. & Trent J. M., Use of a cDNA microarray to
analyse gene expression patterns in human cancer. Nature Genetics 14,
457-460 (1996)

6. Eisen M. B., Spellman P. T., Brown P. O. & Botstein D., Cluster analysis
and display of genome-wide expression patterns. Proc. Natl. Acad. Sci.
USA 95, 14863-14868 (1998).

7. Golub T. R., Slonim D. K., Tamayo P., Huard C., Gaasenbeek M.,
Mesirov J. P., Coller H., Loh M. L., Downing J. R., Caligiuri M. A.,
Bloom�eld C. D. & Lander E. S., Molecular classi�cation of cancer: Class
discovery and class prediction by gene expression monitoring. Science

286, 531-537 (1999).
8. Iyer V. R., Eisen M. B., Ross D. T., Schuler G., Moore T., Lee J. C. F.,

Trent J. M., Staudt L. M., Hudson J., Boguski M. S., et al., The tran-
scriptional program in the response of human �broblasts to serum. Sci-
ence 283, 83-87 (1999)

9. Hettmansperger T. P., Statistical inference based on ranks. Wiley, New
York (1984)

10. Kohonen T., Self-organizing maps. Springer, Berlin (1997)
11. Little R. J. A. & Rubin, D. B., Statistical analysis with missing data.

Wiley, New York (1987)
12. Ross D. T., Scherf U., Eisen M. B., Perou C. M., Rees C., Spellman

P., Iyer V., Je�rey S. S., Van de Rijn M. & Waltham M., Systematic
variation in gene expression patterns in human cancer cell lines. Nature
Genetics 24, 227-235 (2000)

Pacific Symposium on Biocomputing 6:52-63 (2001) 



13. Scherf U., Ross D. T., Waltham M., Smith L. H., Lee J. K., Tanabe L.,
Kohn K. W., Reinhold W. C., Myers T. G., Andrews D. T., et al., A gene
expression database for the molecular pharmacology of cancer. Nature

Genetics 24, 236-244 (2000)
14. Tamayo P., Slonim D., Mesirov J., Zhu Q., Kitareewan S., Dmitrovsky

E., Lander E. S. & Golub T. R., Interpreting patterns of gene expression
with self-organizing maps: Methods and application to hematopoietic
di�erentiation. Proc. Natl. Acad. Sci. USA 96, 2907-2912 (1999)

Pacific Symposium on Biocomputing 6:52-63 (2001) 


