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We present a novel approach to the clustering of gene expression patterns based
on the mutual connectivity of the patterns. Unlike certain widely used methods
(e.g., self-organizing maps and K-means) which essentially force gene expression
data into a �xed number of predetermined clustering structures, our approach aims
to reveal the natural tendency of the data to cluster, in analogy to the physical
phenomenon of percolation. The approach is probabilistic in nature, and as such
accommodates the possibility that one gene participates in multiple clusters. The
result is cast in terms of the connectivity of each gene to a certain number of (sig-
ni�cant) clusters. A computationally eÆcient algorithm is developed to implement
our approach. Performance of the method is illustrated by clustering both con-
structed data and gene expression data obtained from Dictyostelium development.

1 Introduction

With the advent of microarray cDNA technology1;2 and genome sequencing
projects, progress in molecular biology will depend more and more on the a-
bility to eÆciently process and quantitatively analyze large amounts of data.
For instance, in a microarray experiment in which one looks for groups (or
clusters) of similarly expressed genes out of a vast number of expression pat-
terns containing 103 to 105 data points, visual inspection is inadequate and
automated algorithms must be used to reach beyond the most conspicuous
clusters. A number of clustering algorithms have been introduced in the past
few years, and they have been instrumental in discovering new features con-
tained in large-scale gene expression data3;4;5.

Despite the versatility and early success of these methods, however, they
are limited in scope due to a number of fundamental shortcomings, the most
notable one being the dependence of the results on certain arbitrarily imposed

clustering structures. Such dependences can give rise to misleading results
when the assumed clustering structures are far from the truth. For example,
the hierarchical method of clustering imposes a rigid hierarchical structure
to the clusters which gene expression data may not possess. Moreover, the
method is \greedy" (e.g., allows no backtracking), so that small errors in cluster
assignment in early stages of the algorithm can be drastically ampli�ed. The
more sophisticated K-means clustering assumes that there are K clusters in
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the data, and �nds the cluster origins and the membership of each cluster by
minimizing the cluster variances. The major disadvantage of this method is
that the number K is not known in advance and a lot of guesswork is required
on the part of the analyst while �nding the \best" K, usually by judging
the tightness of clusters. The problem, of course, is that the larger the K one
chooses, the tighter the clusters become. Another potential 
aw of this method
is that because each gene is uniquely assigned to some cluster, it is diÆcult for
the method to accomodate a large number of stray data points, intermediates,
or outliers. The latter can in principle be handled by allowing di�erent clusters
to have di�erent variances; however optimization over such a large parameter
space quickly becomes intractable computationally. Another popular method
is the self-organizing maps (SOM), which as implemented by Tamayo et. al.,
is essentially a restricted version of K-means: Here the K clusters are linked
by some arbitrary user-imposed topological constraints (e.g., a 3�2 grid), and
as such su�ers from all of the problems mentioned above for K-means (and
more), except that the constraints expedites the optimization process.

In this paper, we present a di�erent approach to clustering based on the
\mutual connectivity" of the expression pro�les. Our method does not assume
the structure nor the number of clusters. It is probabilistic in nature and
allows each gene to belong to multiple clusters. The algorithm is not greedy
but more Monte-Carlo like. In the subsequent sections, we �rst present a
conceptual overview of the approach, followed by a detailed description of
the algorithmic implementation. Then we illustrate the performance of our
algorithm by contrasting it with that of the SOM on a constructed test dataset
for which the clustering structures are known. Finally, we apply our algorithm
to the gene expression data obtained from Dictyostelium development, and
describe new �ndings which are of biological interest.

2 Percolation Clustering

2.1 Overview:

Our approach is inspired from the concept of percolation, a well-studied par-
adigm used by statistical physicists to characterize a diverse range of physical
phenomena, from spreading of forest �res to drainage of 
uid in porous rocks.
The basic idea is very simple: a probe is used to reveal the mutual connectivity
among a large number of points, with the highly-connected regions identi�ed as
clusters. Thus, setting �re to a forest reveals which trees are clustered together,
and pushing 
uids through porous rocks reveals which pores are connected.

Applying this idea to gene expression analysis, we represent each expres-
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sion pattern containing m measurements by a point in an m�dimensional
space. A distance measure dij is de�ned between all pairs of points i and j

such that small distances correspond to similar expressions, and large distances
to dissimilar expressions. In percolation clustering one takes advantage of the
intuitively obvious fact that clusters have a higher density of points than the
surrounding background. This is realized most naively by connecting every
pair of points that are within a certain threshold distance, say d0, from each
other; each connected graph which results can be regarded as a cluster. For
d0 = 0, of course every point is a cluster by itself. Now if d0 is gradually in-
creased from zero, then the points from the regions of highest density would get
interconnected �rst to form tight clusters; next, the more dilute clusters will
form. Later as connections are made between existing clusters, they merge into
even larger clusters, until eventually at some large d0 (typically much smaller
than the maximum of dij 's), all points will be interconnected.

So far, we have described a deterministic procedure which in essence is
not so di�erent from hierarchical clustering. As already mentioned above,
such procedures are susceptible to errors, say in individual pairwise distances.
(We know in fact that array data su�er from a good deal of noise 6.) For in-
stance, one small dij can prematurely connect two clusters that are otherwise
separated far away. To alleviate this problem, we adopt a probabilistic pro-
cedure, connecting two points (i; j) with probability P (dij) = exp(�d2

ij
=d20),

which varies continuously between 0 and 1 a. In this way, two points (i; j)
are directly connected only if their distance dij � d0. Otherwise, a group
of points need to be multiply connected to each other in order for this group
to remain as a cluster with high probability. Note that the function P (dij)
de�nes a statistical ensemble. In order to properly sample the ensemble, one
must generate many of its realizations (in practice a hundred seems suÆcient).
Since two points may belong to the same cluster in some realizations and to
di�erent clusters in other realizations, membership of points in each cluster
also becomes probabilistic for a given value of d0.

The probabilistic procedure described above can be cast mathematically in
the language of percolation7, or equivalently, as the �nite-temperature q�state
Potts model 8 with q = 1. Within the latter framework, our work is related to
that of Blatt et al. 9, which is an application of the q�state Potts model with
q � 2. An important feature of percolating system of this kind is that there
exist a percolation transition: When d0 reaches a critical value dc (whose precise
value can be computed from P ), a random collection of points becomes globally
connected. What is important for the task at hand is the known property that

aThe form of P (d) can easily be re�ned if more is known of the statistics of the data, e.g.,
the variance of the measured expression levels.
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for d0 < dc, the typical cluster size S0 (e.g., the number of points contained
in each cluster) becomes small, with the probability of �nding a cluster size
S � S0 decaying exponentially. Thus, if one operates below the percolation
threshold, the probability of �nding large clusters by chance is small, making
such �ndings statistically signi�cant. Despite the existence of this general
theoretical framework, the precise statistical evaluation of the clusters require
detailed analysis and will be presented elsewhere. In what follows, we will
describe the algorithm and illustrate the results.

2.2 Algorithm:

In practice, our percolation clustering proceeds in three steps.

Step One: Global Analysis

� Generate random numbers 0 < �ij < 1 from a uniform distribution for all
pairs of points (i; j).
� Calculate the threshold d0

ij
as the value of d0 for which P (d0) = �ij .

� Increase d0 continuously from 0. Everytime d0 exceeds a threshold d0
ij
, a

connection is made between the points i and j. If two previously disconnected
clusters get connected, we assign the tree distance Dm;n between every point
m in the �rst cluster and every point n in the second cluster to be d0. The
process stops when all points are connected.

Step One is repeated many times with di�erent seeds for the random num-
ber generator (in practice 100 times is suÆcient) in order to calculate the
average tree distance Dij between all pairs of points. Note that Dij will be
di�erent from the direct pairwise distance dij we started from. Pairs of points
from dense regions of space will all have nearly the same average tree distances,
which will generally be smaller than the corresponding direct distances.

Step Two: Construction of the Average Tree

Next, we construct the average tree by repeating the last bullet above,
except with d0

ij
replaced by Dij :

� Set d0 = 0. Every point is a cluster of size 1 and also a cluster origin.
� Increase d0 continuously from zero. Every time d0 exceeds a threshold Dij ,
a connection is made between points i and j. If this connection links two
previous disconnected clusters, then the new cluster results as the union of
the two. The size of the new cluster is the sum of the two previous clusters,
and the origin of the new cluster is taken to be the origin of the larger of the
previous two. The process stops when all N points are connected.

At the end of this step, we have a list of cluster origins, and a record of
which points (and at which value of d0) belong to each origin.
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This list de�nes an \average tree", and provides a global view of the mutual
relationship among the di�erent data points. It can be regarded qualitatively
as a more reliable version of the kind of trees produced by the hierarchical
clustering algorithm. This result is used to �lter out the uninteresting clusters
(say, those whose sizes are below certain limit set by users). In the next
step, one then investigates each of the remaining clusters closely using the full
power of this approach. Speci�cally, we use the concept of invasion percolation

to determine probable connectivity of all points to each of the cluster origins:

Step Three: Calculation of Connectivity to Cluster Origins

� Choose a cluster origin, say, X , as the point of \invasion".
� Generate random numbers 0 < �ij < 1 from a uniform distribution for all
pairs of points (i; j).
� Calculate the threshold d0

ij
for which P (d0

ij
) = �ij for each pair (i; j).

� Set d0 = 0. Point X is the only member of the invading cluster.
� Increase d0 continuously. For each pair of points (i; j) such that d0

ij
� d0

and only one point belongs to the invading cluster, connect the two points
(thereby enlarging the invading cluster size by 1). The process stops when an
in�nitesimal increase of d0 would cause any cluster origin (other than X) to
become part of the invading cluster.
� Record membership of the invading cluster.

Step Three is again repeated many times (in practice 100 times is again
suÆcient) with di�erent seeds for the random number generator, for each clus-
ter origin the user decides to pursue at the end of step two. At the end of this
step, one obtains a list containing \connectivity", i.e., the probablility that
each point is connected to a cluster origin. This list provides the complete
description of a probablistic cluster containing the origin X. Statistical signif-
icance (e.g. the p-value) of �nding such a cluster by chance can be provided
once a null model is speci�ed and will be discussed elsewhere. For now, we
will examine the resulting clusters obtained from this algorithm.

2.3 Result and Comparison:

The principle of percolation clustering and comparison of its performance with
another common clustering algorithm, the self-organizing map (SOM), are best
illustrated in a graphical form (Figs. 1a{1g). Figure 1a shows the constructed
test data set in two spatial dimensions, which represents a frictitious array
experiment on N = 325 genes, with just two measurements taken (we are
limited to two dimensions for presentation purposes). In order to simulate the
experimental situation, 50 points (red) and 10 points (blue) are each drawn
from a spherically symmetric Gaussian cluster, and 40 points (green) are drawn
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Percolation Clustering SOM

Figure 1: a) The constructed data set: 50 points (red) are drawn from a spherically symmet-
ric Gaussian cluster, 40 points (green) are drawn from an elliptically symmetric Gaussian
cluster, 10 points (blue) are drawn from a spherically symmetric Gaussian cluster of smaller
width, and 225 points (black) representing noise are drawn from a uniform Poisson distri-
bution. b){e) Clusters of size larger than 20 as identi�ed by percolation clustering. The
color intensity of every point is linearly proportional to the connectivity of that point to the
cluster origin. f) Result of SOM clustering with a 3� 1 structure of centroids. g) Result of

SOM clustering with a 2� 2 structure of centroids.
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from an elliptically symmetric Gaussian cluster; superimposed on these \data"
points are 225 \noise" points (black) which are uniformly distributed inside
the box. Note that some of the \noise" points overlap with the \data", so
these should naturally cluster together (remember that real-life experimental
data do not come color coded), and some \data" points are so far removed
from their respective cluster centers that they should cluster with di�erently-
colored \data". Of importance are noise points that one might wish to leave
unclustered based on a purely visual inspection.

We executed the percolation clustering algorithm of Sec. 2.2 on this test
dataset. The complete run (including 100 realizations of ensemble average)
took 22 sec of CPU time on a 500 MHz Pentium computer. [Note that the
algorithm scales quadratically with the number of data points but is essentially
independent of the number of components of each point.] The algorihtm clearly
identi�es the three \data" clusters we generated (Fig. 1b{1d). In addition to
these, however, there was also a false cluster found (Fig. 1e), for the particular
value of minimal cluster size we asked the program to report. (Of course,
many smaller clusters exist had we asked for them.) Clearly, the cluster in
Fig. 1e results from random agglomeration of Poissonian \noise" and contains
no information. We can distinguish the true and false clusters by characterizing
the statistics of obtaining clusters such as that in Fig. 1e. This requires a null
model, which is obvious for this example (e.g., 325 points randomly placed in
the box). However, choosing the appropraite null model for real experiments
is not simple and will be discussed elsewhere. Here, we proceed with the
comparison of the clusters obtained with those of SOM.

When this test dataset is processed with the SOM algorithm as implement-
ed by Tamayo et al., the results vary greatly depending on what structure of
centroids one chooses. For instance, with a 3 � 1 structure (Fig. 1f) which
corresponds exactly to the actual number of \data" clusters, the result is quite
discouraging, as the two original (red and green) clusters are assigned together
with many \noise" points to a single cluster, the red one in Fig. 1f; the other
two clusters being made up essentially of \noise". Obviously this particular
SOM algorithm does not deal well with a situation in which the clusters are
close together in a large background of uninformative noise. Unfortunately the
real expression data we have share the same character as we will see below.
When a 2� 2 structure is used instead (Fig. 1g), the result is better. Never-
theless, comparison with Figs. 1b-1e shows that much of the \noise" left out
by our algorithm gets clustered along with the \data" by this SOM. This illus-
trates a generic weakness of the K-means-type approach: While the \data" can
be better separated from the \noise" by choosing a large number of centroids,
this leads to a large number of clusters, most of which carry no information.
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3 Dictyostelium development

Dictyostelium discoideum is a unicellular amoeba that lives in the soil, feeding
on bacteria10. Upon starvation, a 24-hour-long developmental program ensues,
leading eventually to the formation of a di�erentiated multicellular structure in
which 80% of the original cells have become resistant spores and the remain-
ing 20% have become stalk cells that physically support the spore. During
development, Dictyostelium shares many of the physiological functions seen
in mammalian cells such as directed amoeboid movement, cell-cell adhesion,
tissue di�erentiation, proportioning, and sorting 11.

We have carried out the �rst cDNA microarray study of Dictyostelium, si-
multaneously measuring expression levels of nearly 700 selected genes at 2-hour
intervals throughout development. Gene probes were microarrayed robotical-
ly on glass slides. The entire genome of Dictyostelium is estimated to carry
8,000{10,000 genes, and is in the process of being sequenced (at the present
time about 3,000 genes have been identi�ed). The genes used in this study
included previously characterized developmentally regulated genes as well as
genes encoding proteins with signi�cant similarity to proteins characterized
in other organisms but not previously encountered in Dictyostelium. A large
number (� 109) of identical vegetative cells of wild-type strain NC4 were in-
duced to initiate development synchronously by the removal of nutrients and
spreading on a bu�ered surface. Standard methods were used to isolate total
RNA from � 108 cells at each time point and to subsequently collect polyA+

RNA. The RNA preparations were used as templates for reverse transcriptase
to generate single-stranded cDNA copies of each mRNA. In order to determine
relative temporal changes in speci�c gene expression free of slide or probe spe-
ci�c properties, a reference mixture of RNA collected from all experimental
time points was copied into DNA in the presence of dCTP-Cy5 (red) 
uo-
rescent dye, while the RNAs collected during development were copied in the
presence of dCTP-Cy3 (green) 
uorescent dye. Microarrays were hybridized
for 18 hours with a mixture of approximately equal amounts of Cy3 and Cy5
labelled DNA. The 
uorescent intensities from each spot was measured and
processed. The ratio of intensities in Cy3 and Cy5 channels for each spot were
normalized to the value of this ratio at 2 hours of development. In order to
�nd genes with similar temporal expression pattern, the relative ratios were all
normalized to the same maximum, and clustered by the percolation algorithm.

Three basic expression patterns were identi�ed: early upregulated genes
(Fig. 2a), late upregulated genes (Fig. 2b) and downregulated genes (not
shown). [Note that these represent only a small number out of the total of
700 genes arrayed and clustered. Most of these genes are thus uninformative
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Figure 2: a) The two basic clusters of a) early and b) late upregulated genes as identi�ed by
percolation clustering. Color coding of the expression pro�les is as follows: black means gene
expression is the same as it was at 2 hours of development; increasing tint of red color means
increasing expression relative to 2 hours; and increasing tint of green color means decreasing
expression relative to 2 hours. The bottom portions of the �gure display expression pro�les
of the corresponding genes; the red curves are the mean expression. Only genes whose

connectivity to the cluster origins is greater than 20% were included in these plots.
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on the basis of the simplest experiments done here, and further experiments
(e.g., response to drugs) are needed to resolve their functions.] The clear sepa-
ration of upregulated genes into early and late classes has not been previously
noted. Analysis of the temporal patterns of two dozen developmentally regu-
lated genes determined by Northern blotting con�rms the dichotomy.

For comparison, the result of SOM clustering on a slightly reduced set of
361 genes is presented in Figure 3. Since apparently only a small fraction of
the total number of genes in this study are strongly devepmentally regulated,
a minimum of 24 centroids was needed to satisfactorily resolve the three ba-
sic expression patterns identi�ed by percolation clustering. The remaining 21

SOM 6x4

Figure 3: Result of SOM clustering of Dictyostelium expression data with a 6�4 structure of
centroids. A 6�4 = 24 clusters is the minimumnumber of centroids needed to resolve the three
clusters revealed by percolation clustering (encircled, from top to bottom: downregulated
genes, early upregulated genes, and late upregulated genes). The remaining 21 clusters are
formed by forceful partitioning of the remaining non-informative noisy data. Similarity of

expression within these 21 clusters is random, and is biologically meaningless.
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clusters are formed by forced partitioning of a large background of uninforma-
tive genes. The expression level of these genes is generally low and therefore
the measurement is subject to large relative errors. An estimation of mea-
surement errors from duplicated measurements combined with prior biological
knowledge allows us to conclude that any apparent similarity of expression
patterns found within the remaining 21 clusters is random and does not have
any biological signi�cance. Had we relied on SOM clustering as a sole means of
analysis, we would have no way to discriminate between the three signi�cant
and 21 spurious clusters. Percolation clustering applied to this dataset does
not produce the spurious clusters.

The leading members of the two clusters of upregulated genes are shown
in Tables 1 and 2. Of the early genes the only ones whose cell-type speci�city
has been determined are pre-stalk. The majority, but not all, of the known
cell-type speci�c late genes are pre-spore. Our microarray study reveals an
abundance of other genes that strongly cluster within either the early or the
late groups. Some of these genes have been previously studied, but not for cell-
type speci�city, while others are recently isolated and uncharacterized genes
whose function can be presently inferred only by homology. These genes are
the obvious target for a molecular genetic study. Determination of the cell-

Table 1: Early upregulated genes (connectivity > 70%)

locus protein product/homolog cell-type speci�city

cprA
cprB
lagC

cysteine proteinase CP1
cysteine proteinase CP2
adhesion factor gp150

established prestalk genes

- - calcium binding
- - lysozyme
csbA p12
- - unc-93
calB calcineurin B
cbpB Ca++-binding protein CBP2 unknown
- - protein kinase
- - co�lin-like
paxB paxillin
- - laminin chain A
- - protein kinase-FAK56
- - cytochrome P450 1A
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type speci�city of these genes is of great importance for further understanding
of the genetic network that underlies functional changes during Dictyostelium
development. Investigation of cell-type speci�city of genes pointed out by this
study is under way in our laboratory and the results will be reported elsewhere.

Table 2: Late upregulated genes (connectivity > 85%)

locus protein product/homolog cell-type speci�city

cotA
cotB
cotC
pspD
pspA
pspG
wacA
- -
- -

spore coat protein
spore coat protein
spore coat protein
spore coat protein (SP87)
SP29
3F
aquaporin MIP
Dd87
7E

established prespore genes

ecmA
mybC
carB

ST430
transcription factor
CAR2

established prestalk genes

gadA glutamate decarboxylase A
cprF cathepsin O
- - isocitrate lyase
- - glutathione transferase
- - catechol methyltransfer III
- - fructose-6-P aminotransferase
- - MDR 49 unknown
rasC RasC
- - alanine glyoxilate transaminase
- - pyrroline-carboxylate dehydrogenase
dutA no product
gbfA G-box binding factor
- - RNA helicase
- - DG1113
glpD glycogen phosphorylase
- - 2C-like
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