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Abstract

The advent of the DNA microarray technology has brought with it
the exciting possibility of simultaneously observing the expression levels
of all genes in an organism. One such microarray technology, called
“oligo arrays”, manufactures short single strands of DNA (called probes)
onto a glass surface using photolithography. An altered or missed step in
such a manufacturing protocol can adversely affect all probes using this
failed step, and is in general impossible to disentangle from experimental
variation when using such a defective array. The idea of designing special
quality control probes to detect a failed step was first formulated by
Hubbell and Pevzner. We consider an alternative formulation of this
problem and use a combinatorial design approach to solve it. Our results
improve over prior work in guaranteeing coverage of all protocol steps and
in being able to tolerate a greater number of unreliable probe intensities.

1. Introduction

Recent advances in DNA microarray technology have allowed biologists to
obtain expression profiles of the genes in an organism in a quantitative and
high throughput fashion. An important class of DNA microarray technology,
called “oligo arrays”, manufactures short single strands of DNA (called probes)
onto a glass surface using photolithography !. The glass surface (or array)
has a well-defined set of addresses (or spots) where the probes are grown.
The manufacturing protocol is a sequence of steps N1 N> ... N, each with an
associated nucleotide N; € {A, C, G, T}. Conceptually, at the i** step of the
protocol a mask is placed on the glass array and the array is exposed to a
solution containing the nucleotide N;. This causes the probes at the positions
on the array that are not masked to be extended by one base, N;. The rest of
the probes do not change during this step. The process is repeated with a new
mask at each step, to build a diverse assortment of probes.
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An altered or missed step in the array’s manufacturing protocol can ad-
versely affect all probes using the failed step, and thus their hybridization
behavior with targets. The error ensuing from a faulty manufacturing step
may well be impossible to disentangle from experimental variation when using
the defective array. The problem of developing a quality control mechanism
that detects during the manufacturing process if a step has failed is therefore
of clear practical importance.

One approach to the quality control problem, formulated first by Hubbell
and Pevzner2, is to design a small set of special quality control probes. Their
ingenious idea was to manufacture the same probe sequence at a number of
different spots, each spot using a different schedule of steps of the protocol.
A protocol step ¢ therefore has an associated set P; of quality control spots
that use this manufacturing step. These quality control probes are then hy-
bridized with a complementary fluorescent target. The intensities within the
set P; provide a “signature” for the quality of step 4. If many of the intensities
within P; are significantly lower than the remaining intensities, this is a good
indication of step 7 being flawed. This is because all the spots have the same
sequence and should therefore have similar hybridization behavior (hence sim-
ilar intensities) if they are correctly manufactured. The focus of the work of
Hubbell and Pevzner is to generate sets P; that are sufficiently large and suffi-
ciently unique that a failed step can be identified even in the presence of some
unreliable spot intensities. This method is then used repeatedly for each probe
in a supplied set S of probes. However, there may be steps in a protocol that
cannot be used in manufacturing any of the probes in a given set S. Assuming
that S is supplied implies that the failure of such a step cannot be detected.
Moreover, since there is no coordination among the solutions generated for
distinct probes (the algorithm being used separately on each probe), Hubbell
and Pevzner do not exploit the ability of the probes to collectively make the
set of spots using a protocol step as large and as unique as possible.

We consider an alternative formulation of this problem that does not as-
sume that the quality control probe sequences are supplied. We take the choice
of the probe sequences into our own hands in order to guarantee that every
protocol step is well covered by the quality control mechanism. Our design en-
sures that the number of distinct probes is small and that they hybridize poorly
with themselves and with each other. This is a necessary constraint because if
probes hybridize well with themselves or each other, then their corresponding
complementary targets will too, rendering them unavailable to hybridize to the
probes®. Our design further ensures that each probe hybridizes well only with
the target that is complementary to it, and hybridizes poorly with the targets
meant for the other probes. This property allows us to use multiple quality
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control targets (up to 4 in our current designs) simultaneously, thereby relaxing
the requirement of Hubbell and Pevzner 2 that all probes are complementary
to substrings of a single target.

The fact that we want balanced and sufficiently unique signatures for all
steps in the protocol suggests a connection to the elegant theory of combinato-
rial design. For our purposes, a combinatorial design is just a 0-1 matrix with
appropriate balance and uniqueness properties. The chief contribution of this
work is to solve the quality control problem by developing a framework that
builds on techniques from combinatorial design. For a preview, see Figure 2.

Because of space limitations, many details and most proofs are omitted
from this version, but can be found in the full paper*.

2. The Quality Control Problem

A quality control scheme for a protocol with n steps using m spots can be
viewed as an m X n 0-1 matrix Q, with each column representing a protocol
step and each row representing a spot. Each column of Q is labelled with the
nucleotide used in that step. The entry Q;; is 1 if and only if step j was used
in manufacturing the probe at spot i. We will refer to such a matrix Q as a
Quality Control (QC) matrix. The sequence of the oligonucleotide at spot i
can be read out by concatenating the labels of the columns at which row ¢ has
al.

The probes manufactured at the m quality control spots are not all differ-
ent. There will in general be ¢ distinct probes, with several spots containing
the same probe but manufactured using different schedules of steps of the
protocol.

To actually perform quality control of a protocol, the quality control probes
defined by Q are manufactured using the protocol onto m reserved spots on
each chip of a wafer®. The manufacturer takes one chip from the wafer and tests
it as follows: the chip is hybridized with fluorescent targets complementary to
the ¢ probes, scanned, and the resulting vector of m intensity values is used to
determine which step, if any, failed.

Definition 2.1: (QC Problem) Given a protocol P with n steps up to 1 of
which may fail, and a budget of m quality control spots up to d of which may
be unreliable, construct an m x n QC matrix Q such that an intensity vector 7
of the m spots manufactured using Q allows unique identification of the failed
step, if any.

The problem we solve in this work is not quite as general as the one stated
in Definition 2.1. We cannot hope to take arbitrary parameter values n, m,
and d as input and produce a QC matrix Q that meets the specifications. We
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explain in Section 2.2 why solving this general version would entail solving
long-standing open questions in combinatorial design. However we are able to
produce QC matrices for a wide range of values of n, m, and d that covers the
desired settings in practice. We also do not solve this for arbitrary protocols
P, but rather a specific set of 24 periodic protocols, namely, [r(ACGT)]™/*,
where 7 is any permutation and n is a multiple of 4 in the range 60 < n < 132.
Again, this covers the typical protocols in practice.

2.1.  Assumptions

1. Step failure model: when a step fails, a spot will show a low intensity if
and only if the failed step was used in manufacturing the probe at that
spot, with up to d exceptions. When no step fails, each spot will show a
high intensity, with up to d exceptions.

2. Spots containing different probes in general may have different hybridiza-
tion behaviors. Hence we will not compare intensity values of two differ-
ent probe sequences. We will also not make the assumption that, within
the set of spots sharing the same probe, we can distinguish between all
intensities high and all low.

3. We are allowed multiple quality control targets that are designed so as to
hybridize poorly to themselves and to each other. Each probe is designed
to hybridize poorly to all but one of these targets.

Definition 2.2: We say that two single-stranded nucleotide sequences hy-
bridize poorly if and only if, when they are arranged in antiparallel fashion,
shifted an arbitrary offset with respect to each other, at least two out of every
four consecutive pairs of aligned bases are not complementary. A set S of
such sequences is said to hybridize poorly if and only if every sequence s € S
hybridizes poorly to itself, to every other sequence in 5, and to the complement
of every sequence in S that is not a rotation of s

2.2. Identifying the Failed Step

In this section we define a property of a QC matrix O, called “separation,”
and establish that high separation is sufficient to identify any one failed step
when up to d spots may show unreliable intensities.

Definition 2.3: Let @ be an m x n QC matrix with ¢ distinct probes
{qr | 1 <k <c}. Let p; be the probe at row i, 1 < i < m. By conven-
tion, define Q4 = 0 for all 1 <4 < m. For any k with 1 < k < ¢, and any pair

“For example, the sequence CACG CACG is a rotation of the sequence ACGC ACGC.
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j#j with 0 < 4,5 <n, let
Dy (j,3") #{i | pi = qx and Q;; # Qujr },
Li(5,5") #{i | pi = qr and (Q; # 1 or Qv # 0)},
Ri(j,3") = #{i|pi=qr and (Qi; #0or Qi # 1)}

The separation of Q is defined to be:

sep(Q) = min Y min(D(j, "), Lr(4,5"), Re(d, 5))- (1)
OS],]IS’!L k=1
Ji#i

The Dy, portion of Definition 2.3 has an intuitive explanation based on the
Hamming distance between two vectors, which is the number of corresponding
positions at which the two vectors have unequal values. A large Hamming
distance between columns j and j' of Q is necessary in order to be able to
detect the difference between step j failing and step j' failing. Similarly, a
large Hamming distance between column j of Q and the conventional column
0 (i-e., a large number of ones in column j) is necessary in order to detect the
difference between step j failing and no step failing.

The L and Ry, portions of Definition 2.3 capture the part of Assumption
2 from Section 2.1 that one may not be able to differentiate between all probe
intensities high and all low, which is why the Dy, portion alone is not sufficient.
For example, suppose step j were used in every spot i. Even if no spot failed,
if step j were to fail all spots would show equal (low) intensities. One might
well not be able to distinguish this case from no step failing, in which all spots
would also show equal (high) intensities. Using a similar explanation to one
given above, this portion implies that each column of Q has a large number of
Zeros.

The intensity vector Z is a vector of m real numbers, giving an intensity
reading for each of the m spots. We wish to interpret these real numbers as
high (“0”), low (“1”), or unreadable (“?”). This interpretation is subject to
reasonable constraints that two similar intensities of the same probe are not
interpreted as one high and one low, and two distant intensities of the same
probe are not interpreted as both high or both low.

Let ®(7) € {0,1, 7}™ be such an interpretation of intensity vector Z € R™,
where R is the set of real numbers. The reason why high intensity corresponds
to “0” and low to “1” is because the object is to use this interpretation vector
to identify which column of the QC matrix it resembles most. When step j
fails and none of the spots are faulty, the intensity vector interpretation ®(Z)
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one expects to see is exactly the 0-1 vector forming the j** column of the QC
matrix. In general up to d spots may be unreliable, so if step j fails, ®(7) will
equal the j** column of the QC matrix with at most d exceptional positions.
Note that not all the d unreliable spots need be interpreted as “?”: some may
be erroneously interpreted as high or low.

Theorem 2.4: Suppose sep(Q) > 2d+1 and 7 is the intensity vector of the m
spots. Then, for 1 < j < m, step j fails if and only if there is an interpretation
® of Z such that 6(Qx;, ®(Z)) < d, where § is the Hamming distance and Q.
is the j** column of Q. No step fails if and only if there is an interpretation ®
of 7 such that §(0™,®(Z)) < d.

Given spot failure tolerance d, an m xn QC matrix Q with sep(Q) > 2d+1,
and an intensity vector Z € R™, Theorem 2.4 can be applied to identify which
protocol step, if any, has failed. An algorithm solving this problem must
check if, for any j, 0 < j < n, there exists an interpretation ® such that
6(Q«j, ®(Z)) < d. If so, it returns the value j as the step that has failed. (As
in Definition 2.3, Q«o by convention is the vector 0™, and a returned value of
j = 0 corresponds to no step having failed.) In the full version of this paper?,
we describe an O(mn + mlogm) time algorithm for performing this task.

The following theorem provides one simple way to combine QC matri-
ces, and illustrates a tradeoff between the goals of maximizing separation and
minimizing the number of spots.

Theorem 2.5: Suppose that Q; is an m; x n QC matrix, and Qs is an my X n
QC matrix. Then the union Q; + Q> of their rows has n steps, my +ms spots,
and sep(Q1 + Q) > sep(Q1) + sep(Qa).

We are now in a position to state the precise design problem we solve. The
array manufacturer specifies as inputs the number n of steps, the protocol, and
the length k of each probe. The QC design problem is to construct an m x n
QC matrix Q with k ones per row such that the number m of spots is small and
sep(Q) is large. Furthermore, the set of ¢ distinct probes hybridizes poorly,
according to Definition 2.2. In our designs, we never use more than ¢ = 8
distinct probes.

One cannot expect to optimize both the objective functions m and sep(Q)
in a single QC matrix. For instance, Theorem 2.5 says that duplicating the
spots of Q simultaneously doubles m and sep(Q). Instead, in Section 4 we will
construct a variety of QC matrices Q that offer the manufacturer a spectrum
of choices for m and sep(Q).

One should also not expect to find an algorithm that, given arbitrary
values n and m, computes an m X n QC matrix Q that maximizes sep(Q).
This is likely to be infeasible at the present time, because even the existence of
certain combinatorial designs (such as a Hadamard matrix of order 4¢, which
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is equivalent to a (4t — 1) x (4t — 1) QC matrix Q with sep(Q) =2t —1)is a
long-standing open problem 6.

3. A Combinatorial Design Approach

We will assume that the protocol is (ACGT)"™/4, generalizing to other protocols
in the full paper*.

3.1. Balanced Codes

A good QC matrix Q has many of the properties of a good error-correcting
code, which is a type of combinatorial design: if one thinks of the columns of
Q as binary codewords, then one part of Definition 2.3 (the constraint on Dy,)
guarantees that the Hamming distance between any pair of codewords is at
least sep(Q). However, good QC matrices have many more constraints that
make their design more complicated than that of error-correcting codes. We
introduce a specialized type of code to satisfy these constraints.

Definition 3.1: A balanced binary code with parameters
(v, b, Pmin, Tmax, K, dmin) 1S a b X v 0-1 matrix with the following proper-
ties:

1. Every row contains exactly & ones.

2. The minimum number of ones in any column iS 7min, and the maximum
i8S Tmax-

3. The minimum Hamming distance between any pair of columns is dpin-

A subset of the codewords from certain types of error-correcting codes,
such as Hadamard codes and quadratic residue codes ?, form balanced codes.
However, our major source of balanced code constructions comes from 2-
designs:

Definition 3.2 (Colbourn and Dinitz®): A 2-design with parameters
(v,b,7,k,\) is a b x v 0-1 matrix D with the following properties:

1. Every row contains exactly k ones.

2. Every column contains exactly r ones.

3. For every pair j,j' of distinct columns, there are exactly A rows i such
that Dz"]‘ = Di’jl =1.

Proposition 3.3: Any 2-design with parameters (v,b,r,k,\) is a balanced
code with parameters (v, b, 7,7, k,2(r — X)).

Another source of balanced codes comes from the following product con-
struction.
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Theorem 3.4: Let C' be a balanced code with parameters
(v, b7, ins Thiasxs K5 diin)  and C' be a balanced code with parameters
(v, b, "min; Tmax; k; dmin)-  Then there is a balanced code C' x C with
parameters
("0, b'b, 7L i Pmin, Thax Tmax, &'k, min(dl; Pmin, minTimin))-
Proof: Replace every one in C' by a copy of C, and every zero in C' by
a b X v matrix of zeros. O

Balanced codes do not capture the notion of poor hybridization. A “QC
block” is just a balanced code with an additional hybridization constraint:
Definition 3.5: A QC block for a protocol P is a b x v balanced code in
which the b probes py,pa,...,pp are all distinct and, for every integer s, the
set {p{,p3,...,p;} hybridizes poorly (see Definition 2.2).

An example of an 8 x 8 QC block with parameters (8,8,4,4,4,4) is given
in Figure 1. Its eight poorly hybridizing probes are (ACGC)®, (TAGT)’,
(CACG)®, (AGTT)’, (ACAT)®, (GTCG)®, (ATAC)’, and (CGGT)’. TIts
four complementary targets are GCGT ...GCGT G, AACT ...AACT A,
ATGT ... ATGT AT, and CGAC ...CGAC CG.

3.2.  Product Construction of QC Matrices

The method we will use to construct good QC matrices is to apply the product
construction of Theorem 3.4, with C’ a balanced code and C a QC block.
Figure 2 shows an example, where C’' consists of ten codewords from the 8-
Hadamard code”, and C' is the QC block of Figure 1.

If the parameters of C' are (v', b, 7] in, Thaxs ks dinin) and the parameters
of C are (v,b,Tmin; Tmax; k; dmin), then the QC matrix C' x C' will have v'v
steps, b'b spots, and b distinct probes, each of length &'k and each occurring
at b’ distinct spots. More specifically, if py,ps, ..., py are the distinct probes
of C, then p¥' pk' ... pk are the distinct probes of C’ x C. By Definition 3.5,
this set of distinct probes hybridizes poorly.

What remains is to determine sep(C' x C), in order to be able to apply
Theorem 2.4.
Theorem 3.6: If (C' is a balanced code with  parameters
(Vb7 s Thaxs K5 dii) and € is a QC  block with parameters

(’Ua ba Tminy "max> ka dmin)a then

sep(C' x C') = min( d!;, Tmin,
’rinin min(rmin; dmin);

(bl - T:nax) min(rmina dmin) )
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C|G G|T

Figure 1: An 8 x 8 QC block. For ease of visualization, the figure shows blanks instead of
zeros, and the appropriate nucleotide from the protocol instead of ones.
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Figure 2: The product of 10 codewords from the 8-Hadamard code and the 8 x 8 QC block
of Figure 1, resulting in a 64 x 80 QC matrix Q with minimum separation sep(Q) = 16.
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As an example, if C is the 8 x 8 QC block of Figure 1, then
sep(C" x C) = 4min(d] i, Tiin, 0 — Thoaxe)-

min? max

4. Results: Achieved QC Matrices

Table 1 shows some of the QC matrices achievable by using the product con-
struction of Section 3.2. Each row of the table describes a QC matrix that
is the product of the balanced code specified in the last column and the QC
block specified in the penultimate column. For example, the QC matrix shown
in Figure 2 corresponds to the row of the table with 80 steps and 64 spots.

The separations in column 4 of the table are calculated using Theorem 3.6.
For each fixed number of steps (column 1), the table offers a small spectrum
of designs to suit the manufacturer’s spot budget and spot failure tolerance
(columns 3-4). Arbitrary linear combinations of these designs can be formed
according to Theorem 2.5, to provide a broader spectrum of choices.

The manufacturer uses Table 1 to look up the QC matrix Q for the ap-
propriate choice of parameters in the first four columns of the table, where the
“sep” parameter is chosen to be greater than twice the number of faulty spots
the manufacturer is willing to tolerate. The QC matrix Q is used to manu-
facture the quality control probes onto reserved spots, which are hybridized
with complementary fluorescent targets. The resulting intensity vector 7 is
then used along with Q to identify the failed step, if any, using the algorithm
following Theorem 2.4.

The 8 x 8 QC block has already been presented in Figure 1. The 6 x 12,
6 x 8, and 4 x 4 QC blocks are given in the full paper*.

5. Open Problems

1. Handle more than one step failure. Binary superimposed codes'! appear
to be a promising way to extend our hierarchical design approach to
handle multiple step failures.

2. Relax the step fault model. When a step fails, not every spot using
that step will have the same low intensity. The change in intensity more
realistically will be a function of how far from the center of the probe the
failed step is (Lipschutz et al. 1).

3. Develop a general technique for designing balanced codes. These designs
appear not to have been studied prior to this, even in the combinato-
rial design literature 2. Alon and Tompa '3 have developed one such
technique, resulting in many new balanced codes and QC matrices.
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Table 1: Some basic QC matrices achievable by the product construction of Section 3.2.
The second column shows the probe length. The last two columns show the QC block and
balanced code whose product yields the QC matrix. In the last column, a list of 5 parameters

indicates a 2-design (Definition 3.2), “x

”

indicates a product code (Theorem 3.4), “44”

indicates the addition of ¢ extra columns that maintain the balanced code properties 4, and
GF(q) refers to balanced codes derived from polynomials over finite fields °. The 2-designs
referenced in the last column can be found in the compendium of Mathon and Rosa 19, and

the error-correcting codes in the survey of Tonchev 7.

steps leng spots sep block balanced code steps leng spots sep block balanced code

60 16 60 14 4x4 (15,15,8,8,4) 96 20 90 12 6x8 (10,15,6,4,2)+2

60 18 140 28 4x4 (15,35,21,9,12) 96 20 120 24 8x8 (10,15,6,4,2)+2

60 20 168 28 4x4 (15,42,28,10,18) 96 18 160 20 4x4 (4,4,3,3,2)x(6,10,5,3,2)
64 16 42 6 6x8 7-Hadamard code 96 16 276 46 4x4 (24,69,23,8,7)

64 16 44 10 4x4 11-Hadamard code 100 18 100 18 4x4 (25,25,9,9,3)

64 16 48 12 4x4 12-Hadamard code 100 20 160 32 4x4 (25,40,16,10,6)

64 16 64 16 8x8 8-Hadamard code 100 16 300 48 4x4 (25,75,24,8,7)

64 20 64 12 4x4 (16,16,10,10,6) 104 16 78 8 6x8 (13,13,4,4,1)

64 16 120 30 4x4 (16,30,15,8,7) 104 16 104 16 8x8 (13,13,4,4,1)

64 18 320 70 4x4 (16,80,45,9,24) 104 20 234 30 6x8 (13,39,15,5,5)

68 16 136 32 4x4 (17,34,16,8,7) 104 20 260 50 4x4 (26,65,25,10,9)

72 18 44 10 4x4 11-Hadamard code 104 20 312 60 8x8 (13,39,15,5,5)

72 18 48 12 4x4 12-Hadamard code 108 18 36 4 4x4 degree 2 over GF(3)

72 16 54 8 6x8 (3,3,22,1)x(3,3,2,2,1) 108 16 54 8 6x12 (3,3,2,2,1)x(3,3,2,2,1)
72 16 72 16 8x8 (8,3,2,2,1) x (3,3,2,2,1) 108 20 84 12 6x12 (7,14,8,4,4)+2

72 20 84 12 6x8 (7,14,8,4,4)+2 108 20 108 16 6x12 (9,18,10,5,5)

72 20 108 16 6x8 (9,18,10,5,5) 108 18 156 26 4x4 (27,39,13,9,4)

72 20 112 24 8x8 (7,14,8,4,4)+2 108 20 216 40 4x4 (3,3,2,2,1) x(9,18,10,5,5)
72 18 136 34 4x4 (18,34,17,9,8) 112 20 108 12 6x8 (3,3,2,2,1) x (4,6,3,2,1) + 2
72 20 144 32 8x8 (9,18,10,5,5) 112 18 112 12 4x4 (4,4,3,3,2) x(7,7,3,3,1)
76 18 76 18 4x4 (19,19,9,9,4) 112 20 144 24 8x8 (3,3,2,2,1) x (4,6,3,2,1) + 2
76 20 76 18 4x4 (19,19,10,10,5) 112 20 168 30 4x4 (28,42,15,10,5)

80 20 44 10 4x4 11-Hadamard code 112 18 336 54 4x4 (28,84,27,9.8)

80 20 48 12 4x4 12-Hadamard code 116 16 232 32 4x4 (29,58,16,8,4)

80 20 64 16 8x8 8-Hadamard code 120 20 42 6 6x12 7-Hadamard code

80 16 90 12 6x8 (10,15,6,4,2) 120 20 48 8 6x12 8-Hadamard code

80 16 120 24 8x8 (10,15,6,4,2) 120 20 66 10 6x12 11-quadratic residue code
80 20 152 38 4x4 (20,38,19,10,9) 120 16 90 12 6x12 (10,15,6,4,2)

80 18 160 24 4x4 (4,4,3,3,2)x(5,10,6,3,3) 120 20 108 18 6x12 (10,18,9,5,4)

80 16 380 76 4x4 (20,95,38,8,14) 120 20 168 28 6x12 (8,28,14,4,6)+2

84 16 42 6 6x12 (7,7,4,4,2) 120 16 240 32 8x8 (3,3,2,2,1) x (5,10,4,2,1)
84 20 126 12 6x12 (7,21,15,5,10) 120 20 348 58 4x4 (30,87,29,10,9)

84 18 140 30 4x4 (21,35,15,9,6) 124 20 124 20 4x4 (31,31,10,10,3)

84 20 168 40 4x4 (21,42,20,10,9) 128 16 96 8 6x8 degree 1 over GF(4)

88 20 66 10 6x8 (11,11,55,2) 128 16 120 10 6x8 (16,20,5,4,1)

88 20 84 12 6x8 (7,14,6,3,2)+4 128 16 128 16 8x8 degree 1 over GF(4)

88 20 88 20 8x8 (11,11,5,5,2) 128 16 160 20 8x8 (16,20,5,4,1)

88 20 112 24 8x8 (7,14,6,3,2)+4 128 16 192 24 8x8 (4,6,3,2,1) x 4-Hadamard
88 20 144 32 8x8 (9,18,8,4,3)+2 128 20 288 30 6x8 (16,48,15,54)

88 16 264 48 4x4 (22,66,24,8,8) 128 20 384 60 8x8 (16,48,15,5,4)

88 20 308 70 4x4 (22,77,35,10,15) 132 20 66 10 6x12 (11,11,5,5,2)

96 16 42 6 6x12 7-Hadamard code 132 20 84 12 6x12 (7,14,6,3,2)+4

96 16 48 8 6x12 8-Hadamard code 132 20 108 16 6x12 (9,18,8,4,3)+2

96 18 48 4 4x4 (4,4,3,3,2) x 3-Hadamard || 132 18 176 24 4x4 (33,44,12,9,3)

96 18 64 8 4x4 (4,4,33,2) x 4-Hadamard || 132 16 330 40 6x12 (11,55,20,4,6)

96 16 84 14 6x12 (8,14,7,4,3)
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