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SIMULATING THE GROWTH OF VIRUSES
LINGCHONG YOU AND JOHN YIN*

Department of Chemical Engineering, University of Wisconsin-Madison
1415 Engineering Drive, Madison, W 53706-1691 USA

To explore how the genome of an organism defines its growth, we have developed a
compute simulation for the intracellular growth of phage T7 on its E. coli host. Qi
simulation, which incorporates 30 yers of gendic, biodhemical, physological, and
biophysi@al data, is use& hee to sudy howthe intracellular resources of the host determined
by thespeific growth rate of the host contribute toward phage development. It is alsoused
to probe how changes in the linear organization of genetic eements on theT7 genone can
affect T7 development. Further, we show how time-seies trgectories of T7 mRNA and
protein levels generated by the simulation may be usel as raw data to test dda-mining
strategies, speificaly, to identify patners in protein-protein interactions Findly, we suggst
how generadlization of thiswork can lead to aknowledgedriven smulation for the growth of
any virus.

Introduction

Becais of ther amall sizeand the centdl role they gdayedin setting thefoundations
of molecubr geretics viruses are deal model systemsto exdore how minimal
geromes defineprocessesof growth and devlopment The geromes & most
viruses, which maybe composedof single- or doule-stran@éd DNA or RNA, range
from five to 200 kilobases n length and ercoce from five to 300 genes.For welt
studed viruses such as phagelambda, phageT7, or humanimmurodeficiercy virus
(HIV-1), all genes tlat are esseiatl for growth are knevn and key funcions have
been characterizd.

The T7 model

We study the growth of prage T7 a E. coli beause of its 8-year bundation of
geretic, physiological, biochenical, ard hiophysical data [1-3]. The double-straned
DNA gerome of T7 is 39,937 base-pairs lang, ard it cortains 56 genesencaling 59
proteins, five E. coli RNA pdymerase (RNA) promders, 17 T7 RNAP promotes,
two trarscriptiond termindors, and ten RNase |l spicing sies (Figure 1).Using
existing mechaisms and parameters for the corstituent proceses of wild-type T7
development we havedevelopeda computer simulétion for theintracelular growth
cyde of wid-type phage T7 in a single E. coli cell [4-6]. By defining and
numerically solving a system of coupled dfferertial and algebraic equtions the
modé aacownts for al the major sepsof T7 infection: E. coli RNAP- and T7
RNAP-medated enty of the T7 genaneinto its host transcripion of T7 mRNAs,
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Figure 1. The wild-type phage T7 genome. Boxes represent genes. Vertical lines with hdf bars above the
genes represent ECRNAP and T7RNAP promoters; the heghts of these lines represent the relative
activities of the promoters. Vatical lines with full bars above the genes represent ECRNAP (TE) and
T7RNAP (T ¢) terminators. Vertical lines béow thegenes represent RNAaselll processing sites. The two
black bars a bath endsrepresent the left end and theright end d the genome. Adapted from reference

[18]

regulation of transcripion by promoter strenghs and proten-proein interactions,
transhtion o T7 prokins, replicaton d the T7 gerome, and assemlty and
matuation of T7 progeny (Rgure 2).As detailed elsewhere [6], the currentersion
of the T7mode (T7v2.5)* is formulated using anobject-orieied agroach
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Simulating how host physiology affects
T7 growth

To evaluate the global behavior o the
simulation, we compae te pedicted
with measred intracelular one-sep
growth (OSG) curveof phage T7(Figure
3). To facilitate comprison, we dissect
each O%s curve nto three sages(Figure
3a). When noparameter is adjusted the
simulation (u = 1.2) appears o math the
observed eclipse time, bu it
underesimates the rise rate sgnificanty
and overshods the bust size by dmost
two-fold. The mismeatch for tre burst

Figure 2. Intracellular growth cycle of phage
T7. The sdid lines with hdf arrows indicate
transcription and translation, the dashed lines
represent reactions, and the sdid lines with full
arrons indicate the three classes of T7 DNA.
(a) Infection initiation, class | gene expression.
(b) Class Il gene expression, phage DNA
replication. (c) Class Il gene expression,
procapsid asembly, phaye maturation, and
lysis. RNAP: RNA polymerase; DNAP: DNA
polymerase.

% The scurce code of T7v2.5 can beobtained from http//viruschewisc.edu; thelater versionswill be
available on request. A simulation can also be performed through the web interface d the malel

(http//virusmol

sci.org/~t7).




Pacific Symposium on Biocomputing 6:532-543 (2001)

size ismog likely due to the alsence of animplementation for the lysis of the host

cel, a proces that remains to be claracterizd mechaisticaly. The case of the
mismatchfor the rie rate is morecompkx. Inaccuacyin ary parameterghat may
affect the rate of proein syntesis,the raé of procasid assembl, or the rate of

DNA padagng can be regonsible for this mismatch. Fao smplicity, here we
asume the misnatd is due  a systematc mismatch beween the moal "cell”

implemenéd in the smulation andthe acual host cell usedin the experiment and

attempt toimprove the agreemenbetveensmulation and experiment by charging

the host growth rate alone. Becawse the smuldion resit for u =15 Vhr owerall

matcles the exgrimentthe bes for the pre-plteauregion (Figure 3b), we use this

setting asour defaut for othe smulations urless otherwise indicated
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Figure 3. Intracellular one-step growth (OSG) of phage T7. (8) Characterization of an intracelular
OSG curve by three parameers: the eclipse time is thetime period between infection initiation and the
time pant when phage progeny beagin to gppear, therise rate is the slope of the straight line stating
from theend d theeclipse paiod and ending & theend d lysis, and theburst size is thefind number
of phage progeny beng produced from a single infection. (b) Comparison of the simulated (lines) and
experimental (dots) intracellular OSG curves Experimental data were the average of two separate
expeiments, bah peformed with host cells growing in LB at 30°C with a measured growth rate (u) of
1.2 daublings pe hour. Smulated results are shown for p =1.2 and 1.5 daublings pe hour. In the
expeiment, host a&ls were artificially lysed usng chloroform to liberate the intracellular phage
particles. The simulated eclipsetime was calculated as the time required for thefirst viral progeny to
appear; theexpeimentd eclipse time was estimated as thetime pant corresponding to the intersection
of thedraight line (fitted to thedata paints crrespondingto therise phaé crossingthetime axis.

Expeaimerts rave stown that thage growthproceels more raplly on faster
growing hoss [7-12]. However, it is nd known which speciic resouces d
physiologicaly active hosts have te gedes influence. Fom a fumameral
perspective, identifying key resources may provide insight into phage growth at sub-
optimal condtions, swch asthose that exst in naure [11]. From an appied view,
such understanding may assist our evalation of phagetherapes against antbiotic-
resistart bacteria[13].
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To study how host physiology affects
phage gowth we dewloped empirical
expresions or enployed existing  2s-
mechaistic expresions [14, 15] that
cowpled the pecific growth rate of the host
with the pml sizes and elmngation ratesof
its RNA polymerases and ribosones, pool
sizesof amiro acids ard NTPs the célular
cortert of hast geromic DNA, ard the <= |
host-cell volume. These tinctions enaked 1
us to evaluate the sagtivity of the eclipse 95 1 s s 25 3
time and the rie rae to the host-cell host growth rate, doublings per hour

growth rate Figure 4). Theyfell ard rose,
Figure 4. Effect of the host growth rate on

respecively, asthe growth rate of the host = .

. . L X T7 growth. The eclipse time and rise rate as

increased, in qualitative agreemen with % ndion o the growth rate of the host

experimentlly observe trend for other  cell growing at exponentiad phase on T7

phage [12]. More exensve snstivity infection. Both the eclipsetime and therise
; rate are rormalized to the corresponding

andysis o the uncouged hO.St para}meters values for a hod growth rate of 1.5

has revaled tha T7 gowth is limited by  gaublings per haur.

the level and processivity of the host

trandation madinery [6].

rise rate
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=
0

Genome organization affects T7 growth

To develop sde livewirus vaccires, ore <els to retin the immune-gstem
prowvoking virus attributes while irreversibly ateruating their discag-ascciated
replicative ablities Repositioning the nucleccapsd gene of vescular stomattis
virus redwed virts prodictivity and lethality, supporting the idea that the
reorganzaion of viral genomes may serve athe bass for the development of safe
attenuated vacches [16, 17]. To better undergand fundamentaly how genome
rearrargemernts may affectvirus growth, we generalzed our smulation to calculate
the behavior of the processdefined by aty linearorder of T7 genes[18]. Here we
computethe effect on growth of repaitioning the gane 1 elament, which encalesthe
T7 RNAP, at eab passible element position on an dherwise wild-type gerome.
Gene 1 is chasenfor this amalyss beause it plays acerira role in T7 developmer.
T7 RNAP is respomible for the ertry of abou 85% o the T7 gerome and the
trangription of clas Il and clas 1ll genes[2], ard it is neededfor T7 DNA
replication aswell [3]. The currentsimulation differsfrom the pblished or [18] in
two aspets. First, we assumedinlimited hostresouces for phage deelopmert in
the previous smulation, kut used a host ervironmentwith limited rewourcesin the
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currentsimulatior?. Seond asthe djedive functions to charactrize irtracelular
T7 growth, we choose here to tsidy the eclipsetime ard the rise rate,insteadof the
doubling rate [18], to better dissectthe effectsof repostioning on the different
attributesof the gowth curve.

The simuléion resut is shownalong with available experimenal dat on three
ecopic gene 1 mutarts (Figue 5), whose e&perimental construdion is deailed
elsawhere [18]. When placal clos to the leftend of its gerome, gere 1 cannot be
expessed beause it is upstream of dl promaders Fa theg mutarnts, the eclipse
times areinfinite (not shown) and therise ratesare zero(Figure %). The smulation
predcts that T7 growth B nearly opimal whengere 1 is locatel at its wild-type
position. At the wild-type paosition T7 achieves rearly its shaotest eclipsetime (1.01
times the minimum) and largesrise rate(0.99 timesthe meximum).

When gee 1 is placal downstream oits wild-type postion, its location has a
dramatc impacton the eclipse time (Hgure ) but a lessobvious effect on the rise
rate (Figure5b). The neally linearcorrelaion betweenthe ecipse time andthe gene
1 postion arises beause psitioning gene 1 further downstreamdelays its enty into
the cel and its expresion. SinceT7 DNA repicaton alsorequresT7 RNAP, DNA
replication isdelayed and thetime required to mandacture te first phage pogery is
increased. The lackof anoverarching trend for the rise rate dependenceon gene 1
position indicates that once progery are prodcel they canbe producel with rise
rates approehing wild type. Interestirgly, in some casea mina change in gene 1
position cancaug a sidden change n the rise rae. For exampk, when gene 1 is
movel from ugstream tadownstream ofhe T7 RNAP trarscription termirator (Tg),
the rise rate slarply increases from kelow 0.6 to neady 1.0 (Fgure 5b). This is
corsistert with the noton that T7 dewlopment is limited by the trarslation
machnery. For example when gene 1 is locaiedjust upstream & T, it is regulated
by promders ¢9 ard ¢10, which ae amongits stromest. Such a @nfiguration
createsunnaural aubcatlytic loopsfor gene 1 expression leading to high levels of
gere 1 mRNA that divert ribcsomesaway from the trangation of the majo caysid
protein (gpDA) andthe saffold proten (gp9), compaerts of the phage virion that
are neaed in large quanity. In contrast, pasitioning gene 1 after Tg Hill allows
adequate T7 RNAP to be expressed without diversion of the ribosomes from the
synhess of the partide proténs. Hence the rise ete returns toa nedy wild-type
level.

The smulation matcles the olserved rige ratesof edopic mutarts ectdl.7 and
ecib3.8, but it underesimates their eclipse times (Figure 5). Theinterruption by
ecbl.7 of gene 1.7, anon-essernidl gene, may neveathelessinfluerce growth [18].

P With thehog paameters used in this dmulation, thehost cell represents theaverage of an E. coli
population tha grows & 1.5 daublings pe hour prior to T7 infection.
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Further, the smulation predcts well the eclpse time for ecpl2, bu it significantly
overestimates the fise rate (Figure 5. This dscrepany may be die © ou
asumption that the host cell provides a congart environmeri during the ertire
infection cyck, an asumption that may no be \alid for ectdl2, whee the grovih
cyde lags 80 minutes [18], more tha two-fold longer than the wild-type growth
cyde.
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Figure 5. Effect of genel pasition an (a) the eclipse time and (b) therise rate of T7 infection. The
expaimentd daa on three ectopic genel mutants are shawvn for comparison: squae, wild type
diamond, etol.7; triangle, ecto3.8; circle, edol2. The dats dong the sdid line and the open
symbols represent the simulation predictions, and thefilled symbols represent experimentd daa
Simulated resuts are normalized to the corresponding simulated values for the wild-type T7: 10.65
(minutes) for the eclipsetime and 6.13 particles/minute) for the rise rate. Expeimentd daa are
normalizedto the experimental data for wild-type T7: 14.81 (minutes for the eclipsetime and 6.3:
(particles'minuté for theriserate.

Inferring protein-protein interactions from mRNA and protein time series

Our simuktion of wild-type T7 growthcakulatesas abyprodict the ime seies d
all T7 mRNAs ard protein levels, which we tave emplo/ed asraw data to testdaia-
mining stategies, spedically, to idenify partners of pogénial protein-proten
interactons [19]. Theneedfor sudy mehodlogies arise®wing to the rapd growth
of genomic datbases and dewelopment of techrologies for global monitoring of
MRNA [20, 21] andprotkin levels [22].

We summarize tere our mehodology ard provide cetails ekewhere [19]. Given
the initial information abod MRNA levels ard the proessng ratesand distribution
of ribosomes ard actvated tRNAs that condgitute the trarslation resources one can
edimate how cytoplasmic lewels of the correponding proteins will charge.
However, factors other han trardation may influerce te acual protein levels
observed. For exampe, proes®s of protin madification or degra@tion, trarsport
from the cytoplasm,ard proces that form protein-proein compkxeswill tend to
reduee a protén’s level. When caupledwith translaion, differert modes d depletion
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will produce pattrnsof expression that may rflect apecs of the protein’s fundion.
A strorg zeao-timedag carelation between dpletions of two proteins further
suggests gatenial interacton bewveenthese twaprotdns.

Table 1. Theessentia conaepts and ther definitions of the correlated deviation dgorithm.

Concept Definition Notes
Protén rate v =dR/dt P, is thelevd of proteini.
Trarslation rate Vg = kI‘Rn R is the level of the mRNAs

ercodng prokini.

DDF repreens the reldive
Dynamic deviation deviation of the protein rate from
factor (DDF) D, = (v - Vi), the tranation rate. It is equal to
(when the prokin is nd
depleted) o smaler thanO.

C, indicatesthe likelihood of two
prateins associating with each
('D,D,dt other: tre larger C; is, the higher
Protén correlaion J = 90— — | the likelihood. Since bath D, and
coefficiert (PCC) GOTD,.ZdtIOTDjZdt) D, are negtive, C, is between0
ard 1.T is the leryth of the time
course for the measrement

To demorstrate the basic icka ofthis mettoddogy, we smplified ou andysis
by assuning trarslation to be dependert only on messagéevels, uniform ribosome
elongation ratesfor all mesages, and no limitaions on ribosomes [19]. The
essential companerts of this correlated-deviation algorithm are gvenin Tabke 1.

When the mRIA and progin timeseries areavailable, the pratin rate ad the
trandation rate can be caldated following the eqationsin Table 1 In the atsence
of depktion effects on pratini, v, is equ to v,, and pbtting it aganstR yields a
line throgh the orign with dope k.. In the preserce of depletion effects, however,
trajedories in this plat deviate from the linear bebvior (D, < 0) andmay leadto
paterns tlat are sugestve of different cassesof protein functions [19]. By
computing the pair-wise RCCs between dl the prokins we cancongruct a proein
correlaton matrix (PQM) thatidentifies potential protein-proten interactions

A PCMis shown for 21 es@ntial T7 proteins based on the simulaion output for
the time ®riesof these poteins ard their mRNAS (Figure 6). It is overall condstent
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Figure 6. A protein correlation matrix (PCM) for 21 essentiad T7 proteins. E&h off-diagonal
matix element represerts the carelation coeffi cient, propotional to the dameer of the filled
circle, beween theDDFs of two proteins. Dagonal elements, which indicate the sdf-correlation
of theproteins, ae by definition dways equd to 1.

with the krown functions far theseproteins. The deviations for gpl ard gp3.5 are
strondy correlaéd becage they interact with each aher, andthose of gp0.7 andgp2
are strongly correlaed becase boh proténs ae depleted in a similar fashin
through their interactons with E. coli RNAP. Moreover, gp8 through gpl6,
including epecally gp9and @l10A, are hghly correlaed with eachother becaug
they are depetal in a goichiometic mamer during phage péticle formatian [23].
With the excefion d gp9, g8 through gpl6 are compaerts of the final phage
particle. Although gp9 is not preent in the final partcle, it is requred for and
corsumed ly the partcle asembly process. Since tre PQVI provides carelations,
we cauton agang atemping to infer mectanisms from it alore. me purious
associations for which no interactons were implemenéd in the simulation, such as
those béwveen gol (or gf8.5) and partide proteins, are evidert. Extensbn of the
andysisto allow for time-lagcorrelatons may mprovediscrimination [24].

Toward E-virus

Approximately 40 viruses theinfect bateria, plants, and armals hawe been
identified am asigred to71 families, 9 subfamilies and164 genera p5]. Several
computer modés [26-30], including the currert T7 modd, hawe beendeveloped to
study the intacellular growth of only a hardful of them As the utility of such
simulations to eperimenalists grows, so will the demaud to dewvelop new mes. In
anicipation of this need we are arrertly developing a knowledye-driven program
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for vira-growth simuldion which we cal “Electronic virus’ or E-virus,by aralogy
with the E-CELL project by Tomitaandcoworkers[31].

We ervision E-virus will work in tandem with a virus knowledge-bae, where
eachvirus is asthorowghly doaumenéed asou currentknowledge dlows (Figure 7).
As aore-for-all modeing patform, E-vius will seek © erable invedigatorsto focus
more on systemslevd issues than on the modéng detdls. In addition, it will
provide a phtform for comparatve stug of the infecion dymamics of relaed
viruses from asystemsperspective.

Specify a virus

Interface

Is this virus in the Yes Incorporate the data and
knowledge-base? build the model system

Check the data for
consistency and

flag potential errors
No in the input

Input the viral genome, Refine mechanisms
. i i
the mechanisms, and 7
) and parameters
parameters for the viral

infection cycle

[ Simulate viral infection ]

mult good?

Yes

Update the

knowledge-base

1

Figure 7. E-virus: a knowledge-driven general simulation of viral growth. To use E-virus, the user
needs to specify the virus name. E-virus will then search the knowledge-base for informaion on the
specified virus. If it locates the information, it will continueto the next step; if nat, it will prompt
the use to input the deailed information ebout the virus and then continueto the next step. To
complete a simulation request, the user will aso need to speify what kind of smulation heor she
wants to peform. By incorporating the information from the knowledge-base or directly from the
user input, E-virus will subseuently generate the appropriate differential and dgebraic equaionson
the fly and then peform the computation. Next, the user can judge the qudity of the smulation,
probably by comparing it with experimentd daa, and then decide whether to accept theoutput and
updde the knowledge-base, or to reject it and to perform a further simulation usng refined
mechanismsor paramegrs.
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E-virus is being developed as a generaization of T7v2.5, which itself has been
desgnal usirg an olected-orierted approach with C++ [6]. Gengic elements,
geromes RNASs, proteins, capsds, andviral particles conditute the most essential
collecion of enitiesthat ore mayercourter during aviral growth cycle. Moreover,
the number ofrules governing the dynamicsof these enitiesis also small [32, 33].
Becaise these players ard rules are shared by al viruses, many C++ classes
(blueprirts of objects)designed for and usedin the T7model canbeusedin E-virus,
with orly minor modfications. Like the T7 nodel, E-virus will be deelopedusing
a deteministic approad, where reactons will be repreenied and solved usng
differental and dgebraic equaions, bu its framework will be flexible enowgh to
cornveriently accanmodate gochagic formuldions [34].
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