Pacific Symposium on Biocomputing 7:163-174 (2002)

Pairwise RN A Structure Comparison with Stochastic Context-Free
Grammars

I.Holmes and G.M.Rubin
Howard Hughes Medical Institute

Abstract

Pairwise stochastic context-free grammars (“Pair SCFGs”) are pow-
erful tools for finding conserved RNA structures, but unconstrained
alignment to Pair SCFGs is prohibitively expensive. We develop ver-
sions of the Pair SCFG dynamic programming algorithms that can be
conditioned on precomputed structures, significantly reducing the time
complexity of alignment. We have implemented these algorithms for
general Pair SCFGs in software that is freely available under the GNU
Public License.

1 Introduction

Stochastic Context-Free Grammars (SCFGs) are powerful tools for RNA
structure prediction and genefinding'?>. However, they are expensive to
use. For two sequences of lengths L and M, simultaneous alignment and
structure comparison using SCFGs has time complexity O(L3M?); this
is cubic compared to O(LM), the complexity of aligning the same two
sequences to a hidden Markov modeP'?. Such computational power is
beyond the reach of most labs.

One way to reduce the time complexity of these algorithms is to
constrain the analysis, by supplying either the primary sequence align-
ment or the secondary structure assignment. Algorithms for the latter
task (alignment of supplied structures) have been described® and im-
plemented in the Vienna package’. These algorithms require manual
specification of the scoring scheme. It is desirable to place such algo-
rithms in a formal framework wherein the scoring scheme can be reliably
optimised from a “training set” of trusted structural alignments.

We here present dynamic programming algorithms for two-sequence
SCFGs that use devices called “fold envelopes” to restrict the set of base-
pairings that the recursion is allowed to consider. These fold envelopes
may be based on pre-computed structures. In extreme cases (when the
parse trees are deep, e.g. if the structures contain long stem loops) the
reduced running time can be as low as O(LM). One can also easily
build “dummy” fold envelopes that reproduce the full, unconstrained
algorithm. We describe an implementation of this algorithmic toolkit
that works for any SCFG and is freely available under the terms of the
GNU Public Licensé.

Pacific Symposium on Biocomputing 7:163-174 (2002)

2 Algorithms

SCFGs (sometimes called “Single SCFGs”) are flexible models for RNA
sequences allowing nested covariation'. Pair SCFGs are a generalisation
of Single SCFGs, yielding joint probabilities for two sequences at once.
In order to reduce the time-complexity of dynamic programming (DP)
algorithms for Pair SCFGs, we will start with the analogous treatment
for Single SCFGs.

The DP algorithms of interest include the Inside algorithm, the Cocke-
Younger-Kasami (CYK) algorithm and the Inside-Outside algorithm'.
The Inside algorithm calculates the likelihood of the sequence according
to the SCFG, summed over all possible parses of the sequence; the CYK
algorithm finds the maximum likelihood parse of the sequence; and the
Inside-Outside algorithm finds the expected number of times that each
grammar production is used, with the expectation taken over the poste-
rior distribution of parses.

These algorithms (for Single SCFGs) work by calculating the partial
likelihood of all substrings of the observed sequence, starting with zero-
length substrings and working up to the full length. Since the algorithms
compute likelihoods for all substrings, their memory usage is O(L?) for
a sequence of length L. The running time is higher at O(L?*), since an
extra factor of L is incurred in combining adjacent substrings'.

If the secondary structure of the RNA sequence is already known,
a faster approach is to compute conditional likelihoods (for the Inside
and CYK algorithms) or conditional expectations (for the Inside-Outside
algorithm), where the given condition is the secondary structure. Rather
than iterating over all the substrings, the conditional algorithms only
iterate over substrings consistent with the given set of base-pairings.

The situation for Pair SCFGs is directly analogous. Rather than it-
erating over every pair of substrings of the two sequences, we can restrict
the algorithms to a limited set consistent with precomputed secondary
structures.

We generalise this idea by giving versions of the Inside, CYK and
Inside-Outside algorithms for Pair SCFGs that are restricted to any valid
sets of substrings of the two RNA sequences. We use the term “fold
envelope” to describe such a set of substrings for any one sequence. The
problem of calculating likelihoods conditioned on secondary structure is
then reduced to one of computing the appropriate fold envelopes. We
begin with some notation.

2.1 Notation: Pair SCFG

We deliberately follow the Covariance Model notation of Eddy and Durbin'.
Although the use of Chomsky normal form would simplify the mathe-

Pacific Symposium on Biocomputing 7:163-174 (2002)

matics, this form is less appropriate for biological sequence analysis.

A Pair Stochastic Context-Free Grammar emits symbols in two se-
quences, X and Y. The terminals for these symbols are x; and y; re-
spectively. For RNA, these take the values ‘A’, ‘C’, ‘G’ and ‘U’. There is
also a silent terminal, €, that is only generated by nonterminals of type
‘E’ (see below).

The grammar has M different nonterminals denoted by Wi, ..., Was.
Let v and v be indices for states W, and W,. There are eighteen different
types of state, with properties described in Table 1. These include E
(End), N (Null), B (Bifurcation) and fifteen different types of emit state.
The emit states each have two-letter identifiers of the form AB, where A
denotes the emission in sequence X and B the emission in sequence Y.
(For example: states of type ‘PL’ emit a left-right base pair in sequence
X and a single leftwise base in sequence Y, whereas states of type ‘NR’
emit nothing in sequence X and a single rightwise base in sequence Y.)
State W is the “start” state and is always of type N. State Wy is the
“end” state and is always of type E; in fact, Was is the only state that
can be of type E. We define s, to be the state type of Wy, taking one of
the eighteen values from the first column of Table 1;

The emission and transition probabilities for state u are given by
ew() and t,(-) respectively. We define numbers AX", AX® AY" and
AY™ which are the number of symbols emitted to left and right in se-
quences X and Y.

We also define Cy, the children of W, (being the list of indices v for
the states W, that W, can make a transition to) and P,, the parents
of W, (being the list of indices of states that make a transition to W,,).
Bifurcating states (type B) always transit with probability 1 to two Null
states, Wi, (left) and W,, (right). It is possible for [, to be the same
as 7. The child list C, for a bifurcating state is defined to be (lu,1,).
The parent lists P;,, and P,, do not include u; instead, each Null state v
has an associated left-parent list PF = {u : s, = B,l, = v} and a right-
parent list PR = {u : s, = B,r, = v}. This treatment of bifurcations
differs slightly from the Covariance Model of Eddy et al.

We require that Pair SCFG’s have no null cycles. That is to say,
there is no sequence of productions that starts from an N or B state and

returns to the same state without emitting any residues in either X or
Y.

For convenience, we define two orderings on the state indices 1... M.
These are represented by the lists Fo and Fr. The outside fill order Fo
lists all the emitting states, followed by the non-emitting states sorted
in topological order (i.e. parents before children). Conversely, the inside
fill order Fr lists the emitting states followed by the non-emitting states
sorted in reverse topological order (i.e. children before parents).

Pacific Symposium on Biocomputing 7:163-174 (2002)

2.2 Notation: Fold Envelope

Let X be a sequence of length L, whose i'th base is x; (where 7 starts at
zero, i.e. 0 < i < L). Let X;. ; be the subsequence of X running from
base i to base j — 1, so that Xo 1 is the full sequence and X; ; is an
empty sequence. In general there are L + 1 empty subsequences (from
Xo..0 to Xr..1) and %(L + 1)(L + 2) subsequences in total.

Suppose we have a parse tree of nonterminals aligning X to a SCFG
as described in section 2.1 (we discount Y-emissions for the moment,
pretending that the grammar is a Single SCFG). Then each node of the
parse tree, together with its children, accounts for some subsequence
X;.j of X (this subsequence is called the inside sequence). Likewise, the
parents, siblings and cousins of this node account for the subsequences
Xo..; and Xj. 1. (the outside sequence).

If the nonterminal at this node is W,,, where s, # B, then the subse-
quence for the immediate child node will be X; | \xt. ; sxr. If s, =B
(i.e. W, is a bifurcation) then the subsequences for the two child nodes
will be X; and Xy, ; for some k, where ¢ < k < j.

In computing the full dynamic programming matrix for a SCFG, one
typically considers all subsequences X;_;, all emissions X, \xr_; sxr
and all bifurcations (X;. .k, Xk__j). Our intent is to consider a reduced
set of subsequences, rather than the full (L + 1)(L + 2). In order
to manage this, we formally enumerate these allowed subsequences and
their associated emissions and bifurcations. The enumeration is called a
fold envelope.

The fold envelope £ consists of N ordered subsequences. The n’th
subsequence is X;, . j,, where n starts from zero (i.e. 0 <n < N). Ifa
subsequence X;. ; is in &, then we define n[X;. ;] to be its index within
& (in other words, n[Xj,, ..j,.] = m). For all subsequences X;.;, that are
not in the envelope, n[X; ;] is defined to be the “illegal” value) (which
we typically represent as —1 in actual code).

The ordering is from inside to outside, so that

Xij €& Xp €8i>2kj<Il=n[X; ;] <n[Xk.]

For each subsequence Xj,.;, in the envelope, we precompute the
following inward and outward emission connections:

Cin(n, AL, AR) =n I:Xin_,’_AL,jn_AR]

cout (1, A" AM =n I:Xin_AL,jn+AR:|

where A" and A" can take values from {0,+1}. Some of these con-
nections may equal) if the target subsequence is not in the envelope.

Pacific Symposium on Biocomputing 7:163-174 (2002)

We also pre-compute lists of valid inward, outward-left and outward-
right bifurcation connections:

bin(n) = {(nLvnR) Ving, = inyJng = fng,Jng :]n}

boutl(n) ={(no,n) : in, = ing,Jny, =in,jn = jno}

boutr (1) = {(n0,R) :in =tng,jn = ing,Jng = Jno }

Each element in a bifurcation connection list is a pair of subsequence
indices. Together with subsequence n, these subsequences form a bifur-
cation triplet, i.e. (outside,inside-left,inside-right). In contrast to the
emission connections, the subsequence indices in the bifurcation connec-
tion lists are guaranteed not to be .

An envelope is called global if it contains (i) all empty subsequences,
(ii) the full-length sequence and (iii) at least one parse tree connecting
the full-length sequence to one or more empty subsequences via emission
or bifurcation connections. Note that by the inside-outside ordering
condition, the full-length sequence has to be the last subsequence in a
global envelope.

There exists an algorithm to calculate the appropriate fold envelope
for a given structure in time that is linear in the length of the fold
envelope (Holmes and Rubin, unpublished).

For the pairwise dynamic programming algorithms described below,
we need two global envelopes, one for each sequence. We differentiate
between these two envelopes by using apostrophes for envelope Y, i.e. the
appropriate envelope variables for sequence X are {€, N, L,1,j,n,c, b}
and for sequence Y {&',N', L' i',§ ,n',c,b'}.

2.3 The Conditional Inside algorithm

The Conditional Inside algorithm, shown in Figure 1, recursively calcu-
lates oy, (n,n’), the total likelihood for all joint parses rooted at nonter-
minal W, of the two inside subsequences m and n’. The full likelihood
of the two sequences is a1 (N, N').

For convenience, we define o, (n,0) = a,(0,n’) = 0 for all u,n,n’.
Also for convenience, we follow Durbin et ol in using the notation ey (i, z;, Yk, Y1)
for all emission probabilities, even for nonterminals W, that emit fewer
than four symbols. Thus, for states of type N, ey(zs,zj,yr,y1) = 1;
for states of type LN, ey (zi,z;, yk,y1) = ew(z:); for states of type PN,
eu(Ti, i, Yk, Y1) = eu(wi, xj); for states of type NP, ey (xs, j, Yk, y1) =
ew(yk, 1) and so on (as per Table 1).

Pacific Symposium on Biocomputing 7:163-174 (2002)

2.4 The Conditional Outside algorithm

To estimate counts for production usage conditioned on RNA structure,
we need the Conditional Inside-Outside algorithm. The first half of this
algorithm (the Conditional Inside algorithm) was already described in
section 2.3. We now describe the second half.

The Conditional Outside algorithm shown in Figure 2, recursively
calculates (3, (n,n’), the total likelihood for all joint parses rooted at
nonterminal W, of the outside subsequences n and n’. (Recall that the
outside subsequence n of sequence X consists of the two subsequences
Xo..i, and X, 1. Likewise, the outside subsequence n' of sequence Y
consists of the two subsequences Y}, ; ,and Yy p J)

As in section 2.3, we define 83, (n,0) = B.(0,n') = 0 for all u,n,n’.
We also use the notation e, (z;, z;,yr, yi) for all emission probabilities,
as in that section.

We return to the Conditional Outside algorithm in section 2.7.

2.5 The Conditional CYK algorithm

The Conditional CYK algorithm, shown in Figure 3, recursively cal-
culates 7y, (n,n’), the maximum likelihood for a joint parse rooted at
nonterminal W, of the inside subsequences n and n'.

As in section 2.3, we define ~y,(n,0) = v.(0,n’) = 0 for all u,n,n’.
We also use the notation ey (x;,z;, yr, y:) for all emission probabilities,
as in that section.

On its own, the Conditional CYK algorithm may be used for database
searching (i.e. to flag homologous structures). Together with the Con-
ditional CYK Traceback algorithm (section 2.6) it can be used to find
maximum-likelihood alignments of RNA structures.

2.6 The Conditional CYK Traceback algorithm

To recover the conditional maximum likelihood alignment of two RNA
sequences following the Conditional CYK algorithm, we need to perform
a Conditional CYK Traceback. The algorithm to do this is shown in
Figure 4.

This algorithm steps through the v, (n, n') likelihoods that were cal-
culated by the Conditional CYK algorithm. Whereas the Conditional
CYK algorithm goes in the inside—outside direction, Conditional CYK
Traceback goes outside—inside, outputting the maximum likelihood align-
ment as it goes.

Pacific Symposium on Biocomputing 7:163-174 (2002)

2.7 Estimating conditional counts

To estimate the conditional counts for emission and transition usage
following the Conditional Inside and Outside algorithms, we use the
following equations:

eulena o) = 3> au(n,n')Bu(n,n')

neE nice! €y mlvm.]vykvyl)

Z Z ay(n,n)Bu(n,n)

neE n'eég’

fu(v)

(The first of these equations strictly is valid only if e, (zs, z;, yx, y1) #
0. In the special case that the emission probability is zero, the estimated
count is also zero and this equation does not apply.)

The Conditional version of the expectation-maximization algorithm
uses these counts, possibly together with prior distributions such as
Dirichlet mixtures, to update the probability parameters for the Pair
SCFG. This is repeated until the probability parameters (and the likeli-
hood) do not improve any further.

2.8 Extension to Other Grammars

Dynamic programming recursions for higher-order grammars, such as
the pseudoknot-capable grammar described by Rivas and Eddy’, also
involve iterations over subsets of the full sequence. (In the case of Rivas
and Eddy’s pseudoknot grammar, each subset of the full sequence is a
pair of substrings with a “hole” between them.)

It would not present any theoretical difficulty to extend fold envelopes
to such higher grammars. The central idea of fold envelopes is to encap-
sulate the iteration over alignable subsequences. This is just as feasible
when the subsequences consist of substring pairs (as with the pseudoknot
grammar) as when they consist of single substrings (as with standard
Pair SCFG’s).

Fold envelopes can also be used to obtain low-complexity recursions
for lower-order grammars as special cases of higher-order recursions. For
example, HMMs are (formally) a subset of SCFGs, yet one would usually
not wish to re-use SCFG algorithms for HMMs, since the HMM algo-
rithms only consider the ~ L substrings of the form Xp..;, whereas the
SCFG algorithms consider all ~ L adjacent substring-pairs X;..x, X¢. ;.
However, with a fold envelope, the SCFG recursion can be restricted to
the substrings used by the HMM recursion.

Pacific Symposium on Biocomputing 7:163-174 (2002)

3 Implementation

We have implemented the algorithms described here in DART, a freely
available C++/Unix toolkit available from www.biowiki.org/dart.

DART includes implementations of the Conditional Inside, Conditional
Outside and Conditional CYK/Traceback algorithms on Pair SCFGs of
any topology with states as listed in Table 1. Fold envelopes may be
calculated for any structure as well as for the full, unconstrained dynamic
programming.

Since Single SCFG’s are a subset of Pair SCFG’s, DART can also be
used for covariance modeling as described by Eddy and Durbin'®. It can
also emulate Single or Pair HMMs.

4 Discussion

In this paper, we have developed algorithms for conditional pairwise
dynamic programming to stochastic context-free grammars within the
bounds of fold envelopes based on precomputed structures. Fold en-
velopes are efficient and flexible: efficient because they limit the gram-
mar’s time complexity, flexible because conditioning on (say) a range
of structures (rather than a single structure) merely involves comput-
ing an appropriate fold envelope and does not require redesigning the
algorithms in Figures 1-4.

With the present investment in large-scale sequencing, computer-
assisted identification of conserved RNA structure offers a genomics ap-
proach to studies of noncoding RNA genes, transcript localisation'!,
poly-A stability'?, RNA-RNA duplexes® and many other areas. Per-
haps the most attractive model from a theoretical viewpoint would be
one that described the time-evolution of RNA structure including the ef-
fects of natural selection®. Such a model may be just around the corner:
probabilistic evolutionary models for DNA and protein sequence analysis
have made considerable progress in recent years®!*!5. In the meantime,
we hope the present work may be useful to researchers interested in the
evolutionary implications of RNA structure conservation in biology.

4.1 Acknowledgements

We would like to thank Sean Eddy, Elena Rivas, Erwin Frise, Eric Lai
and Eliza McKenna for their useful input. This work was supported by
the Howard Hughes Medical Institute.

10.

11.

12.

13.

14.

15.

Pacific Symposium on Biocomputing 7:163-174 (2002)

R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological
Sequence Analysis: Probabilistic Models of Proteins and Nucleic
Acids. Cambridge University Press, Cambridge, UK, 1998.

. S. R. Eddy. Noncoding RNA genes. Current Opinion in Genetics

and Development, 9(6):695-699, 1999.

D. Sankoff and R.. J. Cedergren. Simultaneous comparison of three
or more sequences related by a tree. In D. Sankoff and J. B.
Kruskal, editors, Time Warps, String Edits, and Macromolecules:
the Theory and Practice of Sequence Comparison, chapter 9, pages
253—-264. Addison-Wesley, Reading, MA, 1983.

V. Bafna, S. Muthukrishnan, and R. Ravi. Similarity between
RNA strings. Technical report, Center for Discrete Mathematics
and Theoretical Computer Science, 1996.

. B. A. Shapiro. An algorithm for comparing multiple RNA sec-

ondary structures. Computer Applications in the Biosciences,
4(3):387-393, 1988.

B. A. Shapiro and K. Z. Zhang. Comparing multiple RNA sec-
ondary structures using tree comparisons. Computer Applications
in the Biosciences, 6(4):309-318, 1990.

S. Wuchty, W. Fontana, I. L. Hofacker, and P. Schuster. Com-
plete suboptimal folding of RNA and the stability of secondary
structures. Biopolymers, 49(2):145-165, 1999.

The GNU Public License, 2000. Available in full from
http://www.fsf.org/copyleft/gpl.html.

E. Rivas and S. R. Eddy. The language of RNA: a formal grammar
that includes pseudoknots. Bioinformatics, 16(4):334-340, 2000.
S.R. Eddy and R. Durbin. RNA sequence analysis using covariance
models. Nucleic Acids Research, 22:2079-2088, 1994.

A. Bashirullah, R. L. Cooperstock, and H. D. Lipshitz. RNA local-
ization in development. Annual Review of Biochemistry, 67:335—
394, 1998.

N. Proudfoot. Poly(A) signals. Cell, 64(4):671-674, 1991.

E. C. Lai and J. W. Posakony. Regulation of Drosophila neuroge-
nesis by RNA:RNA duplexes? Cell, 93(7):1103-1104, 1998.

J. L. Thorne, H. Kishino, and J. Felsenstein. Inching toward real-
ity: an improved likelihood model of sequence evolution. Journal
of Molecular Evolution, 34:3-16, 1992.

I. Holmes and W. J. Bruno. Evolutionary HMMs: a Bayesian
approach to multiple alignment. To appear in Bioinformatics,
2001., 2001.

Pacific Symposium on Biocomputing 7:163-174 (2002)

State type Allowed Emission Transition
(su) productions L xR b ¥R probability probability
N Wy — W,y 0 0 0 0 1 tu(v)
LN Wy = W, 1 0 0 0 eu(Zs) tu(v)
RN Wy = Wyz; 0 1 0 0 ew(zj) tu(v)
PN Wy = Wy 1 1 0 0 ew(Ti, ;) tu(v)
NL Wy =y W, 0 0 1 0 euw(yr) tu(v)
LL Wy = ziyp Wy 1 0 1 0 euw(Tiy Yr) tu(v)
RL Wy = ye Wy 0 1 1 0 ew(Tj, yr) tu(v)
PL Wy = iy Wox; 1 1 1 0 eu(Ti, Tj, Yk) tu(v)
NR Wy — Wy 0 0 0 1 ew(yi tu(v)
LR Wy — 2. Wyy 1 0 0 1 eu(Tiy Y1) tu(v)
RR Wy = Wyzjy 0 1 0 1 ew(zj, Y1) tu(v)
PR Wy = ziWyzjy 1 1 0 1 euw(Ti, zj,y1) tu(v)
NP Wy = yeWoy 0 0 1 1 eu(Yr, Y1) tu(v)
LP W = ziye Wy 1 0 1 1 euli, Yr, Y1) tu(v)
RP Wy = yeWozjy 0 1 1 1 euw(Tj, yr, Y1) tu(v)
PP Wy = ziyp Wy 1 1 1 1 eu(Tiy i, Yr, Y1) tu(v)
E Wy — € 0 0 0 0 1 1
B Wy = Wi Wi, 0 0 0 0 1 1
Table 1: The eighteen types of nonterminal in a Pair Stochastic Context-Free Grammar and
their associated production rules.
Forn=0to N—1,n"=0to N -1, u e Fr:
4
su=E: §(in—jn) 6(—j.) where §(z) = { (1) ii :;3
)y =4 =B Y > an(nwni) an(ne, k)
(npmmr) (n) n")
Sy
otherwise:
eu(minvmjnflayi’nl7yj;,71) Z tu(v) Ay (Cin(ny Ai(L:AﬁR)a C:n(n,aA‘u{LvAzR))

VECyY

Figure 1: The Conditional Inside algorithm for Pair SCFGs.

Pacific Symposium on Biocomputing 7:163-174 (2002)

Forn=N-1to0,n =N —1t00, u € Fo:

Bu (Tl, Tl,) = €y (:L.in_l? Ljn s yifn,—la yj’n,) Z ty (u) BU (Cout (TL, AELJ AER)J c:)ut (nl7 AELJ AER))

VEPy
! !
+ E E E Bv(no,no) ou,(nL,nr)
VELy, (no.nr) (n' ,n')
sy=B € boutl o’"L
euth € by
! !
+ E E E Bv(no,no) ar,(nr,ng)
vERu, (np nR) (n’o,n;:t)

sy=B € boutr c v

outr

Figure 2: The Conditional Outside algorithm for Pair SCFGs.

Forn=0to N—1,n =0to N -1, u € Fr:

(

o 1 if z=0
5, = E: 0(in — Jn) 0(iry — 4.) where 6(1‘)—{ 0 if z£0

!
= ! !
Yu(n,n) s, = B: (max) (rlna)lt) vi.(nr,ny) Yr. (MR, MR)
np MR n! n
€ bin L /R
€ bin
otherwise:

) max tu(v) ’Y’U (Clﬂ(n7 A§L7 AER)’ C:n(n,’ AZL7 AzR))

VECy

eu(Tins Tjn -1, Yir o Yir, -1
nt

Figure 3: The Conditional CYK algorithm for Pair SCFGs.

Pacific Symposium on Biocomputing 7:163-174 (2002)

e Initialisation:
—Let u=1, n=N-—-1, n' =N —1; /* set traceback co-ordinates to
start state */
— Clear co-ordinates stack;
e Main loop:

— Output co-ordinates (u,n,n’);

— If s, = E /* end state? */
* If co-ordinates stack is empty then exit;
* Pop co-ordinates (u,n,n');
* Goto Main loop;

— else if s, = B /* bifurcation state? */
* Select (nr,nr) from bj, and (np,n%) from b,

such that vy (n,n') =, (nL,n})vr, (RR,7R);

* Push co-ordinates (ry,,ngr,nR);
* Set (u,m,n’) equal to (ly,nr,n});
* Goto Main loop;

— else /* emit or null state */
* Let (m,m') = (cin(n, ALY ATR), cla(n', AYY, AT
* Select v from C, such that v, (n,n') = t,(v)y,(m,m');
* Set (u,m,n’) equal to (v,m,m’);

* Goto Main loop;

Figure 4: The Conditional CYK Traceback algorithm for Pair SCFGs.

