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We present an algorithm for exact protein structure prediction in the FCC-HP-
model. This model is a lattice protein model on the face-centered-cubic lattice
that models the main force of protein folding, namely the hydrophobic force. The
structure prediction for this model can be based on the construction of hydrophobic
cores. The main focus of the paper is on an algorithm for constructing maximally
and submaximally compact hydrophobic cores of a given size. This algorithm
treats core construction as a constraint satisfaction problem (CSP), and the pa-
per describes its constraint model. The algorithm employs symmetry excluding
constraint-based search ® and relies heavily on good upper bounds on the number
of contacts. Here, we use and strengthen upper bounds presented earlier® The
resulting structure prediction algorithm (including previous work 7) handles se-
quences of sizes in the range of real proteins fast, i.e. we predict a first structure
often within a few minutes. The algorithm is the first exact one for the FCC, be-
sides full enumeration which is impracticable for chain lengths greater than about
15. We tested the algorithm succesfully up to sequence length of 160, which is far
beyond the capabilities even of previous heuristic approaches.

1 Introduction

Protein structure prediction is one of the most important unsolved problems
of computational biology. It can be specified as follows: Given a protein by
its sequence of amino acids (more generally monomers), what is its native
structure? NP-completeness of the problem has been proven for many different
models, among them lattice and off-lattice models!?-12

To tackle structure prediction and related problems, simplified models have
been introduced. For this aim, they are used in hierarchical approaches for
protein folding?® Here, see also the meeting review of CASP3}7 where some
groups have used lattice models. Furthermore, simplified models are a major
tool for investigating general properties of protein folding.

Most, important are the so-called lattice models, where protein structure is
modeled as a self-avoiding walk on a lattice. In the literature, many different
lattice models (each specified by a lattice and an energy function) have been
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used. It was shown how such models can be used for predicting the native
structure or for investigating principles of protein folding?#:1:1%:23,16,2,19,25

Of course, the question arises which lattice and energy functions should be
preferred. There are two aspects that have to be evaluated when choosing a
model: 1) the accuracy of the lattice in approximating real protein conforma-
tions (aka structures), and the ability of the energy function to discriminate
native from non-native conformations, and 2) the availability and quality of
search algorithms for finding minimal (or nearly minimal) energy conforma-
tions. Obviously, the two aspects are somewhat conflicting. While the first
aspect is well-investigated in the literature2®!3 the second aspect is neglected.

In this paper, we follow the proposal of Agarwala et.al?® to use a lat-
tice model with a simple energy function, namely the HP (hydrophobic-polar)
model (which has been introduced by Lau and Dill'® using cubic lattice), but
on a better suited lattice (namely the face-centered cubic one). The resulting
model is called the FCC-HP-model. In the HP-model, the 20 letter alphabet
of amino acids is reduced to a two letter alphabet {H, P}. H represents hy-
drophobic amino acids, whereas P represent polar or hydrophilic amino acids.
The energy function for the HP-model simply states that the energy contribu-
tion of a contact between two monomers is —1 if both are H-monomers, and 0
otherwise. Two monomers form a contact in some specific conformation if they
occupy positions of minimal distance. A conformation with minimal energy
(called native conformation) is just a conformation with the maximal num-
ber of contacts between H-monomers. Even for the HP-model, the structure
prediction problem was shown as NP-complete 912

There are two reasons for using the FCC-HP-Model: First, the FCC can
model real protein conformations with good quality (up to coordinate root
mean square deviation below 2 A)?O Second, the HP-model models the aspect
of hydrophobicity. Its energy function enforces compactification due to the
hydrophobic force, while polar residues and solvent molecules are not explic-
itly regarded. Hydrophobicity is very important, since one assumes that the
hydrophobic effect determines the overall configuration of a protein!®!3

Once a search algorithm for minimal energy conformations is established
for the FCC-HP-model, one can employ it as a filter step in an hierarchical
approach. This way, one can improve the energy function to achieve better bi-
ological relevance and go on to resemble amino acid positions more accurately.

Related Work In this paper, we describe a successful application of con-
straint-programming for finding native conformations in the FCC-HP-model.
There, the situation as given in the literature was not very promising. Although
the importance of the FCC-HP-model is widely known, exact algorithms for
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finding native conformations were known only for cubic lattice models. Even
for the cubic lattice, there are only three exact algorithms known 269 that are
able to enumerate minimal (or nearly minimal) energy conformations. How-
ever, the ability of this lattice to approximate real protein conformations is
poor. Especially the parity problem was pointed out as drawback of the cubic
lattice? This problem is that every two monomers with chain positions of equal
parity cannot form a contact.

So far, besides heuristic approaches (e.g., the hydrophobic zipper,* the
genetic algorithm by Unger and Moult2? and the chain growth algorithm by
Bornberg-Bauer !!), there is only one approximation algorithm ? for the FCC.
It finds conformations whose number of contacts is guaranteed to be 60% of the
number of contacts of the native conformation. The situation was even worse,
since the main ingredient needed for an exact method was missing, namely
bounds on the number of contacts between hydrophobic monomers given some
partial information about the conformation. This changed with recent work 28
where such a bound was introduced and applied for finding maximally compact
hydrophobic cores. Given a conformation of an HP-sequence, the hydrophobic
core of this sequence is the set of all points occupied by H-monomers. A
hydrophobic core of n points is mazimally compact if no packing of n points
in the FCC has more contacts. Hydrophobic cores were used for structure
prediction in the HP-model and HPNX-model on the cubic lattice before26:?

Contribution and Use for Structure Prediction The goal of structure
prediction in the FCC-HP-model can be achieved via the construction of hy-
drophobic cores (i.e. point sets) in the FCC. For predicting optimal structures
of a sequence s, we will proceed as follows. First, search for the optimal num-
ber of contacts in any core of size |s|. Then, construct the set of all cores of
size |s| with optimal number of contacts. Try to thread the sequence s to all
cores in this set. Now, possibly we cannot thread s to any of the cores. In this
case, we iterate the process going on to suboptimal numbers of contacts.

The problem of threading a sequence s to a given core C' (a set of lattice
points) is finding a tuple (p;)1<;<|s| of lattice points, called a structure for s,
subject to the constraints V1 < i < |s| : p; and pi+1 have minimal distance,
Vi<i<j<|s|l:pi #Pj,and V1l <i<|s|:s, =H — p; € C. As the
problem is strongly constrained, we can solve it by constrained search.

The main contribution of this paper is an algorithm for constructing the
maximally (and specified submaximally) compact hydrophobic cores of a given
size in the FCC. A key idea of our method is to slice a core into layers orthogo-
nal to the coordinate axis in every dimension. In previous work, upper bounds
were given on the number of contacts for sequences of certain layer parameters.
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As a result of this, only a very restricted number of layer parameter sequences
has to be considered in a search for compact cores. Thus, the missing step is
to search those candidate layer parameter sequences, here done by constraint-
based search. We give a symmetric constraint model for the problem, which
on the one hand permits to use the precomputed candidate layer parameter
sequences for the layers in each of the three dimensions and on the other hand
enables us to apply general symmetry exclusion® A constraint-based algorithm
is presented, suited for implementation in the constraint language Oz2!

2 Preliminaries and Basic Definitions

A lattice L is the minimal set of points that contains so called generating
vectors U1, ...,9, and where Vi,¥ € L, both @+ ¢ € L and @ — @ € L holds.
The face-centered cubic lattice (FCC) is defined as the point set

D3 = {(g) | (é) € Z3and z +y + z is even}.
An (FCC-)core f is just a set of points in D3. Define MV as the set of
vectors p € D3 with length V2 (which is the minimal euclidian distance of

+ +
two lattice points). That is, MV = {(%) , (j(i) , (io%)} The number of

contacts contacts(f) of a core f is defined as % |{ (p,q) € f2 | p—qEMV }| .

A caveat in a point set f is a k-tuple of points (pi,...,pr) such that
I eMVVL<j<k:((fin —p;)=0), {P,pr} € fand V1 <j<k:p; ¢ f.
Implicitly, we only handle cores without caveats. This restriction was also used
in analogous cases by others2® and is acceptable, since the presented ideas can
be extended to handle caveats as well.

We define notations for certain point sets of R?, namely lines and planes.
For vectors @, @ € Z>, let LN(&@, @) denote the set {p'€ R® | IN € R : p= @+ \ii}
and for ¢ € {z,y, 2} define PL(,¢) as the set {§ € R® | £ = c}. For a € D3, we
are interested in so-called lattice lines LN(d, @), where @ € MV, and further
so-called non-lattice lines LN(a, @), where @ € Z> has length 2.

For a core f and ¢ € Z, the set fe—. = f N PL(&¢) is called the -

layer of f in plane & = c. For an z-layer f in plane z = ¢, define olines(f)
as the tuple (a,b), where a = H l ‘ Jdd € D; : | = LN(d@, (?)) ANNF#D H

and analogously b = H l ‘ dd € D; : | = LN(d, (7(1)1)) ANNF#D }‘ Define
olines(f) analogously for y-layers and z-layers f. Let min be the minimal
number such that PL(¢, min) N f # () and m the maximal number such that
PL(¢,m+min —1) N f # 0. Define the layer parameter sequence of a core f in
dimension { € {x,y,z} as the finite sequence L¢(f) = (n4,ai,bi)1<i<m, such
that V1 <i<m: |f§:min +i—1| =n; and olines(fgzmin +i—1) = (ai, bz)
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Due to previous work® we are able to compute for a layer parameter se-
quence L the upper bound on the number of contacts in the class of cores f
with Le(f) = £ for £ € {x,y,z}. This bound is denoted by BMC(L). Any
core f with L¢(f) = £ has the same size determined by £ . Denote this size
by size(L). Moreover, we are able to compute the sets of all layer parameter
sequences, which have the same upper bound for a fixed core size. Define these
sets by S(n,bnd) := { L | size(£) =n ABMC(L) =bnd }.

3 Problem Specification

For core construction, it remains to solve the following core construction prob-
lem. Given a core size n and the sets S(n,bnd), construct a set Cores(n, con)
of the cores of size n with at least con contacts modulo geometrical symme-
try. First, note that it does not suffice to construct only maximally compact
cores, if we want to use the cores for protein structure prediction, since there
may be sequences which do not fit to all of the optimal cores. Second, by
modulo geometrical symmetry we express that Cores(n, con) contains only one
representative of every equivalence class due to translations, rotations and re-
flections. To abstract from at least translation symmetries is essential, since
otherwise the set Cores(n, con) is trivially infinite.

Actually, we are going to solve the following (more general) problem. Given
a set of layer parameter sequences S for cores of size n and a number of contacts
con, compute the set of all cores f with at least con contacts which have layer
parameter sequences from the set S in every dimension, i.e. compute

AYE € {z,y,z}: Le(f) €S

modulo geometrical symmetry.

Cores(n, S, con) = { fC Ds

contacts(f) > con }

As an abbreviation define Scon(n,con) = U, q>con S (1, bnd). Due to the
equality Cores(n, con) = Cores(n, S.on(n,con), con), the general problem solves
the former problem of core construction. A difficulty remains with Cores(n, con),
since S¢on(n, con) is not necessarily finite. However, in general there are finitely
many cores Cores(n, S, con) only for finite input. Unfortunately, for sufficiently
low numbers bnd, there may be layer parameter sequences £ € S(n,bnd), such
that there is an min;(n; # 0) < i < maz;(n; # 0) where n; = 0. We say the
sequence L has a gap. In this case, there are infinitely many layer parameter
sequences expanding the gap in the sequence, which have the same bound bnd.
Cores with gaps consist of separated sub-cores, instead of one connected set of
points. Note that for structure prediction, this case occurs very rarely.
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Nevertheless, we can cope with this problem, by a certain kind of sym-
metry exclusion. To generate cores in Cores(n, Scon(n,con), con), we will first
consider only the set S of layer parameter sequences in S.,,(n,con) without
gaps. This guarantees that the set Cores(n, S, con) is finite. It is now possible
to find the cores f € Cores(n, S, con), which can be split into non-empty sub-
cores f' = fN{P|pe > c} and f" = fN{pP| pe < ¢} along a plane & = ¢, such
that contacts(f’) 4+ contacts(f") > con. Those cores can be used to generate
an infinite number of elements of Cores(n, S.on(n,con), con) by translation of
one of the sub-cores. To be complete this has to be done recursively. Finally,
note that for structure prediction we can even in this case restrict ourselves
to finite sets of cores due to the restriction introduced by the chain length.
However, in most cases, where we are interested in optimal or only slightly
suboptimal cores, we can easily conclude that there are no such cores.

4 Description of the Algorithm

We solve the problem of constructing the cores in Cores(n, S, con) given a set
of layer parameter sequences S without gaps for cores of size n and a number
of contacts con. Our algorithm follows the constrain-and-generate principle.
By large, this approach is to state constraints on solution variables and then
enumerate values of the variables by branching to generate the solutions. At
each branching, insert in the left branch a constraint ¢ and in the right branch
—c to split the search space. In constraint programming, the branching is done
concurrently to propagation of the stated constraint to prune the search tree.
We introduce variables together with data structures to organize them and
constraints to express dependencies on the variables. It is useful to introduce
auxiliary variables (instead of only the solution variables) and necessary to
introduce redundant constraints for efficiency. Finally, we apply symmetry
excluding constrained search® for enumerating the cores in Cores(n, S, con).
The main idea of our approach is getting as much knowledge as possible on
the distribution of points from the layer parameter sequences. Therefore, we
model layers and so called lattice lines of the layers to express the constraints
by the a and b parameters. Further, it is crucial to employ the dependencies
between layers of different dimensions. To express those dependencies we have
to model non-lattice lines of the layers. The number of contacts con, yields
further constraints, which are non-redundant to the former ones, since not
every core satisfying the layer sequences has necessarily at least con contacts.

Variables All the variables are finite domain variables (FD-variables), which
means that their assigned values are restricted to values of finite integer do-
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Figure 1: The cube for m; = 2, my = 5, m. = 3 and min; + miny + min. even. The
contacts within each z-layer are shown by dotted lines and the interlayer contacts between
the two z-layers by dashed lines. The circles give an example core within the cube.

mains. Denote the number of non-empty layers in the dimension ¢ € {z,y, z}
by me. All points of the core will be placed in a m, X m, X m, surround-
ing cube. We can nearly fix the absolute coordinates of this cube to exclude
translation symmetries. However, since D3 contains only points of Z3 with
even coordinate sum, the cube can only be fixed up to the minimal z, y,
and z coordinate being one of {0,1}. Store these coordinates in FD-variables
min,, min,, and min. respectively. Fix the surrounding cube to consist of
the points CB = {min,,...,min, +m, — 1} x {min,,...,min, +m, — 1} x
{min,,...,min, +m, — 1} N D3. Please see Figure 1 for an illustration.

For every point p € CB, maintain a boolean FD-variable pnt(p) € {0,1}
that has value 1 iff the point 7 is element of the core. Let & € {z,y,z}. For
every layer ¢ = ¢, where ming < ¢ < min, 7 + m¢ — 1, we have FD-variables
lay(¢,c).n, lay (€, ¢).a, and lay (¢, ¢).b for the layer parameters.

Further, we have variables for all lattice and non-lattice lines within layers

that intersect with the cube. For ¢ in LV = MV U { (j(c(f) , (%2) , (i)} ,
there are FD-variables In(@, ©), for every set LN(@, ¢) which has a non-empty
intersection with CB. We identify variables In(@, ¥) and In(@, ¥) if LN(@, ¥) =
LN(d@',?). In(d, v) is the number of occupied points in LN(@, @) N D3. Finally,
we introduce variables con(p, ¢) € {0,1} for p,q € CB, such that 5— 7€ MV.

Basic Constraints Before giving the constraints, we introduce a notation to
express reified constraints. Let ¢ be a constraint, fix a mapping 4, 6(c) € {0,1},
such that d(c) = 1 iff ¢ holds. The FD-variables are subject to the following
constraints. First of all, we get

Z pnt(p) =n and Z con(g,q) < con.

PECB P,7€CB p—geMV
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Any core must have one of the parameter layer sequences in each dimension
& € {x,y,z}. This is expressed by the (constructive) disjunction over all layer
parameter sequences £ = (n;,a;,b;)1<;<|c| in S of

. lay (&, ming +i—1).n =n;
<1< : T . . .
vi<i<|4] A lay(§,ming +i —1).a = a; ANlay(§, ming +i — 1).b = b;.
Whereas, in general constructive disjunction is inefficient, here one can easily
propagate information, e.g. the domains of the layer variables.

It remains to constrain relations between the variables to get the basic
constraint formulation for our problem. First, we relate lines to points by
In(d@,7) = > 5ern(a,nncs Pat(P) for all line variables. Then, we relate layer
parameters to their layers by Ei)‘eCBﬂPL({ 0 pnt(p) = lay(§,c).n for all £ €
{z,y,2} and min; < ¢ < ming +m, and further, for a-layers and lattice lines

in direction (?)introduce the constraints

Z 5(1n((§),(?))>0):lay(a?,c).a
rEZ,LN((E),(?))OCB;ﬂD

and the analogous constraints for lay(z, ¢).b, the y-layers, and z-layers.

Now, relate contacts to points and to the total number of contacts. For any
contact variable con(, ¢), introduce con(f, §) = d(pnt(p) =1 A pnt(§) = 1).
Finally, state > con(p, §) = con. The previous constraints define the problem
non-redundantly. For sufficient constraint propagation, we need to introduce
redundant constraints like the following ones.

For example, the surrounding cube has to be large enough to include
the core. Therefore, we introduce the constraints [%] > n if the sum
min, + min, + min, is even and | “=5*"=| > n otherwise. Further, the line
variables are connected to the layer parameter n by constraints

Z ln((g) , (?)) = lay(z,c).n and analogous ones.
rez,ux(5).()ncnso

Using Local Upper Bounds on the Number of Contacts The number
of contacts within each layer is determined by the layer parameters, since
we exclude caveats® Thus, we can constrain the number of these (intra)layer
contacts. We use also a constraint to forbid caveats directly. It constrains the
core points along each lattice line to be connected.
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Figure 2: (a) The thick lines are drawn between non-overlapping pairs of lines. In both
layers, we count one non-overlap and in the right layer one non-connect, since there is no
connection (as shown in left layer by the arrow). (b) represents an example situation in the
search. The thick lines are already known to intersect the core. Assume in each layer there
are 5 core points, the beads mark remaining potential positions. The line constraints restrict
the number of contacts, hence this additional knowledge is exploitable for the contacts bound.

Furthermore, we introduce redundant constraints that employ the upper
bounds on the number of contacts between successive layers, called interlayer
contacts. From earlier work? we know non trivial upper bounds on the number
of layer and interlayer contacts given parameters of the layers, namely the layer
size, the previously defined olines(f) and the number of non-connects and non-
overlaps. For an illustration of the latter terms, please see Figure 2(a).

Now, for ming < ¢1,c2 < ming +mg¢ and ¢ = ¢; 1, introduce FD-variables
ilay (&, ¢1,¢2).con to hold the number of interlayer contacts between layers
¢ =1 and € = co. This variable is constrained to the sum of the correspond-
ing contact variables and the total number of contacts is constrained to the sum
of the layer contacts and the variables for interlayer contacts. The bound is
strengthened and recomputed during the enumeration as more and more infor-
mation, e.g. which lines intersect the core (see Figure 2(b)), becomes known.
Therefore, variables to hold the additional parameters, the number of non-
overlaps and non-connects, are introduced for each layer and corresponding
constraints are stated. Furthermore, we introduce FD-variables ilay (¢, ¢, ¢2).i
to hold the number of core points in £ = ¢ with at least i = 1,2, 3, or 4 con-
tacts to core points in & = ¢;. Such points were called i-points. Finally we can
bind ilay(§, c1, c2).con to the sum ), ., ilay(§, ¢, c2).i.

Search strategy We start a search by enumerating the variables m,, m,,
m;, min,, min,, and min.. This fixes the surrounding cube and allows in
an implementation to construct all data structures. Afterwards, we distribute
over the point variables to fix the core. To exclude rotation and reflection
symmetries, we employ symmetry excluding search8 This search is a special
form of constrained search, which only finds solutions modulo given symmetries
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Figure 3: Plane sequence representations of 3 optimally compact cores of size n = 100.

and employs this to prune the search tree.

5 Results

All sets of layer parameter sequences Scon(n,con) without gaps for n < 100
were computed in about ten days on a standard PC. After this precomputation,
which has to be done only once, the set of all optimally compact cores usually
is found within a few seconds to minutes by our search program. Some results
are shown in Table 1. Currently, the search program implements most of the
presented ideas as well as additional redundant constraints.

Further, some optimal cores for n = 100 elements are shown in Figure 3.
The cores are shown in plane sequence representation. This representation
shows a core by the sequence of its occupied z-layers rotated by 45°. For each
z-layer x = z( the lower left corner of the grid has coordinates (zg,0,0). The
grid-lines are parallel to the lattice lines in z-layers and have distance v/2. The
core points in each z-layer are shown as filled circles.

Finally, we are able to thread sequences to hydrophobic cores for structure
prediction, which is described in detail elsewhere” There, we experimentally
evaluate the ability of our algorithm to predict the structure for random se-
quences with 100 H-monomers and chain lengths of up to 160. We are able
to find structures for 60% of the sequences with length 160 within 15 minutes.
This percentage increases to 82%, when we allow one hour search time.
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