Pacific Symposium on Biocomputing 7:259-270 (2002)

Multiple Genome Rearrangement By Reversals

Shiquan Wu and Xun Gu
Center of Bioinformatics and Biological Statistics
Towa State University
Ames, TA 50011, USA
{squu,zgu} @iastate.edu

In this paper, we discuss a multiple genome rearrangement problem: Given a col-
lection of genomes represented by permutations, we generate the collection from
some fixed genome, e.g., the identity permutation, in a minimum number of signed
reversals. It is NP-hard, so efficient heuristics is important for finding its optimal
solution. We at first discuss how to generate two and three genomes from a fixed
genome by polynomial algorithms for some special cases. Then based on the poly-
nomial algorithms, we obtain some approximation algorithms for generating two
and three genomes in general, respectively. Finally, we apply these approximation
algorithms to design a new approximation algorithm for generating more genomes.
We also show by some experimental examples that the algorithms are efficient.

1 Introduction

Comparative genomics is one of the most important areas in computational
biology and bioinformatics. Sorting by reversal plays a central role in Com-
parative genomics. The problem was originated in last decade 23*. Its theme
is to determine the evolutionary distances between organisms by using ge-
nomic data. Transformations of genomes are widely studied under evolution-
ary events such as insertion, deletion, point mutation (substitution), reversal,
etc 1112, Recently, optimal recombination is also discussed'®. So far, most of
the study on comparative genomics has been focused on sorting by reversal'®.
A genome is represented by a permutation and an optimal reversal process is
found from any given permutation to the identity permutation.

Sorting by reversal is categorized into two classes: sorting by unsigned and
signed reversals, respectively. At first, sorting by unsigned reversals is NP-
hard™®. Therefore, only efficient approximation algorithms can be expected to
find for the solution of the problem. So far, the best approximation algorithm
has been a 1.5-approximation algorithm!®. It is proved that there exists no
polynomial-time 1.0008-approximation algorithm®.

However, sorting by signed reversals is polynomial-time solvable'®14, Many
quadratic-time algorithms are widely used for finding the optimal solutions of
the problem®!%'6. Recently, a linear-time algorithm is found for computing
the signed reversal distance between any two signed permutations'.

Pacific Symposium on Biocomputing 7:259-270 (2002)

Sorting by reversal can be regarded as a problem that generates a permuta-
tion from some fixed permutation by a minimum number of reversals. Multiple
genome rearrangement by reversals is a generalization of sorting by reversal. It
is to generate a given collection of permutations (genomes) from a fixed permu-
tation, e.g., the identity, in a minimum number of reversals. For the unsigned
case, the problem is obviously NP-hard (since sorting by unsigned reversals
is NP-hard). For the signed case, it is proved that the problem is NP-hard
even if two permutations are generated from a permutation®. This implies that
the problem is extremely hard. Therefore, it is interesting, also our purpose in
this paper, to find efficient heuristics, or special cases that are polynomial-time
solvable. Heuristics can be combinatorial or experimental algorithms®?.

A similar genome rearrangement problem was discussed and an approxi-
mation algorithm was given by a local search for the optimal solution on a grid
by Sankoff et al'”. In this paper, we discuss a multiple genome rearrangement
problem for generating a collection of permutations from some fixed permuta-
tion in a minimum number of signed reversals.

The rest of the paper includes five parts. (1) Definitions and models, (2)
Related problems, (3) Theorems and algorithms, (4) Experimental applica-
tions, (5) Discussion and future work.

2 Mathematical model of multiple genome rearrangement

First of all, we introduce our main definitions and notations. The mathematical
model of multiple genome rearrangement problem is also described.
Definition 1 For a signed permutation p = (pip2 - - -p|x|) on an alphabet X,
a signed reversal on the segment [i, j] of p is defined as the following operation
from p to r(p;i, j):
r = (pl P2 - Pi-1 Pi Pi+1 o P Pi41c p|X|)

r(pii,j) = (p1p2 - Pic1—Pj - — Pit1 — Pi Pi+1- - Px))
Definition 2 Let Ty be a collection of permutations. Define N (Ty) = {p|p =
r(g;i,7) for some ¢ € Tp,1 < i < j < n}, called the reversal neighbor-
hood of To. Define Nl(To) = N(To), NQ(TQ) = N(Nl(To)), and Nk(To) =
N(Nji-1(Tp)), the k-neighborhood of Tg.
Definition 3 A collection Ty of permutations is called a k—Bottleneck family
if for any u, v € T}, the reversal distance between u and v is at most k.
Multiple Genome Rearrangement By Signed Reversal (denoted by
(m,n)—MGRBSR) Given two collections of permutations P = {p1,pa, -,
Pm} and @ = {q1,92, -+ -, qn} on an alphabet X, we generate) from P in a
minimum number of signed reversals, i.e., find a collection of signed permu-
tations ¢,(1 < r» < s) on X such that (1) any ¢; is obtained from some p; by

Pacific Symposium on Biocomputing 7:259-270 (2002)

a series of signed reversals ¢, ,%,,, - -,1,,, where each ¢, is obtained from
t,; by one signed reversal, and (2) s is minimized. Denote d(P, Q) = s, the
(optimal) signed reversal distance for generating @ from P.

Ifm=n=1ie, P={p} and Q = {¢}, then the problem is reduced to
sorting by signed reversal and d(p, q) is the signed reversal distance between
p and ¢. In any optimal reversal process, each g¢; is generated from only one
pi. Therefore, it is sufficient for us to consider the case m = 1. For m > 1,
the problem can be split into m (1,7;)—MGRBSR problems and similarly
discussed. By rearranging the elements of X, we get py = 12---|X|. Therefore,
we discuss how to generate all permutations ¢; from py.
(1,n)-MGRBSR Problem Generate all given permutations ¢;(1 < j < n)
from the identity p = 12---|X| in a minimum number of signed reversals.

We at first consider the (1,2)—, (1,3)—MGRBSR problems and then split
the (1,n)—MGRBSR problem into some (1,2)—, (1,3)—MGRBSR problems.

3 Related problems

Our (1,7n)—MGRBSR problem is similar to the genome rearrangement prob-
lem discussed by Sankoff et al'” and is closely connected to the following
problems 11220,

Multiple alignment Given some sequences, find the alignment with mini-
muim pairwise score.

In our (1,n)—MGRBSR problem, we do not consider the pairwise score,
but the minimum score of Steiner trees on the given permutations.

Sorting by reversal Given a permutation p, transform it into the identity
permutation in a minimum number of signed (or unsigned) reversals.

It generates the identity permutation from a given permutation in a mini-
mum number of signed (or unsigned) reversals. Our (1, n)—MGRBSR problem
generalizes the problem to generating a collection of permutations.

Star alignment Given some sequences, find one median sequence such that
the total alignment score between the median sequence and each given sequence
1s minimized.

Our (1,n)—MGRBSR problem may contain a number of median sequences.
Fixed topology alignment’’ Given some sequences and a topological struc-
ture (usually, a tree) T'. Each leaf of T is labeled by one given sequence. Assign
one sequence to each internal node of 7" such that the total alignment score
for all edges of 7" is minimized.

Our (1,n)—MGRBSR problem is not restricted to a fixed topology and it
is a topology-free alignment problem.

Pacific Symposium on Biocomputing 7:259-270 (2002)

4 Theorems and algorithms

In this part, we find algorithms for (1,7n)—MGRBSR problems. We at first
consider (1,2)— and (1,3)—MGRBSR problems. If a (1,2)—MGRBSR prob-
lem contains a pair of close permutations, then we get a polynomial algo-
rithm. If a (1,3)—MGRBSR problem consists of two pairs of close permuta-
tions, then we also get a polynomial algorithm. Based on these polynomial
algorithms, we design approximation algorithms for the general (1,2)— and
(1,3)—MGRBSR. problems, respectively. Next, we discuss a k—Bottleneck
family for a (1,n)—MGRBSR problem. Finally, we split a (1, n)—MGRBSR
problem into some (1,2)— and (1,3)—MGRBSR problems and obtain an ap-
proximation algorithm for the general (1,n)—MGRBSR problem.
First of all, it is shown that !
Theorem 1 The (1, 1)—MGRBSR problem is solvable in a run time O(|X|).
A linear-time algorithm is presented for computing the reversal distance
between two signed permutations ! (finding the optimal reversal process still
costs O(|X|?)). We denote it BMY algorithm and will use it in our algorithms.
We easily have the following approximation algorithm. We at first con-
struct a weighted graph with all given permutations as its vertices. All pairs of
the given permutations form its edges. The weight of an edge is defined as the
reversal distance of the pair of permutations representing the edge, which is
computed by the BMY algorithm. Next we find a minimum weight spanning
tree of the graph. Finally, all permutations can be generated from a given
permutation along the edges of the spanning tree. With the theorem and the
BMY algorithm, the run time is reduced. The steps are stated in the following.
Algorithm A
Input Sequences: p,q1,q2, -, qn.
Output Reversal process.
Step 1 Apply the BMY algorithm to construct a graph
G= (V’E’W) with V. ={p,q1,92,- -, qn}, £ =
{[u, v]| u,v € V,u # v}, and W ([u,v]) = d(u,v).
Step 2 Find a minimum weight spanning tree T of G.
Step 3 Generate all permutations from p along T'.
Theorem 2 Algorithm A finds an approximated solution for any (1,n)—
MGRBSR problem in a run time O(n?|X| + n|X|?).
Proof Step 1 has a run time O(n?|X]|) since it takes O(|X|) time to find each
W ([u,v]) and G has O(n?) edges. Step 2 has a run time O(n log n) to find T
Step 3 has a run time O(n|X|?) since it takes a run time O(]X|?) to find the
optimal reversal process for each edge [u,v] and there are n — 1 edges T'.
It is obvious that the algorithm is a 2-approximation, i.e., the approx-

Pacific Symposium on Biocomputing 7:259-270 (2002)

imated distance is within two times of the optimal one. Furthermore, The
number of reversals can be decreased by introducing some median permuta-
tions. Suppose we want to generate q; and go from p. We at first generate a
median permutation ¢y from p, then generate ¢; and ¢s from gg, respectively.
When ¢q is properly chosen, the number of reversals can be improved. The
median permutation g is called a Steiner permutation. If we want to generate
a collection of permutations, many Steiner permutations will be applied so as
to minimize the total reversal distance. These Steiner permutations are called
optimal if they minimize the total reversal distance. For a (1,n)—MGRBSR
problem, there may be n — 1 optimal Steiner permutations.

In order to find an optimal Steiner permutation ¢q for a (1,2)—MGRBSR
problem, we can try each permutation on X and finally get it. However, there
are | X|! permutations, so the run time is at least |X|!. We find some special
cases that are polynomial-time solvable.

Theorem 3 (1) Let V = {p, q1, ¢2}. Assume ¢q is an optimal Steiner permu-
tation. Then d(go,) < d(z,y) for any z,y € V.

(2) TV = {p,q1,¢2} contains a pair with a reversal distance at most k,
then an optimal Steiner permutation ¢ is found in a run time O(]X|?*+1).

(3) ItV = {p, q1, 2, g3 } consists of two pairs with reversal distances at most
k, then two optimal Steiner permutations are found in a run time O(] X|**1).
Proof (1) By contradiction. Suppose that d(qo, ¢; > d(¢1,92)(¢ = 1,2). Then
d(p, qo) + d(go, 1) + d(qo, q2) > d(p, 1) + d(q1, ¢2), a contradiction.

(2) By (1), the optimal Steiner permutation ¢ € Nj(x) for some z € V.
Since |N(z)| < |X|? and |Ng(2)] < | X|?|Ni—1(2)] < |X|**. We need a run time
O(]X]) to find d(y, V)(y € Ni(z)). Therefore, the run time is O(]X|?**1).

(3) Suppose that p and ¢1, and ¢ and ¢3 have reversal distances at most k.
By (2), for each pair ¢qo1 € Ni(p) and qo2 € Ni(g3), compute the total reversal
distance from gg; and ggs to p,q1,92 and gs. We then get the optimal pair ggq
and gos as the Steiner permutations. By (2), the run time is O(|X|**1).

Based on Theorem 3, we can find an optimal Steiner permutation in the
k-neighborhood of a permutation in the closest pair for a (1,2)—MGRBSR
problem. For a (1,3)—MGRBSR problem, we can also find two optimal Steiner
permutations in the k-neighborhoods of two permutations, each of which cor-
responds to a closest pair. We have the following algorithms (see Figure 1).
Algorithm B1
Input Sequences: p,qi, g2 (with a pair of reversal distance at most k).
Output Optimal reversal process.

Step 1 Find the pair, say p and ¢, with the minimum reversal
distance (at most k).

Pacific Symposium on Biocomputing 7:259-270 (2002)

Step 2 Loop over all u € Ni(p) and update the reversal distance
d=d(u,p)+d(u,q1) + d(u, ¢2) and go = u if a better
one is found.

Step 3 Generate ¢g from p, g1 and ¢» from ¢y by BMY algorithm.

Algorithm B2
Input Sequences: p,q1, g2, qs (two pairs with reversal distances < k)
Output Optimal reversal process.
Step 1 Find the pairs, say p,q1 and ¢s, g3, with two minimum
reversal distances (at most k).
Step 2 Loop over u € Ni(p),v € Ni(gq3). Update the total reversal
distance d = d(u,v) + d(u, p) + d(u, ¢1) + d(v, q2) + d(v, ¢3)
if a better one 1s found. Also update ¢g; = u and gg2 = v.
Step 3 Generate ¢g1 from p, ¢1 from g1, o2 from ¢g1, ¢1 and ¢
from gg2 by the BMY algorithm.

ql ql

q2 qo1

P

Find g0 0N, (p)
. Find q01 0 N, (p) Find q02 I N,(q3)

Algorithm B1
gonthm Algorithm B2

Figure 1: Algorithm B1/B2: Each optimal Steiner permutation is located in some Ng(x)

Figure 1 shows that Algorithm B1 (or B2) finds the optimal Steiner per-
mutations in some Nj(z) and terminates within O(|X|?**1) (or O(|X|**1))

run time. Similarly, we generate a collection of close permutations.

Theorem 4 Let V = {p,q1,¢2, -, ¢s} be a k—Bottleneck family. Then all

Steiner permutations can be found in O(]X|**(=2+1) run time.

Based on Theorem 4, we can find the optimal reversal process for a small

collection of permutations.

Algorithm C

Input Sequences: p,qi,qs, -+, ¢s (k—Bottleneck).

Output Steiner permutations and reversal process.
Step 1 Find Ng(p).

Pacific Symposium on Biocomputing 7:259-270 (2002)

Step 2 Loop over all z1, 25+, 25_2 € Nx(p) and update the
total reversal distance if a better minimum spanning tree
is found for {p, ¢1,q2, -+, qs; 1,22, Z5_2}.

By Theorem 4, we find the s—2 optimal Steiner permutations in a run time
O(|X|*#(s=2)+1). For collections that are not k—Bottleneck families, we design
two approximation algorithms to find their optimal Steiner permutations on
the grids constructed from a series of optimal reversal paths.

Algorithm D1
Input Sequences: p,q1,qs.
Output Steiner permutations and reversal process.

Step 1 Choose a minimum reversal distance pair, say p, q1.
Step 2 Find the optimal reversal path P, from p to ¢;.
Step 3 For ¢ > 2, find M; € Ny (Pi—1)(k = 1,2,3) minimizing
d(M;, p,q1,q2) = d(M;, p) + d(M;, q1) + d(M;, q2).
Find an optimal reversal path P; from p to M;, then to ¢s.
Step 4 For each u in Py(the last path in Step 3), find an optimal
reversal path W from u to ¢2. We get Wy, Wo, -+ W,
Step 5 For each z in all W;, do a local optimal search to find
g0 € Ny (z) minimizing d(qo, p, q1, q2).
Step 6 Choose the best gy in Step 5 as the global optimal solution.
Step 7 Generate ¢g from p, ¢; and ¢» from ¢y by BMY algorithm.
Algorithm D2
Input Sequences: p,q1, ¢z, gs.
Output Steiner permutations and reversal process.
Step 1 Choose two minimum reversal distance pairs: (p, q1), (¢2, ¢3)-
Step 2 Find optimal reversal paths, P; : p to ¢1, and Q1 : g2 to gs.
Step 3 For i > 2, find M; € Nk(Pz'—l), N; € Nk(Ql_l)(k’ = 1,2,3)
minimizing d(M;, N;). Find optimal reversal paths, P; : p to
M;, then to ¢2, and @; : ¢ to N;, then to ¢s.
Step 4 For each u € Py, v € @ (the final paths), find an optimal
reversal path W from u to v. We get Wy, Wo, -+ Wy
Step 5 For each pair z, y in the grid, do a local optimal search to
find qo1 € Nk (), o2 € N (y) minimizing d(qo, p, 91, g2)-
Step 6 Choose the best go1, go2 in Step b as the optimal solution.
Step 7 Generate ¢g; from p, q; from qg1, o2 from ¢g1, and ¢; and
g2 from gqgo by the BMY algorithm.

In fact, in Algorithm D1, we find a series of paths from p to ¢; such that
they get closer and closer to ¢;. Then construct a grid by using ¢» and the
closest path to ¢;. Finally, do local optimal searches on the grid.

In Algorithm D2, we find two collections of paths from p to ¢1, and from ¢»

Pacific Symposium on Biocomputing 7:259-270 (2002)

Algorithm D2: Steps
1) P1=>P2=>..=>Pd
2) Q1=>Q2=>..=>Qc

1) P1=>P2=>...=>Pk=>...=>Pd 3 WLW2,.. Wk

2) WLW2,... Wt 4) Local optimal search for X W
3) Local optimal search for XTI W P

w1

Algorithm D1: Steps

Figure 2: Algorithm D1/D2: Their steps

to g3, respectively, such that the two collections of paths get closer and closer.
Then construct a grid by using the two closest paths. Finally, do local optimal
searches on the grid (see Figure 2).

Theorem 5 (1) For any p, q1, ¢2, the approximated Steiner permutation g¢qg
and reversal process can be found in a run time O(|X|*(*+1).

(2) For any p, ¢1, q2, g3 the approximated Steiner permutations gg; and ¢g2

and reversal process can be found in a run time O(|X|*(*+1).
Proof (1) Algorithm D1 at first finds an optimal reversal path from p to ¢;. In
the next step, 1t finds another optimal reversal path from p to ¢; that is closer
to go. After some steps, it constructs a grid by using ¢» and the last optimal
reversal path. The algorithm tries each possible permutation z in the grid and
then finds an approximated Steiner permutation ¢y from some Ny (z). Each
path has length at most |X| and the algorithm goes for at most |X| paths.
For each u in the paths, |[Nx(u)| = O(|X|*). So the algorithm terminates in
O(|X|**+1) run time.

(2) Similar to (1).

Based on Algorithm D1/D2 and Theorem 5, we designed an approxima-
tion algorithm for finding the Steiner permutations for the (1,n)—MGRBSR
problem. The main idea is splitting the (1,7)—MGRBSR problem into a col-
lection of (1,2)— and (1,3)—MGRBSR problems. For any given permutations,
D, 41,92, ", qn, we at first find a minimum matching A; = {@;, v} (1 <i < ¢)
such that (1) =i,y € {p,¢1,92, -, ¢n}, and (2) >, d(z;,y;) is minimized.
Then we find a minimum matching w; = {u;,v;}(j = 1,2, - - -, d) such that (1)
uj,v; € {Aili=1,2,--- ¢}, (2) Zj d(u;,v;) is minimized. Next, we apply Al-

Pacific Symposium on Biocomputing 7:259-270 (2002)

gorithm D1/D2 to find two Steiner permutations ¢;1, ¢;2 for u; and v;. Finally,
replace all {u;,v;} by all {g;1,¢;2} and repeat the process until it terminates.
Algorithm E (See Figure 3)

Input Sequences: p,q1,q2, ", qGn-
Output Steiner permutations and reversal process.

A5
o220 Q\Aé
Edge types:

B3

© © >——OA
—~oOs

&——=®c
D
B1 ©—=o>o
@\@ Steps:A=>B=>C=>D
C
1) Find A1,A2,...,A6.
2) ALAG=>BL.
B2 A2,A3=>B2
A3 A4, A5=>B3
3) B1,B2=>C
4)B3,C=>D.
Al & o
A2

Algorithm E

A6

Figure 3: Algorithm E

Theorem 6 Algorithm E approximates the optimal Steiner permutations and
the reversal process in a run time O(] X |?(F+1)p?).

5 Experimental applications

Based on our algorithms, we design a computer program. Applying the pro-
gram to some specific permutations, we obtain the optimal Steiner permuta-
tions for the permutations with different lengths. These examples show that
our approximation algorithms are efficient. The three permutations, p, g1, g2,
are chosen from the genomes of human, sea urchin, and fruit fly, respectively.
p= 26131712—-241518—2—-16—-34—28751 1019 2522
11291420 —21 —86 30 —239 27.
264252251—-2819112920—-2169 2783023 —2416
14—-2315—-71013 17 12 18.
go= —26—2712—-241518—-34135711019225162989
—20—11—22 3023 21 6 28 17— 14.
By our program, we obtain an optimal Steiner permutation.
go= 26—2—-14-29—-11-22—-25—-19—-10—-1-51317
12—-241518—-728-431620—21—86 30—23 9 27.
If we choose the first k& genes of p, q1, ¢» and apply the program for k = 5,

q1

Pacific Symposium on Biocomputing 7:259-270 (2002)

10, 15, 20, 25, then we obtain the optimal Steiner permutations go(k) from
p(k), q1(k), q2(k), g3(k), respectively.

p(6)= -2 —3451.

¢(5)= 451 —23

02(5)= —34512.

()= -2 —1—5 —43.

p(10)= -2 —3475110 —869.

¢1(10)= 451698 —23 —710.

g2(10)= —34571102896.

go(10)= —10 —1 —5 —7 —432 —8609.

p(15)= 131215 —2 —34751101114 —86 9.

q1(15)= 4511169814 —2315 —710 13 12.

g2(15) = 1215 —341357110289 —116 — 14.

go(15)= 131215—2-10-1-5-7—-4311—-9—68 — 14.
p(20)= 1317121518 —-2—-16—-347511019111420—86 9.
¢1(20)= 451191120698 1614—2315—7 1013 17 12 18.
g2(20)= 121518—-3413571101921689—20— 116 17— 14.
g(20)= —20-14—-11-19-10—1-5-7—-43 168 13 17

121518-26 9.

p(25)= 131712 —241518 —2 —16 —34 7511019252211
1420 —21 —86 —239.

(25)= 4252251191120 —2169823 —241614 —2315
-7 101317 12 18.

q2(25) = 12—-241518—-341357110192251689 —20—11
—222321617 —14.

w0(25)= 2 —18 —1524 —12 —17 —1325221120 —2151 10
19 —14 —16 =347 —86 —239.

n | dp,q1) d(p,q2) dlg1,92) | Optimal d(p, {q1,92})
5 3 2 3 4
10 8 8 9 15
15 12 9 14 19
20 15 13 19 26
25 19 18 24 33
30 21 22 29 40

The optimal reversal distances are computed by our program. They are
almost the same as the lengths of the Steiner trees in a metric space. For
example, for n = 10, we have (di,ds,ds) = (8,8,9). In the Euclidean metric
space, we compute the optimal Steiner tree and find that its length is 14.5.
The optimal d(qo, p) + d(qo, ¢1) + d(q0, ¢2) = 15. Both are close each other.

Our approximation algorithms can find the optimal solutions for most

Pacific Symposium on Biocomputing 7:259-270 (2002)

collections of genomes. In many cases, they are more efficient than the one on
local search for optimal solution on a grid'”.

6 Discussion and future work

In this paper, we discuss a (1,7n)—MGRBSR problem. We design some poly-
nomial algorithms for several special cases and some efficient approximation
algorithms for the general problem. The (1,7)—MGRBSR problem is one of
the most important problems in comparative genomics. We are interested in
designing more efficient approximation algorithms for finding optimal solu-
tions for the general (1,n)—MGRBSR problem. The problem is very similar
to Steiner tree problems in a metric space. With the application of Steiner tree
theory, the problem can be solved efficiently. On the other hand, stochastics
can also be applied to the discussion of the (1,7)—MGRBSR problem. This
will be the subject of our future work.

A cknowledgement This work is supported by the NIH grant RO1 GM62118
(to X.G.) and Wu is supported in part by NSF of China (19771025).

References

1. Bader, D.A., Moret, B.M.E. and Yan, M., A linear-time algorithm for
computing inversion distances between signed permutations with an ex-
perimental study. Proc. Tth Workshop on Algorithms and Data Struc-
tures (WADS 01), Providence (2001), to appear in Lecture Notes in Com-
puter Science, Springer Verlag.

2. Bafna V. and Pevzner, P. 1994. Genome rearrangements and sorting by
reversals. In Proc. 34th IEEE Symp. of the Foundations of Computer
Science, 148-157. IEEE Computer Society Press.

3. Bafna, V. and Pevzner, P. 1995. Sorting permutations by transpositions.
Proceedings of the 6th Annual Symposium on Discrete Algorithms, pages
614-623. ACM Press, January 1995.

4. Bafna, V. and Pevzner, P. 1996. Genome rearrangements and sorting by
reversals. STAM Journal on Computing, 25(2):272-289.

5. Berman, P. and Hannenhalli, S. 1996. Fuast sorting by reversal. Proc.
Combinatorial Pattern Matching (CPM), 168-175. Also Lecture Notes
in Computer Science.1075.

6. Berman, P., and Karpinski, M. 1998. On some tighter inapprozimability
results. Technical Report TR98-065, ECCC.

7. Caprara, A. 1997. Sorting by Reversals 1s Difficult. Proceedings of the
First Annual International Conference on Computational Molecular Bi-

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Pacific Symposium on Biocomputing 7:259-270 (2002)

ology (RECOMB’97), ACM Press.

Caprara, A. 1999. Formulations and hardness of multiple sorting by
yeversals. Proceedings of the Third Annual International Conference
on Computational Molecular Biology (RECOMB’99), ACM Press.
Caprara, A. and Lancia, G. 2000. Ezperimental and Statistical Analysis
of Sorting by Reversals. in D. Sankoff and J.H. Nadeau (eds.) Compar-
ative Genomics: Empirical and Analytical Approaches to Gene Order
Dynamics, Kluwer Academic Publishers.

Christie, D. A. 1998. A 3/2-approxzimation algorithm for Sorting by re-
versals. Proc. 9th Ann. ACM-SIAM Symp. on Discrete Algorithms,
ACM-SIAM, 244-252.

Durbin, R., Eddy, S. R., Krogh, A. and Mitchison, G., 1998. Biological
sequence analysis: Probabilistic models of proteins and nucleic acids,
Cambridge University Press.

Gusfield,D., Algorithms on Strings, Trees, and Sequences: Computer
Science and Computational Biology. Cambridge University Press, 1997.
Hannenhalli, S. and Pevzner, P. 1995. Transforming men into mice (poly-
nomial algorithm for genomic distance problems. Proc. IEEE Symp. of
the Foundations of Computer Science.

Hannenhalli, S. and Pevzner, P. 1995. Transforming cabbage into turnip
(polynomial algorithm for sorting signed permutations by reversals).
Proceedings of the Twenty-Seventh Annual ACM Symposium on Theory
of Computing, 178-189.

Kaplan, H., Shamir, R. and Tarjan, R. E. 1997. Fuster and simpler
algorithm for sorting signed permutations by reversals. Proc. eighth
annual ACM-STAM Symp. on Discrete Algorithms (SODA 97). ACM
Press.

Kaplan, H., Shamir, R. and Tarjan, R. E. 2000. Fuaster and simpler
algorithm for sorting signed permutations by reversals. SITAM Journal on
Computing, 29(3):880-892.

Sankoff, D., Sudaram, G. and Kececioglu, J. 1996. Steiner points in the
space of genome rearrangements. International Journal of the Founda-
tions of Computer Science, 7:1-9.

Sankoff,D. and Nadeau,J.H. . 2000. Comparative Genomics: Empirical
and Analytical Approaches to Gene Order Dynamics. Kluwer Academic
Publishers.

Wu, S. and Gu. X., 2001. A greedy algorithm for optimal recombination.
Lecture Notes on Computer Science, 2108:86-90.

Wang,L., B. Ma and M. Li, 2000, Fized topology alignment with recom-
bination, Discrete Applied Mathematics 104: 281-300

