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The ever-growing amount of experimental data in molecular biology and genetics requires its 
automated analysis, by employing sophisticated knowledge discovery tools. We use an 
Inductive Logic Programming (ILP) learner to induce functional discrimination rules between 
genes studied using microarrays and found to be differentially expressed in three recently 
discovered subtypes of adenocarcinoma of the lung. The discrimination rules involve 
functional annotations from the Proteome HumanPSD database in terms of the Gene 
Ontology, whose hierarchical structure is essential for this task. While most of the lower levels 
of gene expression data (pre)processing have been automated, our work can be seen as a step 
toward automating the higher level functional analysis of the data. We view our application 
not just as a prototypical example of applying more sophisticated machine learning techniques 
to the functional analysis of genes, but also as an incentive for developing increasingly more 
sophisticated functional annotations and ontologies, that can be automatically processed by 
such learning algorithms.  

1 Introduction and motivation 
 
The success of the various whole genome sequencing projects (including the Human 
Genome Project) has paved the way towards ‘functional genomics’, an undertaking 
whose main goal is to uncover the functions of the genes and their protein products. 

Although painstaking experimental work has revealed essential details on the 
functions of individual genes and proteins, many of their most important effects 
depend on the orchestration of the activities of entire pathways, comprising 
numerous genes and proteins. 

The major experimental breakthrough that allowed the measurement and analysis 
of the expression patterns of (tens of) thousands of genes simultaneously is the 
technology of microarrays and oligonucleotide arrays [1]. It is currently technically 
feasible to measure the expression levels of the entire set of genes of a living cell 
and compare such gene expression profiles (patterns) obtained under different 
experimental conditions. For example, different snapshots of the gene expression 
patterns in a developing organism can be used to study its development at a global 
genetic level. In other experiments, different samples of normal and diseased cells 
can be compared to reveal the genetic abnormalities causing the malady.  

Many complex diseases, such as carcinomas, cannot be simply attributed to a 
single gene or a very small number of genes. They typically show complex 
disruptions of the gene expression patterns of normal cells. And very frequently, 
distinguishing between the different subgroups of the disease is essential for its 
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correct treatment, each of the subgroups requiring a different therapy. Unfortunately, 
currently applied tests are not always capable to distinguish reliably between the 
various subtypes. The analysis of microarray gene expression data for various tissue 
samples has enabled researchers to determine gene expression profiles characteristic 
of the disease subtypes. The groups of genes involved in these genetic profiles are 
rather large and a deeper understanding of the functional distinction between the 
disease subtypes might help not only to select highly accurate ‘genetic signatures’ of 
the various subtypes, but hopefully also to select potential targets for design drugs. 

Most current approaches to microarray data analysis use (supervised or 
unsupervised) clustering algorithms to deal with the numerical expression data [2]. 
The functional interpretation of the resulting clusters is however difficult in certain 
cases, although a large number of functional annotations for the genes involved is 
already available in public databases. This is probably due to the fact that most 
functional annotations are in free text and thus of little use to an automated analysis 
program. Despite this, significant efforts are under way to develop a unifying 
language2 in terms of which to describe functions of genes, proteins, biological 
processes and cellular locations. The Gene Ontology (GO) [3] is a large, constantly 
growing hierarchy of molecular biology concepts, which can be used to annotate 
genes and proteins with functional information. Such annotations are currently 
available, e.g. in the Proteome HumanPSD database [4]. 

In this paper, we use Inductive Logic Programming (ILP) [9] to induce 
discrimination rules between two recently discovered subtypes of adenocarcinoma 
(AC) [5] in terms of functional knowledge from the GO. In other words, we would 
like to explain the differences between two AC subtypes in terms of the functions of 
the genes that are differentially expressed in these subtypes. As already hinted 
above, this should enable a deeper understanding of the mechanisms of the two AC 
subtypes. 

2  Microarray data analysis of adenocarcinoma of the lung 

Different experimental approaches were developed to study the gene expression 
profiles of entire genomes under precise conditions. Microarrays and 
oligonucleotide chips [1] allow the simultaneous measurement of the concentration 
of virtually every transcript in a cell, leading to a holistic understanding of cell 
physiology. In this paper, we are concentrating on the gene expression profiles 
produced in the study of Garber et al. of adenocarcinoma (AC) of the lung [5]. We 
have chosen this particular dataset, because unlike other similar diseases (like 
leukemias [6] or lymphomas [7] − which are more uniform, and thus much easier to 
analyse), carcinomas of the lung are quite heterogeneous and sometimes hard to 
distinguish histologically (under the light microscope). Adenocarcinomas (AC) 
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comprise about 30% of all cases, but they are still heterogeneous: Garber et al. have 
distinguished at least three AC subgroups (AC1-3) with a large difference in 
survival rate between patients from group AC1 and those from group AC3 (in 
favour of AC1). In fact, the three subtypes of AC were determined by clustering 
microarray gene expression profiles (and not by looking at survival rates). 

Unlike many diseases which show a rather localized disruption of the genetic 
profile of normal cells, carcinomas are much more heterogeneous and display more 
complex disruptions of the gene expression programs of the cells. Tracing these 
modifications back to the molecular level thus represents a challenging task. 

Garber et al. have analysed the expression levels of 23,100 cDNA clones 
(corresponding to 17,108 unique genes, as defined by Unigene) in 73 different tissue 
samples (41 AC, 16 SCC, 5 LCLC, 5 SCLC, 5 normal and 1 fetal3). After an initial 
elimination of the low-quality measurements, Garber et al. have selected 918 cDNA 
clones (representing 835 unique genes) whose expression varied widely among the 
tissue samples4 while being most similar within samples originating from the same 
patient. The resulting dataset taking the form of a 918×73 (gene×sample) matrix was 
subsequently median centered. Average linkage hierarchical clustering of the 
samples was performed using M. Eisen’s CLUSTER and TREEVIEW programs [2]. 

Although hierarchical clustering is an unsupervised method that groups genes 
exclusively according to the degree of similarity in the patterns of gene expression, 
it almost perfectly distinguished the known types of lung carcinomas (AC, SCC, 
LCLC and SCLC) from each other as well as from the normal tissue samples. 
However, AC did not result as homogeneous cluster, but as 3 distinct sub-clusters: 
AC1, AC2 and AC3. 

Garber et al. have searched for individual genes that were differentially 
expressed in the 3 AC subgroups and obtained a list of 149 genes (see the 
supplementary information to [5]). Now, although the distinction between the three 
AC subgroups may be due to many genes, it is unlikely that a list of 149 genes is the 
shortest, most comprehensive explanation of the distinction between the AC 
subgroups. Therefore, Garber et al. tried to subjectively select a subset (of the 149 
differentially expressed genes) that would best explain the distinctions between the 3 
AC subgroups (Fig.5. of [5]). This selection process consisted in the expert looking 
at each of the 149 genes and deciding whether it is interesting (as an explanation) or 
not. While this can be done in this way for one experiment and 149 genes, we argue 
that processing the ever-growing flood of available microarray data will have to be 
assisted in a more automatic manner, especially because the functional annotations 
available are becoming increasingly more sophisticated and hard to manage by a 
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person’s working memory. For example, Garber et al. used functional annotations in 
the form of text descriptions, which can be easily obtained from various molecular 
biology and genetics databases (such as NCBI Entrez, Expasy/SwissProt etc.). 

Obviously, such text descriptions cannot be used by an automated system. 
However, we are fortunate that more sophisticated annotations are already available, 
for example in the Proteome HumanPSD database [4]. In the following we show 
how such functional annotations can be used to automatically induce discrimination 
rules between group AC3 (with a significantly lower survival rate) and the other AC 
subgroups (AC1 and AC2, showing a much better prognosis). 

This should help in selecting a functional explanation of the differences between 
the AC subgroups in a semi-automatic manner (and thereby speed up microarray 
data analysis for larger datasets). 

3 Functional discrimination of genes using ILP 

The HumanPSD Proteome database contains, among others, Gene Ontology 
annotations of a large number of human genes (we could find in Proteome 459 of 
the 918 cDNA clones of Garber et al.). Functional annotations are however of little 
use without some sort of background knowledge that relates the various concepts 
involved. 

The Gene Ontology (GO) [3] is a hierarchy7 of concepts used in molecular 
biology and genetics, which can be employed as background knowledge for an 
inductive learner. (The ontology is organized according to ‘Molecular Function’, 
‘Biological Process’ and ‘Cellular Component’, for which we have annotations in 
the Proteome database.) 

Inductive Logic Programming (ILP, or Relational Learning) [9] deals with 
learning logic programs from positive and negative examples with respect to some 
existing background knowledge. ILP generealizes other machine learning 
approaches not just by dealing with more complex hypotheses (first order logic 
programs), but also by taking into account a given background knowledge.  

In the following, we show how an ILP learner can be used to induce functional 
discrimination rules between the genes that correlate well with the AC3-AC1,2 
distinction and those that do not. The discrimination rules will involve GO concepts 
(either GO annotations from the Proteome database, or their generalisations in the 
GO hierarchy, used as background knowledge). 

3.1 Setting up the learning problem: positive and negative examples 

We have used the dataset from [5] restricted to the samples classified in AC. 
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The selection of positive examples (genes correlated with the AC3-AC1,2 
distinction) was performed using a nonparametric t-test with a (very strict) P value 
cutoff of 0.0005, while all genes with P ≥  Pneg = 0.3 were considered negative 
examples. Finally, only the examples with a counterpart in the HumanPSD database 
(thus having a GO annotation) were kept. (We thus selected 39 positive and 87 
negative examples.) 

3.2 The background knowledge 

The GO annotations of the examples selected above were used as background 
knowledge.8 For instance, the GO annotation of example ‘CDKN2A’ (cyclin-
dependent kinase inhibitor 2A) is: 

'Molecular Function'('CDKN2A','cyclin-dependent protein kinase inhibitor').   
'Molecular Function'('CDKN2A','tumor suppressor').   
'Biological Process'('CDKN2A','cell cycle checkpoint').   
'Biological Process'('CDKN2A','regulation of CDK activity').   
'Biological Process'('CDKN2A','oncogenesis').   
'Biological Process'('CDKN2A','cell cycle arrest').   
'Cellular Component'('CDKN2A','nucleus'). 

As many of the annotations are quite specific, they may be unable to cover more 
than one example. To allow non-trivial generalisations, we added as background 
knowledge an encoding of the GO hierarchy in the form of Prolog rules of the form  

go (‘nucleic acid binding’, X)  : −−−−  go(‘DNA binding’, X). 
go(‘DNA binding’, X)  : −−−−  go(‘DNA replication factor’, X). 

For example, the first rule states that annotation X is in the GO category ‘nucleic 
acid binding’ if it is in category ‘DNA binding’. Of course, the leafs of the GO 
hierarchy verify a fixpoint clause: 

go(X, X). 

3.3 The hypotheses language 

Using the ILP learner Progol [8], we looked for hypotheses with (an arbitrary 
number of) function literals in the body (with the second argument instantiated to a 
constant – in this case a GO annotation), such as: 

target(Gene)  : −−−−  function(Gene, ‘calcium binding’), function(Gene, ‘protein binding’). 
where 

function(Gene, GOterm)  : −−−− ( 'Molecular Function'(Gene,X)    ;  
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                              'Biological Process'(Gene,X)     ;  
                              'Cellular Component'(Gene,X)    ),  go(GOterm, X). 

3.4 Obtaining all “best” discriminating hypotheses 

For each positive example, Progol’s heuristic search selects only one “best” clause9 
discriminating this positive example from the negative examples, although there 
might be several clauses with the same covering and the same heuristic estimate. For 
instance, the positive example target(‘S100P’) admits the following alternative 
“best” discriminating clauses: 

target(G) : −−−− function(G,’calcium binding’), function(G,’protein binding’). 
target(G) : −−−− function(G,’calcium binding’), function(G,’cell-cell signaling’). 
target(G) : −−−− function(G,’calcium binding’), function(G,’cell communication’). 
target(G) : −−−− function(G,’cell-cell signaling’), function(G,’ligand binding or carrier’). 
target(G) : −−−− function(G,’protein binding’), function(G,’cell-cell signaling’). 
target(G) : −−−− function(G,’protein binding’), function(G,’cell communication’). 

Returning just one, as Progol does, may not be enough in our application, where 
- the number of negative examples may be too small to invalidate the wrong 

alternatives (candidate hypotheses), and/or 
- alternative viewpoints on the distinction between classes are highly desirable. 

Since Progol conducts a complete admissible search, it was relatively 
straightforward to extract all alternative hypotheses (having the same covering and 
the same heuristic estimate as the hypothesis selected by Progol). More precisely, 
we return for each seed example a list of alternative hypotheses, each with the set of 
positive examples covered (in general, containing also other examples besides the 
seed example). For example: 

Alternative hypotheses Positive examples covered 
target(G) : −−−− function(G,‘substrate-bound cell migration’) 
target(G) : −−−− function(G,‘lymph gland development’) 
target(G) : −−−− function(G,‘cell migration’) 

VEGFC 
VEGFC 
VEGFC 

3.5 Results 

Table 1 (on the last page) summarizes the results obtained. Each line represents a 
discriminating hypothesis and the positive examples covered by it (none of the 
hypotheses cover negative examples). Lines in the same group represent alternative 
hypotheses (for example, group 18 contains the alternative hypotheses from the 
previous section, covering VEGFC). Note that we do not return only the most 
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general alternative hypotheses (such as ‘transcription’ from group 3), since the 
available example set is small (as well as inherently incomplete) and a general 
hypothesis like ‘transcription’ may be too general to be informative. (Generalization 
is also controlled via the negative examples.) Nor do we keep just the most specific 
alternative hypotheses, since these may be too specific. It is ultimately up to the 
molecular biologist to choose the most significant hypothesis from the set of 
alternative ones. (The GO hierarchy is “shallow”, thereby making this task easy.) 

We found functional discrimination rules for virtually all the genes discussed in 
Garber et al. [5] in relation to AC 11 and all of them were found to be relevant by an 
expert molecular biologist.12 (The descriptions are biologically informative, 
although a bit too general – probably due to the quality of the initial annotations). 
The most significant ones are:  
• the 'cell cycle control' genes, especially the cyclin-dependent kinase inhibitor 

CDKN2A (p16) and the polo-like serine/threonine kinase (PLK),13 which are 
both up-regulated in AC3. 

• the 'cystein-type endopeptidase' cathepsin L (CTSL), involved in (extracellular) 
proteolysis, which is also up-regulated in AC3 with respect to AC1,2. 

• the 'signal transduction' and 'growth factor' Dickkopf (DKK1), which is known 
to contribute to neoplastic processes (it may play a key role in the transition from 
an epithelial to a mesenchymal phenotype - which is significant since AC involve 
epithelial cells). 

• the 'transporter', 'membrane' solute carrier protein SLC7A5, known to be closely 
linked to cellular activation and division (the transcripts of the SLC7A5 gene are 
rapidly induced and degraded, which is unusual for an integral plasma membrane 
protein and resembles more closely the kinetic seen for protooncogenes and 
lymphokines in T cells. It is thought to be up-regulated to support the high 
protein synthesis for cell growth and activation.) 

• in the 'tumor antigen' category, the carcinoembryonic antigen-related cell 
adhesion molecule CEACAM1 is involved in tumor angiogenesis. (CEACAM1 
is down-regulated in AC3 with respect to AC1,2.) 
Note that the discrimination rules induced strike a reasonable balance between 

generality and specificity: they are specific enough to be informative, but also 
general enough to explain occasional groups of genes that can be distinguished 
(from the negative examples) by certain common functions. 
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13 which is not mentioned in [5] but shows significant correlation with the AC3-AC1,2 
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There was one important functional distinction that could not be discovered due 
to the incompleteness of the Proteome GO annotation, namely 'angiogenesis' 
(involving for example the vascular endothelial growth factor C, VEGFC, which 
nevertheless was distinguished as being related to 'substrate-bound cell migration'). 

Note that none of the discriminatory descriptions induced by Progol contained 
general concepts (e.g. ‘oncogenesis’), which are common of all the AC subgroups. 
Discriminatory descriptions are thus informative: they tell us what distinguishes the 
genes expressed differentially in AC3 and AC1,2 from the others.  

The Pneg = 0.3 t-test margin for negative examples may be somewhat arbitrary. 
Too few negative examples would produce too general and thus useless 
discriminators. On the other hand, too many negative examples combined with a 
very coarse grained ontology like GO, may produce very specific discriminators or 
even none at all. 

Still, our experiments showed a surprising robustness with respect to the choice 
of the Pneg margin: the discriminators for Pneg = 0.3 and 0.1 respectively were very 
similar (the latter are not shown due to space limitations).  

Also, the fact that almost all alternative hypotheses (having the same covering 
and heuristic estimate as the ‘best’ hypothesis chosen by Progol) covered the same 
set of genes increases our confidence that the distinctions made by the 
discriminators reflect true functional distinctions rather than contingencies due to a 
biased initial functional annotation of the genes in the Proteome database. Indeed, 
for Pneg = 0.1 and the seed PLK, Progol learns 3 alternative hypotheses covering 
different groups of genes: 

  protein serine/threonine kinase, biological_process   CIT,PLK 
  cell cycle control, enzyme   BUB1B,DUSP4,PLK 
  cell cycle control, molecular_function   BUB1B,CDKN2A,DUSP4,PLK 

However 2 of the 3 hypotheses (marked in italics) involve two very general GO 
concepts (‘biological_process’ and ‘molecular_function’) and the distinctions they 
make are most probably annotation artifacts – in this case some negative examples 
(which would otherwise be covered) simply happen to lack annotations for 
‘biological_process’ and ‘molecular_function’. 

The uniformity of the coverings of the other groups of alternative definitions 
strongly suggests that the distinctions are true functional distinctions and not 
annotation artifacts (they were also confirmed by an expert). 

4 Towards more complex annotations 

Most current approaches to functional analysis of experimental data in genetics 
assign genes to one of a number of typically disjoint functional categories (which 
can be drawn from the GO, but without using the GO hierarchy). However, while 
such approaches are useful for obtaining aggregate overviews of whole genomes, 
they are less appropriate for more fine-grained functional discrimination of groups 



  

of genes, for which a predefined set of functional categories may turn out to be too 
coarse grained. 

The hierarchical structure of GO, as well as the presence of negative examples 
proved to be essential in our application. It is encouraging that the discriminations 
obtained are biologically sensible – this heavily relies on the GO and the 
HumanPSD annotations. But this also automatically prompts the question of whether 
more sophisticated knowledge representation formalisms, such as Description 
Logics (DL) [13] might allow even more precise functional distinctions to be made. 

The discriminatory hypotheses induced typically involve (combinations of) very 
specific GO properties of the target genes, in order to avoid covering any negative 
examples. However, the learning algorithm tries not only to avoid negative 
examples, but also to produce “short” hypotheses. In settings like ours involving 
complex disruptions of gene networks, we expect to be able to obtain more general 
descriptions of such disrupted groups of genes (in terms of concepts placed higher in 
the GO hierarchy). This was the case for example with the ‘cell cycle control’ genes, 
but this generalization capability of GO was limited to a certain extent by the fixed 
hierarchy. 

A DL may allow an “on-the-fly” construction of concepts, rather than relying on 
a fixed hierarchy. Thus, we wouldn’t need to explicitly record in the ontology all 
generalizations of existing concepts. For example, the current GO contains not just 
specific concepts like ‘cyclin-dependent protein kinase inhibitor’ or 
‘transmembrane receptor protein tyrosine kinase activator’, but also their 
generalization ‘kinase regulator’. On the other hand, a DL may take advantage of 
the intrinsic composite nature of the concepts above and represent them as 
∃inhibits.CDK and ∃activates.TRPTK. Their generalization need not be explicitly 
represented, since it can be computed by taking the least general generalization 
(“least common subsumer” in DL terminology) ∃regulates.kinase of the two 
concepts above. 

Thus, we think there are two types of possible extensions of the GO that would 
enhance its utility in functional analyses: 
• allowing a more sophisticated knowledge representation language (like DL) for 

describing GO concepts (this would generalize the hierarchical structure of GO 
and allow more refined concept generalizations) 

• integrating GO with metabolic, regulatory and cell signalling pathway databases 
(which would allow more precise causal reasoning – for example, determining 
possible primary causes for complex genetic disruption profiles). 
Already the most basic background knowledge on functional annotations, which 

involves hierarchies of concepts (as in GO, where the main type of relational 
information is in the form of inheritance relationships), is not directly treatable by 
propositional learners like C4.5 [10], but could be dealt with our approach. 

However, as the degree of sophistication of functional annotations will increase 
in the near future, it is important to know whether our approach will still be 
applicable in such more complex settings. (C4.5 will definitely be out of the 
question, due to its inherent difficulty of constructing hypotheses involving 



  

relational knowledge.) We argue that our approach is indeed applicable in such 
extended settings, even in the presence of arbitrarily more sophisticated relational 
annotations, such as: 
- ‘part-of’ relationships (already present in the Gene Ontology)  
- causal relationships between genes/proteins such as activates(G1,G2) or 

inhibits(G1,G2) (such types of knowledge exist to a certain degree14 in genetic 
regulatory and metabolic pathway databases, such as KEGG). 
For example, hypotheses involving ‘part-of’, such as15 
target(Gene)  :−−−−  ‘Biological Process’(Gene, ‘cell cycle control’), 

           ‘Cellular Component’(Gene, X), 
            active(G1),        %gene G1 is active 
            ‘Cellular Component’(G1, X1), part_of(X, X1). 

can only be induced using a true relational learner. 

5 Discussion 

The need for large-scale functional analysis of genomic and proteomic data requires 
increasingly more sophisticated knowledge discovery tools, able to take advantage 
of complex functional annotations as well as existing background knowledge on 
those. The functional discrimination of genes using the GO hierarchy seems a 
natural exploitation of the knowledge available in GO, but, as far as we know, hasn’t 
been tried before. ([11] also uses the GO, but for inducing signatures of temporal 
gene expression profiles rather than functional discrimination.) 

We view our application not just as a prototypical example of applying more 
sophisticated machine learning techniques to gene expression analysis, but also as an 
incentive for developing increasingly more sophisticated functional annotations and 
ontologies, that can be automatically processed by such learning algorithms.  

With the increasing efforts towards more complete functional annotations of 
genes, proteins and their pathways, the ability to learn complex relational 
descriptions will become even more important, making sophisticated learning 
techniques, such as ILP, indispensable.  

Several data- and knowledge bases of biological networks and pathways, 
designed with the aim of allowing automated processing, are currently under 
development. (As opposed to existing databases which were designed mainly for 
human users.) We argue that a tight feedback should exist between the annotation 
effort, the experimental conditions [14], but also the knowledge discovery tools to 
be used on these annotations. 
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In settings like ours, most of the lower levels of data preprocessing and 
clustering have been automated. With the ever-growing amount of such expression 
data available, their high level functional analysis seems to be the major bottleneck, 
which can be appropriately addressed using more sophisticated machine learning 
techniques, like ILP, able to deal with complex background knowledge. 

The specificities and complexities of functional genomics may require modifying 
existing learning algorithms, as we did in the case of constructing all alternative 
“best” hypotheses covering a given seed example. This modification turned out to be 
crucial in our application (together with the completeness of the hypotheses 
search).16 
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Discriminatory hypotheses Positive examples covered 
calcium binding, protein binding S100P 
calcium binding, cell-cell signaling S100P 
calcium binding, cell communication S100P 
cell-cell signaling, ligand binding or carrier S100P 
protein binding, cell-cell signaling S100P 
protein binding, cell communication S100P 
integral plasma membrane proteoglycan ICAM1,PTK7 
transcription, from Pol II promoter IRX5,TRIM29 
transcription, DNA-dependent IRX5,TRIM29 
transcription IRX5,TRIM29 
tumor antigen CEACAM1,STEAP 
cell surface antigen CEACAM1,STEAP 
furin PACE 
cell cycle control BUB1B,CDKN2A,DUSP4,PLK 
6-phosphofructokinase PFKP 
glucose metabolism PFKP 
hexose metabolism PFKP 
monosaccharide metabolism PFKP 
carbohydrate metabolism PFKP 
transporter, membrane ABCC2,AQP8,SLC2A1,SLC7A5,STEAP 
RHO small monomeric GTPase ARHE 
actin cytoskeleton reorganization ARHE 
peripheral plasma membrane protein ARHE 
small monomeric GTPase ARHE 
protein kinase cascade CIT,DUSP4,STAT4 
monooxygenase CYP24 
cysteine-type peptidase CTSH,CTSL 
lysosomal cysteine-type endopeptidase CTSH,CTSL 
cysteine-type endopeptidase CTSH,CTSL 
transcription co-repressor ID3 
transcription regulation, from Pol II promoter ID3,STAT4 
transcription regulation ID3,STAT4 
respiration SFTPC 
membrane, ligand ICAM4,SCYD1 
plasma membrane, ligand ICAM4,SCYD1 
RNA helicase DBY 
adenosinetriphosphatase DBY 
helicase DBY 
signal transduction, growth factor DKK1 
substrate-bound cell migration VEGFC 
lymph gland development VEGFC 
cell migration VEGFC 
excretion UNC13 
basement membrane LAD1 

Table 1. Hypotheses discriminating genes differentially expressed in classes AC3 
and AC1,2. 




