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Huge unrealized post-genome opportunities remain in the understanding of detailed 
molecular mechanisms for Alzheimer Disease (AD). In this work, we developed a 
computational method to rank-order AD-related proteins, based on an initial list of AD-
related genes and public human protein interaction data. In this method, we first collected 
an initial seed list of 65 AD-related genes from the OMIM database and mapped them to 
70 AD seed proteins. We then expanded the seed proteins to an enriched AD set of 765 
proteins using protein interactions from the Online Predicated Human Interaction 
Database (OPHID). We showed that the expanded AD-related proteins form a highly 
connected and statistically significant protein interaction sub-network. We further 
analyzed the sub-network to develop an algorithm, which can be used to automatically 
score and rank-order each protein for its biological relevance to AD pathways(s). Our 
results show that functionally relevant AD proteins were consistently ranked at the top: 
among the top 20 of 765 expanded AD proteins, 19 proteins are confirmed to belong to 
the original 70 AD seed protein set. Our method represents a novel use of protein 
interaction network data for Alzheimer disease studies and may be generalized for other 
disease areas in the future.   

1. Introduction  

Alzheimer Disease (AD) is a progressive neurodegenerative disease with 4.5 
million patients in the United States today. This number of AD patients is 
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expected to increase to 11 to 16 million by 2050 when the baby boomers age. 
The cognitive function of an AD patient deteriorates irreversibly over time and 
complete care is required for basic daily activities in the late stages of the 
disease. In 2000, health care costs for AD patients in the United States totaled 
approximately $31.9 billion, which is expected to reach $49.3 billion by 2010 
(above statistics can be found at http://www.alz.org/). Therefore, AD is a major 
and rapidly growing public health concern.  

The exact molecular mechanisms leading to the clinical symptoms and 
neuropathological changes associated with AD remain unclear. Selective brain 
neuronal loss, extracellular amyloid (senile) plaques, and intracellular 
neurofibrillary tangles (NFT) of hyperphosphorylated tau protein are 
characteristically seen in the brains of AD patients [1, 2]. According to the 
widely-accepted “amyloid hypothesis” [3, 4], an unusual accumulation of beta-
amyloid peptides (A!), cleavage products of the amyloid precursor proteins 
(APP), are the major cause of AD in its earliest stages. In Familial Alzheimer 
Disease (FAD), genetic defects code for abnormal variants of either the APP or 
presenilin (PSEN1, PSEN2)— often leading to abnormal formation of A! as 
“protofibrils” [5]. A! protofibrils can incite inflammatory response through 
cytotoxic cytokines and disrupt intracellular Ca2+ homeostasis through over-
activation of glutamate receptors, therefore leading cells to oxidative stress and 
mitochondrial injury. A! protofibrils deposit in the extracellular space which 
may also cause neuronal cell damage by blocking axonal transport. Aberrant A! 
accumulation further causes aberrant accumulation of tau, a protein which 
normally is essential to the initiation and stabilization of the neuronal 
microtubules. As time going by, gradual breakdown of neuronal cytoskeleton 
eventually leads to neuron apoptosis in AD patients (For a comprehensive 
review, see [1, 2] and references therein). The complexity and broad range of 
these cellular and biochemical events make researchers believe that there must 
be a sophisticated network of AD signal transduction, gene regulation, and 
protein-protein interaction events. Therefore, deciphering AD-related molecular 
network “circuitry” can help researchers understand AD disease model details 
and propose treatment ideas. 

In this work, we will conduct initial AD-protein interaction network 
analysis and demonstrate how to gain protein functional knowledge not directly 
implied from sequence information. We will organize the main body of the 
work by presenting our computational data analysis methods and results. We 
will discuss potential interpretations and significance of our results at the end.  
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2. Computational Method 

We introduce the computational techniques and procedures developed for AD 
protein interaction sub-network analysis, which can be summarized as follows. 
First, we searched the Online Mendelian Inheritance in Man (OMIM) database 
[6] to obtain an initial collection of AD-related genes. Second, we used the 
HUGO Gene Nomenclature Committee (HGNC) [7] database to map the initial 
AD-related genes to AD-related proteins identified by their SwissProt IDs. 
Third, we used a nearest-neighbor expansion method to build an expanded AD 
protein interaction sub-network. Fourth, we developed and applied a 
bioinformatics software tool, ProteoLens [8], to visualize and annotate the AD 
interaction sub-network. Fifth, we performed statistical analysis to assess the 
significance of the subnetwork extracted. Sixth and lastly, we developed a 
heuristic algorithm and scoring method, which we used to obtain a rank-ordered 
list of proteins significantly related to the AD. A detailed description of our 
method is provided below. 

2.1. Initial Collection of AD Related Genes 

We used the OMIM database [6] as the starting point to retrieve an initial 
collection of AD related genes. In OMIM, human genes associated with genetic 
disorders are recorded in a mini-review format, along with additional 
information such as their functions, participating molecular pathways, and other 
disease-related information. To obtain a list of AD-related genes, we performed 
a search of the OMIM database (integrated into our biological data warehouse in 
early 2004), retrieving each OMIM gene record in which the “description” field 
contains the term “Alzheimer”. 65 OMIM gene records were retrieved. Note 
that since the retrieval method is coarse (i.e., based on simple term matches), the 
65 collected AD-related gene records may suffer from both false positives 
(containing retrieved genes that are not actually functionally relevant to AD) 
and false negatives (missing genes that are indeed functionally related to AD but 
not retrieved). Soon in subsequent protein interaction network analysis, we will 
use protein interaction network neighborhood information and show that these 
concerns can be ameliorated.  

2.2. Mapping of Initial AD Related Genes to Proteins 

We used the HUGO Gene Nomenclature Committee (HGNC) [7] database of 
gene symbols and proteins to map gene symbols to their correct protein 
identifiers. HGNC is an international standard repository of officially approved 
gene symbols. For each gene, the HGNC database provides its standard gene 
symbol and gene mappings to various IDs used in common public databases, 
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e.g., Swiss-Prot, NCBI RefSeq, NCBI Locuslink, and KEGG enzyme. For our 
work, we started with 65 sets of OMIM gene records, some of which were 
associated with more than one gene symbol. After mapping all the gene symbols 
to protein SwissProt IDs using the HGNC gene mapping table, we obtained 70 
AD-related proteins. The slight increase in protein count is due to one-to-many 
mapping between a gene and its multiple splice variant forms at the protein 
level.  

2.3. Collection and Expansion of AD Related Protein Interactions 

We used the Online Predicted Human Interaction Database (OPHID) [9] to 
collect AD-related protein interaction data. OPHID is a web database of more 
than 40,000 human protein interactions involving ~9,000 human proteins. It is a 
comprehensive repository of known human protein interactions, both from 
curated literature publications and from high-throughput experiments. It also 
contains predicted interactions inferred from eukaryotic model organisms, e.g., 
yeast, worm, fly, and mouse. The prediction was performed by mapping 
interacting protein pairs from available model organisms onto their orthologous 
protein pairs in human, or by making inference from interacting domain co-
occurrence, co-expression, and GO semantic distance evidence. More than half 
of OPHID’s records are predicted human protein interactions; however, not all 
OPHID human protein interactions carry the same level of significance. In 
general, those derived from real human protein interaction experiments should 
be much more trustworthy than those derived from predictive methods applied 
on yeast data sets. Therefore, to assign an estimated interaction confidence 
score, we developed the following heuristic scoring rules: 

1. Protein interactions from human experimental measurement or from 
literature curation are assigned a high confidence score of 0.9;  

2. Human protein interactions inferred from high-quality interactions 
in mammalian organisms are assigned a medium confidence score 
of 0.5; 

3. Human protein interactions inferred from low quality interactions or 
non-mammalian organisms are assigned a low confidence score of 
0.3.  

With the initial AD-related protein list and a comprehensive OPHID protein 
interaction data set, we can now derive a AD-related protein interaction sub-
network using a nearest-neighbor expansion method. Here, we denote the 
initial 70 AD-related proteins as the seed-AD-set. To build AD sub-networks, 
we pulled out protein interacting pairs in OPHID such that at least one member 
of the pair belongs to the seed-AD-set. The set of interacting pairs pulled out 
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will be called the AD-interaction-set. We denote the new set of proteins 
expanded from initial seed-AD-set by new proteins involved in the AD-
interaction-set as the enriched-AD-set (a superset of seed-AD-set). In our 
study, the AD-interaction-set contains 775 human protein interactions; the 
enriched-AD-set contains 657 human proteins identified by Swissprot IDs.  

2.4. Visualization of AD Protein Interaction Sub-Network 

We developed ProteoLens [10], a visual biological network data mining and 
annotation tool that can be freely downloaded at 
http://bio.informatics.iupui.edu/proteolens/, to help us analyze the AD-related 
protein interaction sub-network. ProteoLens has native built-in support for 
relational database access and manipulations. It allows expert users to browse 
database schemas and tables, filter and join relational data using SQL queries, 
and customize any combination of data fields. The reconfigured view of data 
can be immediately visualized in the ProteoLens network viewer without 
needing to be exported as flat files first. Note that network nodes and edges can 
be used to represent proteins and protein interactions, whereas node/edge size, 
width, shape, and color can all be used to dynamically bind to customized data 
fields (such as gene symbol, functional category, and confidence score) to be 
visualized. Once a visual network layout is generated, the layout, visual 
annotation, and network member proteins/protein interactions can be tweaked 
without file editing. 

2.5.  Statistical Evaluation of Sub-network 

We performed statistical data analysis tests to examine the significance of the 
connected sub-network formed by AD-interaction-set. Our hypothesis for this 
statistical evaluation is that if the enriched-AD-set indeed consists of 
functionally related proteins involved in the same process—even if the process 
were complex and broad—then we should expect that the connectivity among 
the enriched-AD-set proteins to be higher than that among a set of randomly 
selected proteins. 

To formulate our hypothesis precisely, we introduce three concepts. First, 
we define a path between two proteins A and B as a set of proteins P1, P2,…, 
Pn such that A interacts with P1, P1 interacts with P2, …, and Pn interacts with 
B. Note that if A directly interacts with B, then the path is the empty set. 
Second, we define the largest connected sub-network of a network as the 
largest subset of proteins and interactions, among which there is at least one 
path between any two proteins in the subset. Third, we define the index of 
aggregation of a network as the ratio of the size of the largest sub-network that 
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exists in this network to the size of this network. Note that size is calculated as 
the total number of proteins within a given network/sub-network.  

To test the hypothesis that the enriched-AD-set proteins are “more 
connected” than a randomly selected set of protein, we develop the null 
hypothesis test using the following resampling procedure [11]:  

1) Randomly select from the OPHID database, the same number of human 
proteins as in the seed-AD-set. 

2) Build the superset of the selected set by using the same nearest-neighbor 
expansion method described earlier. 

3) Find the largest sub-network of the superset. 
4) Compute the index of aggregation of the superset. 
5) Repeat steps 1 through 4 1,000 times to generate a distribution of the 

index of aggregation under random selection. 
6) Compare the index of aggregation of the enriched-AD-set with the 

distribution obtained in 5 and calculate the p-value. 

2.6. Scoring of Significant Proteins in the Sub-network 

In the final step, we present a scoring method to rank proteins in the sub-
network, based on their overall roles and contribution to the AD related protein 
interaction sub-network. The role of a protein in the sub-network can be 
qualitatively defined as its ability to connect to many protein partners in the 
network with high specificity (the less promiscuously connected, the better) and 
high fidelity (the higher the interaction confidence, the better). To define this 
role quantitatively, we introduce a heuristic relevance score function si for each 
protein i from the sub-network:  
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In Eq. 1, i and j are indices for proteins in the sub-network, k is an empirical 
constant (k>1; we set k=2 here), N(i) is the set of interaction partners of protein i 
in the network, A is the set of proteins in enriched-AD-set, p(i,j) is the initial 
confidence score that we assigned to each interaction between proteins i and j 
(described in section 2.3), and N(i,j) holds the value of 1 if protein j belongs to 
the intersection of AiN +)(  or 0 otherwise. Empirically assessing the relevance 
score function, we can tell that the score si ranks favorably in situations where 
interacting proteins with many high confidence interactions among its neighbors 
will fare out better than those with many low-quality interactions and those with 
only a few interactions. To avoid showing a negative score, in this work, we 
further converted si to the exponential scale using the transformation ti= exp(si), 
and report ti  as the final protein ranking score. 
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3. Results 

By following the data analysis steps outlined in the Method section, we obtained 
the following results.  

3.1. AD-Related Proteins and Protein Interactions 

In the AD seed set, we have an initial list of 65 AD related OMIM gene records. 
These records are later mapped to 70 seed-AD-set proteins using gene-to-
protein mapping tables from HGNC. As explained earlier, this discrepancy was 
due to the one-to-many mapping relationships between genes and their protein 
products. Using OPHID and the nearest-neighbor expansion method, we 
obtained 775 AD-related human protein interactions (as the AD-interaction-
set). This expanded AD-interaction-set contains an expanded 657 human 
proteins (as the enriched-AD-set).  

The proteins in the enriched-AD-set form 16 sub-networks, with a size 
ranging from 2 to 586 (or, a relative size from 0.3% to 89.2%). Therefore, the 
largest connected sub-network of the enriched-AD-set contains 586 proteins and 
the index of aggregation is 82.9%. This suggests that the majority of AD 
related proteins are closely related by physical interaction—a phenomena that 
we would like to test for statistical significance (see Section 3.3 ) 

3.2. Visualization of AD Expanded Protein Interaction Network 

Figure 1 shows the enriched-AD-set proteins and the AD-interaction-set of 
human protein interactions in visualized network. All the seed-AD-set proteins 
(shown as nodes) are colored dark gray, while the non seed-AD-set proteins 
(also shown as nodes) are colored light gray. Proteins with high ranking scores 
(see Table 1 and the Discussion section) are also draw as nodes with sizes 
proportion to the ranking score. All the protein interactions (shown as edges) are 
also color-labeled, with high-quality interaction in black, medium-quality 
interactions in dark gray, and low-quality interactions in gray. We observe that 
interactions tend to “fan out” from a few protein hubs in the network, and that 
there are relatively few interactions among the proteins extending from the seed-
AD-set. One expects that true AD-related proteins would interact with many 
seed-AD-related proteins with high degree of confidence and specificity. 

3.3. Statistical Significance 

The empirical distribution of the index of aggregation obtained after 1000 
random re-samplings is shown in Figure 2. Only 8 runs out of 1000 resulted in 
an index of aggregation value greater than 89.2%. Therefore, the p-value of the 
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observed index of aggregation of the enriched-AD-set is 0.008. It is not 
surprising to observe such a significant result since the AD-set is selected in a 
way that proteins inside the set share certain level of connection since all of 
them are associated with AD. 

 
Figure 1. A network of OPHID human interactions expanded from initial 70 seed-AD-set (colored in 
dark gray). Protein interactions are colored in different shades of gray according to confidence level 
assigned, and protein node size as shown in proportion to their significance in the network (see text 
for details).  

Next, the relevance score was calculated for each protein in the enriched-
AD-set. The results (Table 1) show that our scoring function exhibits very high 
specificity: out of 20 top-scoring proteins, all but one (!-catenin, CTNNB1) are 
known AD-related proteins according to OMIMM annotation. Further literature 
study (see discussion) suggests that even CTNNB1 could be involved in the AD 
disease development process [12]. This result opens up exciting new 
possibilities to identify novel or previously ignored members of the AD 
pathway(s) for subsequent protein drug target investigations or disease 
biomarker studies. 
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Figure 2.  Histogram of the index of aggregation distribution for the enrichments of sets of proteins 
(size=48) randomly selected from OPHID. The arrow indicates the index of aggregation value for the 
enriched-AD-set. 

4. Discussion 

The integrated approach to the analysis of human interaction data and 
Alzheimer disease proteins allowed us to validate existing disease protein 
targets and predict novel ones not present in the initial list of disease protein 
targets that we started with. The result can be interesting to Alzheimer disease 
biologists, and our method can be generalized to other disease biology areas. By 
further examining our discoveries in the top-ranked proteins (top 20 are 
tabulated in Table 1, other will be made available on our web site 
http://bio.informatics.iupui.edu/ soon), we can make the following comments: 

First, one of the important Alzheimer disease proteins, tau protein (MAPT, 
ranked 31), a well-known participant in AD-linked degeneration pathway(s), 
was not initially retrieved by our automated procedure from OMIM data but was 
later recovered from the interaction data analysis. Therefore, at least in a few 
isolated cases, our method can allow the recovery of false negatives.  

Second, the amyloid beta A4 precursor-protein binding protein, APPB1 
(ranked 33), represents another interesting case. It is a well-known interaction 
partner of APP, but a genetic link to AD was reported in OMIM only for the 
other member of the family, APPB2 (ranked 32). Our method still predicts that 
APPB1 also plays some role in AD. A recent literature report [13], shows that 
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APPB1 indeed directly associates with tau and may provide the crucial missing 
link between tau and APP proteins in Alzheimer disease. 

Table 1. Top 20 rank-ordered AD relevant proteins. 

Score Gene Description AD 
Relevance 

43.01 APP amyloid beta (A4) precursor protein (protease nexin-II, 
Alzheimer disease) 

Known 

36.98 PSEN1 presenilin 1 (Alzheimer disease 3) Known 
35.64 LRP1 low density lipoprotein-related protein 1 (alpha-2-

macroglobulin receptor) 
Known 

21.87 PSEN2 presenilin 2 (Alzheimer disease 4) Known 
20.89 PIN1 protein (peptidyl-prolyl cis/trans isomerase) NIMA-

interacting 1 
Known 

19.37 FHL2 four and a half LIM domains 2 Known 
15.39 S100B S100 calcium binding protein, beta (neural) Known 
12.96 FLNB filamin B, beta (actin binding protein 278) Known 
12.37 CTNND2 catenin (cadherin-associated protein), delta 2 (neural 

plakophilin-related arm-repeat protein) 
Known 

12.15 CLU clusterin (complement lysis inhibitor, SP-40,40, sulfated 
glycoprotein 2, testosterone-repressed prostate message 

2, apolipoprotein J) 

Known 

11.34 APBA1 amyloid beta (A4) precursor protein-binding, family A, 
member 1 (X11) 

Known 

10.00 NAP1L1 nucleosome assembly protein 1-like 1 Known 
9.54 GTPBP4 GTP binding protein 4 Known 
9.48 NCOA6 nuclear receptor coactivator 6 Known 
9.15 CDK5 cyclin-dependent kinase 5 Known 
7.44 CTSB cathepsin B Known 
7.29 ASL argininosuccinate lyase Known 
4.86 CTNNB1 catenin (cadherin-associated protein), beta 1, 88kDa Novel 
4.86 NCKAP1 NCK-associated protein 1 Known 
4.86 AGER advanced glycosylation end product-specific receptor Known 

 
Third, !-Catenin (CTNNB1, ranked 18 as shown in Table 1), was not 

previously associated with AD in OMIM or in the general biomedical 
community, therefore representing a “clear” case of computational prediction 
results. Interestingly, while the exact role of !-catenin in AD is not well 
understood, it is known that Wnt signaling pathway (which !-catenin is a part 
of) is a target of A! toxicity [14]. Moreover, the Wnt-3a ligands and other 
agents that are reported to overcome beta amyloid toxicity stabilize CTNNB1 
levels in cytoplasm [15, 16]. It should be stressed that while the OPHID 
interactions between !-catenin and AD-set proteins are of high-quality, i.e. 
derived from the literature, one could only speculate about the potential role of 
!-catenin, since, for instance, both CTNNB1 and its interaction partners’s 
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expressions are far from being limited to neurons. It is the pattern of !-catenin 
interactions revealed through the analysis of combined evidence that resulted in 
high AD-relevance score for !-catenin.  

In all, our method incorporated protein interaction data and helped us to 
successfully carry out Alzheimer disease-related biological studies. The 
computational results, which began with inputs that are not necessarily highly 
reliable, showed high biological relevance.  Going down the ranked protein 
targets, one may generate many new biological hypotheses about the new 
functions of proteins in the protein interaction network context beyond the 
scope of this work. We are currently developing collaborations with industrial 
partners who have accumulated experimental human protein interactions? to 
further conduct these computational investigations on high-confidence data sets. 
Meanwhile, we are also in the process of developing better scoring functions 
and applying these methods to the study of other disease areas. 
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