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We propose a Bayesian approach to identify protein complexes and their con-
stituents from high-throughput protein-protein interaction screens. An infinite
latent feature model that allows for multi-complex membership by individual pro-
teins is coupled with a graph diffusion kernel that evaluates the likelihood of two
proteins belonging to the same complex. Gibbs sampling is then used to infer a
catalog of protein complexes from the interaction screen data. An advantage of
this model is that it places no prior constraints on the number of complexes and
automatically infers the number of significant complexes from the data. Validation
results using affinity purification/mass spectrometry experimental data from yeast
RNA-processing complexes indicate that our method is capable of partitioning the
data in a biologically meaningful way.
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1. Introduction

The analysis of protein-protein interactions forms an essential part of the
“systems biology” enterprise. Many cellular functions are performed by
multi-protein complexes and the identification and analysis of protein com-
plex membership reveals insights into both the topological properties and
functional organization of protein networks. Recently, high-throughput
techniques have been developed to investigate physical binding between
the constituents of protein complexes on a proteome-wide scale. The yeast
two-hybrid assay (Y2H), a means of assessing whether two single proteins
interact, has been adapted to systematically test pairwise protein interac-
tions on a large scale™?, whereas affinity purification techniques using mass
spectrometry (APMS)? provide a particularly effective approach to iden-
tifying protein complexes that contain more than two components. These
techniques have been used to perform large scale protein-protein interac-

456 and the bacterium

tion screens in the yeast Saccharomyces cerevisiae
Escherichia coli”.

In the APMS techniques, as described by Kumar and Snyder?, individ-
ual proteins are tagged and used as “baits” to form physiological complexes
with other proteins in the cells. Then, using the tag, each bait protein is
purified, retrieving the proteins to which it binds, which may sometimes
constitute the entire complex. The proteins extracted with the bait protein
are identified using standard mass spectrometry methods. The raw results
of these experiments are often referred to as “purifications” and may differ
substantially from what is thought to exist in the cell and what is anno-
tated in databases of protein complexes. Identification of actual protein
complexes from these “purifications” often involves manual post-processing
based on the existence of overlaps between the purifications*. Attempts to
automate complex identification have involved the use of binary protein-

8:9:10 " unsupervised clustering based on special

protein interaction graphs
similarity measures'% and graph-theoretic approaches'*. However, these
approaches are bedeviled by a number of problems, such as fact that the
exact number of complexes is initially unknown; the presence of poten-
tial contaminant proteins (which may themselves form complexes); the fact
that the experiments do not always retrieve whole complexes, but only
sub-complexes; and the presence of shared components, which need to be
assigned to more than one complex.

In this paper, we propose a probabilistic algorithm to identify protein

complex membership using the data from affinity purification/mass spec-
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Figure 1. Representations of APMS results. (i) shows the native composition of two
protein complexes. (ii) represents the purification results for bait proteins, in which 1’s
denote positive and 0’s denote negative, respectively. (iii) presents the corresponding
adjacency matrix. (iv) specifies the complex membership of these proteins, where each
entry is a binary random variable which indicates the members of the corresponding
protein complex.

trometry (APMS) experiments. The membership between pairs of proteins
is represented by a graph diffusion kernel, and the complexes and their
constituents are identified by an infinite latent feature model. This model
allows for multi-complex membership by individual proteins, which is fun-
damental for procuring an accurate protein complex catalog. The approach
is novel as it identifies the complexes directly from experimental purifica-
tions. Our method provides insights into the organization of protein com-
plexes into a core and peripherally located, possibly transiently binding

components'!+12,

2. Data Representation

An example of the APMS method is shown in Figure 1. The purification
results are usually recorded in the form of a binary matrix as shown in
Figure 1(ii). Note that the APMS technology is neither perfectly sensitive
nor specific, resulting in the failure to detect certain components (false
negatives — FN) and the identification of proteins which are not members of
a complex (false positives — FP). FN observations are represented by italic
0’s in the example shown in Figure 1(ii). Let B denote the purification
matrix with size S x N, where S is the number of bait proteins and NV is
the number of proteins found in purifications. The corresponding adjacency
matrix A is defined by A = BTB, which is a symmetric N x N matrix. The
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ij-th element, A;;, is the number of purifications in which both protein i
and protein j appear. The similarity between protein pairs can be measured
by a graph diffusion kernel'® based on A. In this work, we focus on the
von Neumann diffusion kernel'® as the closeness measure. Kernel methods
have also been applied to the inference of biological networks from other
data sources!'"18.

3. The von Neumann Diffusion Kernel

The element A;; in the adjacency matrix can be thought of as the number
of distinct “paths” between protein ¢ and protein j discovered by the APMS
experiment. For example in Figure 1, there are two paths between protein
d and protein e and no path directly connecting protein a and protein e.
However, we could also reach protein e indirectly from protein a via the
paths through the neighbors of protein a, e.g. a-b-e a-c-e and a-d-e. The
number of distinct paths with length 2 between a pair of proteins can be
directly counted by the matrix product AA. More generally, the number
of paths from protein ¢ to protein j of length ¢ on the graph can be directly
counted as the ij-th element of the matrix A¢. The closeness between a pair
of proteins can be measured by the number of distinct paths with different
length. The von Neumann diffusion kernel'¢ is the limit of the sum of the
geometric series, defined as

o0
Ko 3o A A LA W

=1
where v is the diffusion factor to ensure the longer range connections de-
cay exponentially.* The normalized kernel is an appropriate measure of
similarity, which is defined as
_ Ky @)
VEKiKjj
Note that the matrix elements are between 0 and 1. D;; = 0 implies protein
1 is isolated from protein j. On the contrary, D;; approaches 1 if the protein
pair is tightly connected. The elements of the normalized von Neumann
kernel (2) provide a probabilistic measure on the pairwise membership of
two proteins in the same complex. This interpretation makes D;; suitable
for use as a likelihood in a probabilistic model, which we now describe.

Dij =

2The von Neumann kernel (1) is positive definite only if 0 < v < p~! where p is

the spectral radius of A. + could be learnt from the data. In this work, we set v =
(14 x)~1p~! where & is the proportion of non-zero elements in the adjacency matrix A.
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4. Protein Complex Membership

Protein complex membership can be represented as a binary matrix, de-
noted as Z (see Figure 1(iv)). Each column of the matrix Z is denoted by
z;, known as the feature vector of the protein. The length of z; is variable,
as the number of protein complexes is actually unknown. The membership
of the i-th protein in complex c¢ is indicated by a binary random variable
zci- Note that each protein may belong to multiple complexes. The learn-
ing task is to infer a catalog of protein complexes and their constituents
from the APMS experimental data.

4.1. An Infinite Latent Feature Model

Griffiths and Ghahramani'® have proposed a probability distribution over
binary matrices with a fixed number of columns (proteins) and an infinite
number of rows (complexes), which is particularly suitable for use as a prior
in probabilistic models that represent proteins with multiple complex mem-
bership. In the following we describe this infinite latent feature model'® in
the context of protein complex membership identification. Since the exact
number of complexes is initially unknown, we start with a finite model that
assumes C' complexes, and then take the limit as C' — oo to obtain the prior
distribution over the binary matrix Z. As in other non-parametric models,
taking this limit ensures that the model is flexible enough to capture any
number of complexes.

We assume that each protein belongs to a complex ¢ with probability
7., and then given the set m = {my, ma,..., 7} the probability of matrix Z
is a product of binomial distributions

C N C
P(zZlm) = [[ I Pzeilme) = [ wie (1 = me) ¥, (3)

c=1i=1 c=1

where n, = vazl Zei 1S the number of constituent proteins belonging to
the complex c. As suggested by Griffiths and Ghahramani'®, the beta
distribution is chosen to be beta(&,1) where o is a model parameter.”
In the probabilistic model we have defined, each z.; is independent of all
other memberships and the 7.’s are also independent of each other. Given
this prior on 7, we can simplify this model by integrating over all possible

bWe set o = 1 in this work which represents our prior belief that each protein is expected
to belong to one complex but probably not many more.
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settings for 7, and then compute the conditional distribution for any z.; as
follows
N_j.c + %

P(zeilZ-ic) = N+ <
C

; (4)
where Z_; . denotes the entries of Z except z.;, and n_; . is the number of
proteins belonging to the complex ¢, not including the protein 1.

The infinite model can be obtained from the finite model by taking the
limit of (4) as C — oo. The conditional distribution of z.; in the infinite
model is then

n:
P(Zci|z—i,c) = %7 (5)
for any ¢ such that n_; . > 0. As for the ¢’s with n_; . = 0, it can be shown
that the number of new complexes associated with this protein, denoted as

v;, has a Poisson distribution with the parameter 3 as follows,

=)= ©)

Details of all these properties of the infinite latent feature model can be
found in Ref. 19.

Pwi|Z i) = (

Vi!

4.2. Likelithood Evaluation

Given a particular protein complex membership matrix Z, the pairwise
membership can be determined by examining whether z!z; > 0 or zl'z; =
0, which categorizes the protein pairs respectively into two classes, members
of the same complex or not. The likelihood can be evaluated by the von
Neumann diffusion kernel (2) directly, as D;; exactly measures the proba-
bility of the protein pair being members of a protein complex. Therefore,

the likelihood can be evaluated as follows,
27z,
PDZz)= [ @yp== J[ @-Dy), (7)
{ij:zF=z;>0} {ij:zF=z;=0}

where {ij} denotes any distinct pair and D denotes the normalized von
Neumann kernel matrix obtained from the APMS experiments.

4.3. Membership Inference

Based on Bayes’ theorem, the posterior distribution of the protein complex
membership Z can be given by P(Z|D) «x P(D|Z)P(Z), where P(D|Z) is
defined as in (7), and P(Z) is defined by the infinite latent feature model.



Pacific Symposium on Biocomputing 11:231-242(2006)

September 23, 2005 18:49 Proceedings Trim Size: 9in x 6in chu

We have defined a posterior distribution for the protein complex mem-
bership that does not assume a fixed number of protein complexes and
allows for multiple membership. In the following, we describe a Gibbs sam-
pler to carry out inference in the infinite latent feature model. The critical
quantity required in the Gibbs sampling is the conditional distribution

,P(Zci‘zfi,ca D) X ,P(D|Z),P(ZCZ‘Z,Z’C)7 (8)

where the likelihood P(D|Z) is defined as in (7), and P(z¢;|Z—;,c) is defined
as in (5) for any ¢ with n_; . > 0. While for the complexes with n_; . = 0,
the conditional distribution over the number of new complexes taken by
the protein can be computed as follows

”P(VZ-\Z,Z-’C,D) 0.8 ,P(D|Z),P(VZ|Z,Z’C)7 (9)

where P(v;]Z_,; ;) is a Poisson distribution defined as in (6). Note that the
membership of new complexes does not change the pairwise membership at
all. So the likelihood P(D|Z) stays equal for any value of v; in our model.
The overall algorithm can be summarized as follows,

(1) Initialize Z randomly, usually start with one complex.
(2) Fort=1t T

(a) For each i and each ¢ with n_; . > 0, sample z.; in the dis-
tribution (8).
(b) For each 4, sample the number of new complexes in the Pois-
son distribution (6).
(¢) Save the sample Z.
(3) Ewxit

In this work, we collected 1000 samples after burning in the first 1000 sam-
ples as an approximate estimate of the posterior distribution of Z. The com-
putational overhead of this algorithm is approximately O(TCN?), where T
denotes the number of samples we collect, C' denotes the number of signifi-
cant complexes in the data and N denotes the number of hit proteins. The
algorithm has been implemented in Matlab. On a Linux Athlon 1800 desk-
top, it took about 89.7 seconds to process the RNA Polymerase complex
data set described below.

5. Results

To validate our approach, we have applied the above algorithm to two exper-
imental data sets: the purifications corresponding to the proteins contained
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Figure 2. The RNA Polymerase complexes. (i) presents the purification results using
9 bait proteins. (ii) presents the corresponding normalized von Neumann kernel matrix,
where the gray scale indicates the probability of pairwise membership defined as in (2).
The proteins are sorted according to the inferred complex membership

in the RNA Polymerase complexes from the whole proteome screen of Gavin
et. al*, and the yeast RNA-Processing Complexes data of Krogan et. al®.
The RNA Polymerase complexes are a particularly suitable and tractable
test case, since they share five components and their three-dimensional
structure has been determined by X-ray crystallography?®, providing a
“gold standard”. The data set used comprised 9 purifications (baits) and 43
proteins (hits) extracted from the data of Gavin et al.* as shown in Figure
2(i). Figure 2(ii) shows the normalized von Neumann diffusion kernel (2)
for this data. The final protein complex assignments are shown in Figure
3. Proteins correctly assigned to the three RNA Polymerase complexes ac-
cording to the MIPS protein complex database?! are marked with crosses in
Figure 3. TFG1/2 and SPT5 appear as members of the RNAP II complex
under the APMS conditions used and thus are included in the prediction.
RPB5 and 8 are clearly seen to be shared amongst all 3 complexes, whilst
RPO26 and RPC40 are shared between RNAP I and III. Due to the nature
of the experimental data, one cannot assume a perfect match, particularly
as only a few baits of the whole complex were actually purified.

A subset of the more extensive yeast RNA-processing complex data of
Krogan et al. comprising the “reliably identified” complexes® consisted of
a data set of 71 purifications (baits) and 240 proteins (hits). We restricted
the analysis to the data sample used for hierarchical clustering in the study
of Krogan et al. (MALDI data). Inspection of the normalized von Neu-
mann diffusion kernel for this data (Figure 4, bottom right) indicated that
a subset of this data (24 baits and 49 proteins) formed clear and unam-
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Figure 3. The four largest complexes identified by our algorithm. The bars indicate the
probability of membership of the proteins. The top 3 complexes correspond to RNAP
II, RNAP III and RNAP I respectively. The cross indices indicate the members of the
three RNA polymerase complexes according to the MIPS protein complex database.

biguous clusters amongst themselves, and so were not processed further.
This subset of the data comprised 9 clusters with membership > 2, the
largest of which was the 19S regulatory subunit of the proteasome com-
prising RPN1,2,3,5,6,7,9,10,11,12 and RPT1,3,6. Some known proteins of
the proteasome are missing because they were not part of the experimental
data set. The remaining data set, comprising 47 baits and 191 proteins
were analyzed using the method described above, resulting in 20 clusters
being identified. The assignments into the 20 identified clusters are shown
in Figure 5. Most of the complexes correspond to those identified by Krogan
et al.% such as the RNA polymerase complexes, the SSU processome, the
exosome and U6 specific snRNP core. In the case of the SSU processome,
we also identify a distinct UTP-A complex which includes UTP4,5,8,9,15,
NANT1 and POLS5, and a distinct UTP22/RRP7 complex. Interestingly, this
appears as distinct from the casein kinase II complex although it co-purifies
with casein kinase IT subunits. Our method was also capable of identifying
the TFG1/2 complex as a separate entity to the RNAP II complex even
though some of its elements were purified using TFG1 as a bait. These,
and other examples indicate that our method is capable of partitioning the
data in a biologically meaningful way.

6. Discussion and Conclusions

We have demonstrated that the algorithm produces biological meaningful
results and yields insights into how the clusters were generated, which is
important for the interpretation of the results. In particular, the assign-
ment of a protein to more than one complex and the choice of the number
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Figure 4. Yeast RNA-processing complex data of Krogan et al. (i) presents the pu-
rification results using 71 bait proteins. (ii) presents the corresponding normalized von
Neumann kernel matrix of 240 hit proteins where the gray scale indicates the proba-
bility of pairwise membership defined as in (2). The proteins are sorted according to
the inferred complex membership. A larger version of the figure can be found on the
supplementary web site. The names of the first 191 proteins are also indexed in Figure 5.

of complexes can be performed without heuristic assumptions, a major im-
provement over previous methods.

Obviously, the method relies on experimental data and assignment of
some artifacts such as ribosomal contaminants to complexes cannot be
avoided. It should also be noted that there is no consensus amongst experts
on how to identify artifacts. The interpretation must be applied in a similar
fashion across the whole network of protein-protein interactions.

It would be necessary to introduce reference data sets for more com-
prehensive comparisons with standardized methods for identifying protein
complexes. The current data sets are sparse and there is little independent
confirmation for most complexes. Our method works well for the data sets
used here and further improvements should be obtained when the individual
complexes are better sampled.
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Figure 5. The assignments of the 191 proteins into 20 inferred complexes. The bars
indicate the probability of membership of these proteins. Complexes identified (left to
right) are: DST1; UTP22/RRP7; RNA Polymerase II; RLI1/RPPO; SIT4; U6 specific
snRNP core; CBC2/STO1; PWP1/BRX1/NOP12; mRNA cap-binding/EIF4F; RNA
Polymerase IT; SRP3/NOP58/SIK1; RNA Polymerase III; Casein Kinase II; eIF'3; NOP1;
RNA Polymerase I; Exosome; SSU processome (UTPA); RSC2.





