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The location of cis-regulatory binding sites determine the connectivity of genetic 
regulatory networks and therefore constitute a natural focal point for research into the 
many biological systems controlled by such regulatory networks. Accurate computational 
prediction of these binding sites would facilitate research into a multitude of key areas, 
including embryonic development, evolution, pharmacogenemics, cancer and many other 
transcriptional diseases, and is likely to be an important precursor for the reverse 
engineering of genome wide, genetic regulatory networks. Many algorithmic strategies 
have been developed for the computational prediction of cis-regulatory binding sites but 
currently all approaches are prone to high rates of false positive predictions, and many are 
highly dependent on additional information, limiting their usefulness as research tools. In 
this paper we present an approach for improving the accuracy of a selection of 
established prediction algorithms. Firstly, it is shown that species specific optimization of 
algorithmic parameters can, in some cases, significantly improve the accuracy of 
algorithmic predictions. Secondly, it is demonstrated that the use of non-linear 
classification algorithms to integrate predictions from multiple sources can result in more 
accurate predictions. Finally, it is shown that further improvements in prediction accuracy 
can be gained with the use of biologically inspired post-processing of predictions. 

1 Introduction  

Gene regulatory networks control, to a large extent, many important biological 
systems, including: the accurate, and stable, expression of a subset of the 
proteins encoded by a genome that determine the character and properties of a 
cell type; the intricate program of sequential organization and subsequent 
cellular specialization during embryonic development; and the inherently 
complex dynamics of metabolic responses to pharmaceuticals. Additionally, it 
has become clear in recent years that much of the genetic change underlying 
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morphological evolution must have occurred in gene regulatory regions [1]. To 
gain a functional understanding of genetic regulatory networks, along with an 
ability to accurately predict their topological structure and dynamics, is a 
research goal promising far reaching ramifications into many important 
biological fields.  

The primary determinant of connectivity in genetic regulatory networks is 
the presence, or absence, of cis-regulatory binding sites in the regions proximal 
to each gene’s promoter. The accurate computational prediction of the location 
of cis-regulatory binding sites is therefore a highly desirable research goal, and 
a key step towards the ability to reverse engineer genetic regulatory networks at 
a genomic scale. Such predictions could significantly streamline the, costly and 
time consuming, process of annotating regulatory regions by focusing attention 
on sequences associated with a high probability of functionality. However, 
prediction of cis-regulatory binding sites is a non-trivial problem. The rules 
determining which DNA sequences functionally bind transcription factors 
specify position dependant preferences for interactions between amino acids and 
nucleotide bases, rather than a simple deterministic sequence identity. In many 
cases, contextual information, in the form of proximally located binding sites, 
may play a key role in determining whether a potential binding site is in fact 
functional in vivo, further complicating computational predictions of such sites. 

Many algorithms have been developed to exploit the various sources of 
experimental information available and the various statistical properties that 
appear to distinguish regulatory regions from the genome in general. These 
algorithms can typically be classified into four main groups based on the 
approach to the problem. Scanning algorithms attempt to generate a model, such 
as a position weight matrix, for each binding site from available experimental 
data. These models can then be used to scan potential regulatory sequences for 
good matches to the model. Statistical algorithms typically attempt to detect 
motifs that are considered statistically unlikely in the context of a model of the 
background base-pair distribution. Co-regulatory algorithms rely on the 
hypothesis that genes clustered on the basis of their expression profiles are 
likely to be regulated by the same transcription factors. Iterative techniques, 
such as Expectation Maximization, are used to generate and refine predictive 
models for the most over-represented motifs in the set of upstream sequences 
for such gene clusters. Phylogenetic algorithms exploit the conservation of 
functional DNA sequences against the background of random mutational noise 
during evolution. Homologous regulatory sequences from appropriately related 
species are compared and significant sequence alignments are predicted to act as 
functional cis-regulatory binding sites.  

In spite of the wealth of research performed in the area of binding site 



 

prediction, and the many insights gained, the current state of the art in this area 
is still far from perfect. In fact, results presented in this study agree strongly 
with other assessments of the performance of prediction algorithms [2], in 
showing that typically 70-80% of predictions are false positives. Interpretation 
of such results to guide the experimental analysis of gene regulatory regions, or 
the modeling of gene regulatory networks, is a difficult problem, further 
exasperated by technicalities of choosing an appropriate algorithm given the 
available data, and subsequent selection of appropriate algorithmic parameters. 
The utility of algorithms that scan for putative binding sites using 
experimentally determined weight matrices, or that require knowledge about the 
identity of co-regulated sets of genes, are obviously of limited use for exploring 
systems where that data is not available. The study of such systems is often 
limited to the statistical class of algorithms; statistical algorithms are, 
unsurprisingly, typically unable to achieve the levels of prediction accuracy 
observed with other classes of algorithms. 

In this paper it is demonstrated, firstly, that algorithm performances can be 
improved by species specific optimization of algorithmic parameters. Secondly, 
that integration of multiple sources of algorithmic predictions, using non-linear 
classification techniques, can significantly improve prediction accuracy while at 
the same time circumventing the experimental data dependences. Finally, in 
order to ensure that the integration process produces biologically feasible 
predictions, it is necessary to perform some post-processing, and we show that 
this step can further improve prediction accuracy. 

2 Methods 

2.1 Description of the Data 

Generation of appropriate data sets for use in evaluating the performance of 
binding site prediction algorithms is a challenging problem with no clear 
solution [2]. The use of promoter sequences that have been experimentally 
annotated is commonly used, although with no assurance of the completeness of 
sequence annotations, penalization of some correctly predicting algorithms is 
inevitable. An alternative strategy is for the stochastic generation of random 
sequences embedded with examples of binding sites, but, our current lack of 
knowledge of the stochastic processes underlying the sequences found in nature 
renders this strategy open to unknown biases.  

For the purposes of this study we chose the annotated sequence strategy, 
attempting to minimize the error by using promoter sequences from one of the 



 

most well studied model organisms, the S.cerevisiae promoter database†. 120 
annotated promoter sequences were selected for training and testing the 
algorithms, a total of 68910 bp of sequence data. In addition, homologous 
promoter sequences for 59 of the sequences were collected from S.paradoxus, 
S.mikatae and S.bayanus, and 69 of the sequences were determined, by the use 
of micro-array studies, to be likely candidates for co-regulation. 

For integration of multiple algorithmic predictions a matrix was generated, 
consisting of 68910 12-ary real valued vectors, each associated with a binary 
label indicating the presence or absence of a binding site annotation at this 
sequence position. Each 12-ary vector represents the predictions, at this position 
in the sequence dataset, for each of the twelve algorithms. All predictions are 
normalized as real values in the range [-1, 1] with 0 allocated to sequence 
positions where algorithm predictions were not possible. 

In this work we divided our dataset into a training set and a test set: the first 
2/3 for training and the final 1/3 for testing. Additionally, we contextualize the 
training and test datasets to ensure that the classification algorithms have data 
on contiguous binding site predictions. This is achieved by windowing the 
vectors. We use a window size of 7, providing contextual information for 3 bps 
either side of the position of interest. This procedure carries the considerable 
benefit of eliminating a large number of repeated or inconsistent vectors which 
are found to be present in the data and would otherwise pose a significant 
obstacle to the training of the classifiers.  

 
 
 
 
 
 
 
 
 
 
 
 

•••-1-1-11111111-1-1

•

•

•

-1

0.6

-
0.47

-1

0.5

1

•••

G C T A A C T •••GCAGT

1
2 3

DNA sequence

Binding site annotation

Normalised predictions
from the original 

12 algorithms

Windowed input vectors
for non-linear classification

algorithms

•••-1-1-11111111-1-1

•

•

•

-1

0.6

-
0.47

-1

0.5

1

•••

G C T A A C T •••GCAGT

1
2 3

DNA sequence

Binding site annotation

Normalised predictions
from the original 

orithms

Windowed input vectors
for non-linear classification

algorithms

12 alg

Figure 1: Organization and structure of the dataset used to train classification algorithms. 
Windowing of the input data is show, for example, the first input vector consists of the first seven 
columns of predictions concatenated together.  The target output is the binding site annotation 
corresponding to the middle column of the window (i.e. the fourth column for input vector 1) 
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2.2 Performance Metrics 

Approximately 7% of our dataset, consisting of 68910 data points, are labelled 
as annotated binding sites, making this an imbalanced dataset [3]. Supervised 
classification algorithms would be expected to over predict the majority class in 
an imbalanced dataset, i.e. in this instance a success rate of 93% could be 
achieved by only predicting the majority class, namely the non-binding site 
class. In this work we deal with this issue in two ways: firstly, with the use of 
appropriate metrics for evaluation of algorithmic performance and secondly, 
with the use of data-based methods during classifier training (see 2.5). 

Several common performance metrics such as Recall, Precision and F-
score [4] are defined to allow evaluation of performance on the minority class. 
The Correlation Coefficient [2] is also defined, providing a measure of the 
correlation of predicted binding sites to the annotated data. Each of these 
metrics is defined using a confusion matrix (see Table 1): 

 
Table 1: A confusion matrix – TN is the true negative count, FP is the false positive count,  

FN is the false negative count and TP is the true positive count. 
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2.3 Description of Prediction Algorithms Used 

The binding site prediction tools evaluated in this study were selected, either 
from the research literature or as tools developed in-house (PARS & DREAM) 
or by collaborators (Sampler), to include representatives for all the major 
prediction strategies, see Table 2. The aim in selecting these disparate 
algorithms was to maximize the relevant information with the full set of binding 
site predictions. Where possible, algorithmic parameters were set to those 
reported in the literature; for the remainder default parameter settings were used. 



 
Table 2: Categorization of algorithms used in study 

Strategy Algorithm 
Fuzznuc‡ 
Motif Scanner [5] 

Scanning 

Ahab [6] 
PARS§ 
Dream (over and under represented motifs) 

Statistical 

Verbumculus [7] 
MEME [8] 
AlignACE [9] 

Co-Regulatory 

Sampler** (Institute for Systems Biology) 
SeqComp [10] Evolutionary 
Footprinter [11] 

2.4 Species Specific Optimization of Prediction Algorithm Parameters 

The many algorithms available for cis-regulatory binding site prediction have 
typically been developed, and suitable operating parameters selected, for a 
specific model organism. It is an open question as to whether such operational 
parameter settings would be expected to be optimal across a wide range of 
organisms, although in practice this is often the assumption. It was decided to 
search the parameter space of each algorithm to find optimal settings for binding 
site detection in the yeast dataset. 

The parameter space consisted of an assemblage of various data types: 
Boolean, discrete and real valued types of varying ranges. An implementation of 
an efficient simulated annealing schedule [12] was used to search the parameter 
space. All optimization runs were performed with a single algorithm and were 
initialized with the default parameters. Evolution of novel solutions in the 
parameter space was achieved by the random selection of one parameter per 
iteration with the subsequent selection of a new random point with the range of 
the selected parameter. The user-specified variable, ! [12], that determines the 
rate at which stocasticity deceases over time, was set to a value of 0.001. The 
training set was divided into two equal parts for training and validation of 
performance during the optimization process. The fitness function was 
implemented using the F-Score performance metric.  

                                                 
‡ http://www.hgmp.mrc.ac.uk/Software/EMBOSS/  
§ http://sourceforge.net/projects/pars/  
** http://sourceforge.net/projects/netmotsa  
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2.5 Sampling Techniques for Learning Imbalanced Datasets  

To ensure efficient training of classifiers on this imbalanced dataset, data based 
sampling techniques [13, 14] were employed, namely under-sampling of the 
majority class (negative examples) and over-sampling of the minority class 
(positive examples). For under-sampling, we randomly selected a subset of data 
points from the majority class. The more complex issues that arise with over-
sampling [3] are addressed by the use of synthetic minority over-sampling as 
proposed in [13]. In the absence of these sampling techniques, the supervised 
classifiers achieved negligible rates of true positive predictions. The number of 
items in the minority class is doubled and degree of under-sampling is chosen so 
as to ensure the final ratio of minority and majority members is one half. 
Preliminary cross-validation experiments were used to set these parameters, this 
parameter space will be explored more thoroughly in future work. 

2.6 Supervised Classifiers 

A variety of supervised classification algorithms were used to explore their 
relative merits for improvement of prediction accuracy by the integration of 
predictions from multiple algorithmic sources [15]. A single layer neural 
network (SLN) was used in this study to provide a standard for baseline 
performance. A Support Vector Machine (SVM), an effective, contemporary 
kernel based classification algorithm was utilized. The final algorithm used was 
the Adaboost algorithm [16], a powerful, recently proposed method for 
producing a strong classifier from a sequence of weak classifiers. The algorithm 
begins by training a weak classifier, here an SLN, on the original dataset. A new 
dataset is then produced by increasing the frequency of data points poorly 
classified. This process then iterates until a strong classifier has been produced. 

2.7 Biologically Constrained Post-Processing 

Observation of the predictions from the supervised classifiers used here, suggest 
that many of their false positive predictions could be ruled out based on known, 
or suspected, biological constraints of functional binding sites. One possible 
constraint is that a binding motif must be of sufficient length to make randomly 
occurring copies unlikely. Predictions that fall below some threshold length are 
therefore prime candidates for post-processing, either to filter them out, or to 
extend their size. This is a particularly pertinent step as the meta-predictions 
generated from the original, noisy, algorithmic predictions can produce 
fragmented predictions as an artefact of the integration process. In this study a 
post-processing step is incorporated filtering out predictions that do not reach a 



 

minimum threshold for contiguous length. Classification performance is 
evaluated for threshold values of 5 bp and 6 bp, as shown in Section 3.3. 

3 Results 

3.1 Comparison of Performance Using Default and Species Specific 
Optimized Parameters 

Each of algorithms used in this study were initially evaluated on the annotated 
S.cerevisiae sequence test set of 22967 bp, producing a set of scores using their 
respective default parameters. These scores were used as a baseline for the 
evaluation of performance using parameter sets identified as conferring a 
performance improvement during training on the S.cerevisiae training set of 
42919 bp. It is important to note that performance was evaluated over the entire 
test dataset; an algorithm is effectively penalized when it is unable to make 
predictions for specific sequences due to lack of supplementary data. When 
evaluated on the subset of sequences where predictions were made, MEME, for 
example was able to achieve an optimized F-Score of over 45%, although, when 
evaluated on the entire dataset its performance dropped to an F-Score value of 
18.21%, as shown in Table 3. However, as we are interested in evaluating the 
functional usefulness of the algorithms, with an aim to overcome these 
limitations by integrating multiple sources of information, the full test dataset is 
most appropriate. 
 

Table 3: A comparison of algorithmic performance using default vs. optimized parameters. Dashes 
indicate that no improved parameters settings could be found or that optimization was not possible. 

Default Optimized Algorithm F-Score CC FP-rate F-Score CC FP-rate 
Fuzznuc 24.59 19.02 10.61 - - - 
PARS 10.41 2.42 12.45 - - - 

Verbumculus 19.24 12.79 12.23 - - - 
Ahab 14.31 7.45 48.86 25.60 22.59 3.36 

Dream (over) 9.21 -1.02 24.13 - - - 
Dream 
(under) 8.25 -2.58 25.19 13.40 5.54 15.53 

Motif Scanner 16.19 9.41 9.95 - - - 
Sampler 4.72 1.19 2.56 6.86 11.72 3.14 
MEME 18.21 15.61 2.43 18.83 45.23 0.94 

AlignACE 13.09 11.08 2.03 - - - 
SeqComp 9.56 2.11 9.81 - - - 

Footprinter 10.39 3.19 9.20 - - - 
 



 

F-Score performance, with default parameters, was typically below 20% 
with even lower scores for the correlation coefficient. The simple scanning 
algorithm, Fuzznuc, easily outperforms the others with an F-score of nearly 
25%. The last 5 algorithms in Table 2, the co-regulatory and phylogenetic 
algorithms, produced notably low FP-rates. This is likely due to their 
predictions, where possible, being of high acuity but of a conservative nature. 
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Figure 2: Comparison of F-score performance of algorithms using default and optimized parameters  

 

Optimized parameters were found for Ahab, Dream (over), Sampler and 
MEME that improve performance on the test set, as can be seen in Figure 2. The 
performance improvement seen with Ahab was particularly impressive, with an 
80% increase in F-score while the false positive rate was reduced by 93%. It is 
intriguing to note that both Ahab, and Dream, were developed using 
D.melanogaster as a model. Conversely, for Verbumculus and AlignACE, both 
known to have been developed with S.cerevisiae as a model, no parameter 
improvement could be found. The possibility is certainly raised that species 
specific parameter optimization may be necessary for optimal algorithmic 
predictions; it remains to be seen whether this situation will in fact prove to be 
the case for other organisms and if so what the underlying causes in terms of 
cis-regulatory organization and structure might be. 

3.2 Integration of Multiple Algorithmic Predictions Using Supervised 
Classifiers 

Another important question is whether performance can be further refined by 
the integration of multiple algorithm predictions. To this end, three non-linear 
supervised classifiers were trained using the predictions of the original 
algorithms on the training set. Cross-validation was used to select appropriate 
parameter settings for the classifiers, with each parameter setting being trained 
on 4/5 of training set and validated on the final 1/5. The algorithm, Fuzznuc, 



 

was chosen to provide a baseline performance based on its high performance 
across the entire test dataset. The optimized version of Ahab, which achieved 
even higher levels of performance, was not available in time to be included in 
this study. 

Table 4: Comparison of Fuzznuc performance vs. integration strategies performance 
Algorithm F-Score CC FP-rate 

Fuzznuc 24.59 19.0 10.1 
SLN 25.0 19.5 7.3 
SVM 27.2 21.8 8.1 

Adaboost 27.0 21.7 6.3 

The results in Table 4 show a clear and consistent picture. Integration of 
multiple algorithm predictions consistently results in more accurate predictions, 
as measured by the F-Score, correlation coefficient and FP-rate. The SVM out 
performs all other algorithms, improving on the F-Score performance of 
Fuzznuc by 10%, the correlation coefficient by 14% while reducing the FP-rate 
by 38%.  
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Figure 3: Performance statistics comparing the accuracy of different classification strategies 

3.3 Refinement of Results Using Biologically Constrained Post-
Processing 

The final step in our refinement of binding site predictions is the conceptually 
simple one of ensuring that all predictions are biologically viable. Table 5 
details the results of an experiment designed to explore whether small, 
fragmented predictions were artefacts of the meta-analysis shown in Section 3.2. 
 

Table 5: Performance improvements with a range of minimum word size filter thresholds 
No Filtering Filter < 5 Filter < 6 Algorith

m F-
Score CC FP-

rate 
F-

Score CC FP-
rate 

F-
Score CC FP-

rate 
SLN 25.0 19.5 7.3 25.6 20.3 5.9 26.0 20.8 5.5 
SVM 27.2 21.8 8.1 28.2 23.0 6.7 28.4 23.2 6.2 

Adaboost 27.0 21.7 6.3 28.0 23.2 4.7 27.3 22.8 4.3 



 

 
It can be seen that in all cases filtering out predictions less than 5 bp in 

extent, improves prediction accuracy, by all performance measures, for all 
classifiers. Filtering predictions that are less than 6 bp, further improves 
performance for both the SLN and SVM but causes a considerable drop in 
accuracy for the Adaboost algorithm. In the best case, the combination of 
integration using the SVM combined with the post-processing filtering with 
threshold < 6 improves the F-Score performance relative to Fuzznuc by 15%. 
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Figure 4: Percentage change in F-Score, relative to unfiltered results, after post-processing of 

fragmented results using thresholds 5 and 6 respectively 

4 Conclusions 

The important, and significant, result presented here is that an incremental 
approach to algorithmic refinement can produce considerable improvement in 
prediction accuracy. In the best case, the combination of integrating predictions 
using the SVM followed by post-processing filtering using a threshold < 6, 
improves the F-Score to 28.4%, an improvement of 15% relative to the 
performance achieved by the best algorithm, Fuzznuc. 

The performance improvements achieved by parameter optimization, most 
notably those of Ahab, are highly suggestive; optimal computation prediction of 
cis-regulatory binding sites may require species specific optimization of 
parameter sets.  

The use of supervised classification techniques for integrating predictions 
from multiple sources is shown to be a particularly promising approach. The 
success of integrating these multiple prediction sources indicates that there is 
additional information to be exploited, collectively, in these prediction sets.  

Initial attempts at post-processing meta-predictions were worthwhile and 
present many opportunities for future work in this area. Other important 
biological constraints that might be explored in future work include, clustering 
of predicted sites, and bias in the base pair distributions within predicted sites. 
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