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Three-dimensional structures of proteins, experimental or predicted, show us how these 
molecular machines actually work. With the help of information on disease-related 
mutations, they can also show us how they malfunction in diseases. Such understanding, 
currently lacking for most human diseases, is an important first step before designing 
drugs or therapies to cure specific diseases. Here we used homology modeling to model 
human disease-related proteins, and studied structural characteristics of disease related 
mutations and compared them with non synonymous SNPs. 1484 domains from 874 
proteins were modeled, and together with experimentally determined structures of 369 
domains they provided the structural coverage of 48% of total residues in 1237 human 
disease proteins. We found that disease-related mutations have statistically significantly 
preference to form clusters on protein surfaces. In contrast, the non-synonymous SNPs 
appear to be randomly distributed on the surface. We interpret these results as an 
indication that disease mutations affect protein-protein interaction interfaces. This 
interpretation is supported by the analysis of 8 experimentally determined complexes 
between disease proteins, where disease-related mutations are clearly located in the 
binding interface of proteins, while SNPs are not. The non-uniform distribution of 
disease mutations indicates that we can use this feature as guidance in modeling and 
evaluating human disease proteins and their complexes. We set up a resource for Disease 
Protein Models (DPM at http://ffas.burnham.org/DPM), which can be used for studying 
the relation between disease and mutation / polymorphism sites in the context of protein 
3D structures and complexes.  

1. Introduction 

Disease-related proteins are of great research interest for both experimental and 
computational scientists. Their high value in medicine and human health stems 
from the fact that they provide molecular picture of disease processes, a 
necessary prerequisite to rational drug development. As of today, thousands of 
genes (proteins) have been identified to be associated with various diseases in 
humans. Most often, mutations in these proteins have been identified in patients 
suffering from a particular disease. Mutation data is often the first source 
allowing us to study these diseases on the molecular level. Independently, 
technological advances in large-scale genome sequencing has allowed us to 
study human genomic variation and identify large numbers of SNPs (Single 
Nucleotide Polymorphisms), some of which cause changes of amino acids in the 
protein product of a gene (i.e., non-synonymous SNPs, nsSNPs) [1]. SNPs 



 

databases become an easy but valuable resource for studying genetic variations 
in human population. A vast majority of the nsSNPs has not been studied 
experimentally, and it is generally assumed that since nsSNPs are present in 
large sections of the population they are not strongly associated with diseases.  

Many computational methods have been applied to study the effects of 
mutations (such as in P53 proteins [2]) and to predict the effects of the nsSNPs 
based on protein sequences, amino acid conservation and protein structures [3-
6]. Structural information has been extensively used for studying the effects of 
mutations and nsSNPs [7] and a number of resources have been developed for 
mapping the SNPs onto the structures, such as MutDB (http://mutdb.org/) [8], 
SNPs3D (http://www.snps3d.org/), PolyPhen (http://www.bork.embl-
heidelberg.de/PolyPhen/) [5] and SAAP 
(http://acrmwww.biochem.ucl.ac.uk/saap/) [2]. These resources are largely 
limited to human proteins with experimentally determined structures and there 
are still only a very small number of such proteins. Despite tremendous advances 
in recent years, experimental determination of protein structure is still time-
consuming and expensive, especially for Eukaryotic proteins. It is possible to 
circumvent this limitation by use of comparative modeling, and this approach 
has been applied to disease proteins and used for SNPs annotation, including LS-
SNP [9] and ModSNP [10].  

In this work, we used distant homology recognition in conjunction with 
comparative modeling to build models of three-dimensional structures of human 
disease proteins. This strategy, validated in fold recognition test, can greatly 
increase the structural coverage of these proteins. Using the predicted structures, 
we further analyzed and compared the distribution of disease mutations and 
nsSNPs in the 3D space. The observation that spatial distribution of disease-
related mutations is significantly different from that of usually benign nsSNPs 
suggests a possible explanation of different effects of the two groups. We 
hypothesize that disease mutations affect protein-protein interaction interfaces 
and thus disrupt functional networks within the cell. Detailed analyses of several 
available structures of experimentally determined complexes between disease 
proteins support this hypothesis.  

2. Methods 

2.1. Data collection 

We focused on 1,237 human disease proteins and the corresponding mutation 
and SNPs information (discarding the variant sites marked as “unclassified”) as 
identified by SwissProt database (http://us.expasy.org/sprot/). Structures of 



 

experimentally determined human disease proteins and their complexes were 
identified and downloaded from the Protein Database web site 
(http://www.rcsb.org). 

2.2. Homology modeling and model quality assessment 

We used FFAS [11], a profile–profile alignment and fold-recognition tool, for 
identifying the templates for modeling and generating the alignments. The 
alignments from FFAS were used as inputs for modeling packages Jackal [12] 
and Modeller [13], which were used to build three-dimensional models using the 
default options (Modeller models were used when no models can be produced by 
Jackal). All the models can be found at the DPM Web site at 
http://ffas.burnham.org/DPM and can be downloaded or viewed with a MDL 
Chime (http://www.mdl.com/products/framework/chime/) enabled browser. 

Model quality was evaluated by the PSQS (Protein Structure Quality Score, 
http://www1.jcsg.org/psqs/psqs.cgi), an energy-like measure of quality of protein 
structures, calculated based on the statistical potentials of mean force describing 
interactions between residue pairs and between single residues and solvent, 
shown before to correlate well with model quality and accuracy [14]. Similar 
protocol is used for building molecular replacement templates in the Joint Center 
for Structural Genomics [15] and in several other large scale modeling projects 
(manuscript in preparation). 

2.3. Spatial distribution of disease-related mutants on the protein 
structures 

We define a residue as being in the core if its solvent accessible area is less than 
5% of its maximum possible surface area in a fully extended conformation. By 
this definition about 25% of residues in an average protein are in the core. We 
used Lee & Richard method [16] to compute the atomic solvent accessible area 
of proteins.  

We use the size of the largest connected component of the mutations graph 
as a measure of clustering of mutations, and its significance is calculated by a 
permutation test. For example, suppose a protein structure has N residues and M 
mutation sites. We first generate a graph of M nodes and link an edge between 
two nodes if they are within contact distance (i.e., minimum distance between 
any two atoms of the residues is !5.0Å). The graph is then partitioned into 
connected components [17]; and the size of the largest component is used as the 
clustering index of mutation sites. To compute the significance, we randomly 
select M residues out of N and do the same computation for R times. The 
significance of the clustering of the mutation positions is then defined as (the 



 

number of permutations with clustering index " the clustering index of mutation 
sites) / R. See Figure 1 for a schematic illustration. 

2.4. Analysis of protein complex structures 

In addition to the models of disease proteins, we analyzed experimental 
structures of complexes of disease proteins, if available. Residues were 
considered as being on the complex interface if their burial/exposed status 
between the complex and individual structures changed, here defined as the 
difference of their solvent accessible area in complex and in individual is less 
than a cutoff (e.g, 5Å2). 

 
Figure 1. A schematic illustration of computing the significance of clustering of residues by a 
permutation test. Here 4 residues of position 13, 20, 59 and 61 highlighted in CPK are clustered, 
and the size of largest component of the graph with 4 nodes, S, is 4. The significance of the 
clustering P(S = 4) is (the number of samplings with S "4) / (total number of samplings). 

3. Results 

3.1. Statistics of models and quality evaluation 

A total of 1,484 models were built for 874 proteins (many proteins are multi-
domain and models were built for individual domains (if possible)). Together 
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with 369 experimentally determined structures (only one structure from all that 
cover the same or very similar region in a target protein was counted), 1859 
structures in total cover at least partially 1,064 out of the 1,237 human disease 
proteins. The structural coverage counted as the percentage of residues that 
could be mapped to the structures is 9% by experimentally determined 
structures, 39% by models, and 48% in total. For example, alpha-2-
macroglobulin receptor-associated protein (SwissProt accession number 
P30533) is 357 aa long, and only a 82 aa N-terminal fragment was determined 
experimentally (PDB code 1op1); a model covering 199 aa at its C-terminal 
domain can be built using 1bf5 chain A as a template. While much higher 
structural coverage than 48% was reported for bacterial genomes [18], 
eukaryotic genomes, such as human were expected to have lower coverage.  

The quality of the homology model is determined by a combination of the 
performance of the modeling algorithm and the quality of the alignments. 
Therefore, the quality of our models is largely determined by the performance of 
FFAS used to detect templates and produce alignment for homology modeling.  
FFAS benchmarks have shown that predictions with scores lower than –9.5 (the 
cutoff used in this work) should have less than 3% of false positives [11], and 
that its alignment quality is significantly higher than PSI-BLAST alignments. An 
independent measure of a model quality can be provided by empirical energy 
parameters, such as for instance calculated by a PSQS server 
(http://www1.jcsg.org/psqs/psqs.cgi) [14]. 81% of the models have good overall 
PSQSs (Protein Structure Quality Score < 0) (see the DPM website for the 
detailed results). In addition we emphasize that features such as relative position 
of a residue on the surface or in the core of the protein tend to be well conserved 
even in relatively inaccurate models.  

3.2. Distribution of mutations (disease-related mutations and SNPs) 

A total of 6,352 mutation and 954 nsSNP sites could be mapped onto the 
structures. As compared to the average residues and nsSNPs, more disease 
mutations are found in protein cores (all residues: core/total = 24.5%; nsSNPs: 
core/total = 20.1%; disease mutations: core/total = 34.9%).  

Disease-related mutations tend to be clustered (as measured by the 
clustering index described in the methods section), in contrast to nsSNPs, which 
are not. In 97 out of 667 (14%) structures in which at least 2 mutations can be 
mapped onto the structure, disease-related mutations are significantly (0.05% 
significance) clustered; in comparison, in only 4 out of 205 structures with at 
least 2 nsSNPs mapped, nsSNPs are clustered together at the same significance 
threshold. In experimentally determined structures, disease-related mutations are 



 

significantly clustered in 27 out of 145 structures (19%), while nsSNPs are 
significantly clustered in only 2 out of 36 structures (6%).  Both results show 
that no matter if predicted models were included for statistics or not, disease-
related mutations are more significantly clustered together than nsSNPs.  

As an example, Figure 2 shows the mapping of mutations and nsSNPs of 
Glutamate dehydrogenase 1 protein (SwissProt accession number P00367) onto 
its X-ray structure (PDB code 1l1f, chain A). This protein has 10 disease related 
mutations (associated with hyperinsulinism-hyperammonemia syndrome, HHS 
and highlighted red in Figure 2); all are closely located together, and the largest 
component of the mutation graph has 7 residues (with P-value = 0).  

Figure 3 shows a model of a SWI/SNF-related matrix-associated actin-
dependent regulator of chromatin subfamily A-like protein 1 (SwissProt 
accession number Q9NZC9) and the distribution of disease-related mutations 
and SNPs on this model. This protein has 10 mutations related to SIOD 
(Schimke immuno-osseous dysplasia) disease and 3 SNPs (collected in dbSNP) 
that can be mapped to the model. Analysis of the figure, supported by our 
statistical analysis, clearly shows that the disease mutations are clustered 
together (the largest component has 4 residues, P-value = 0.005), while the three 
SNPs do not (the largest component has 1 residue). Interestingly, one of the 
SNPs is located in the interface with many disease mutations; it suggests the 
possibility that this SNP may be deleterious as well. This example shows a 
possible way to study the effects of nsSNPs by comparing their spatial 
distribution with that of known disease mutation sites. 

3.3. Analysis of complexes 

The results from the modeling of human disease proteins and the analysis of the 
relative positions of nsSNPs and disease mutations on the structures strongly 
suggest that clusters of such mutations form specific patches on the surface and 
prompt the speculation that these patches are involved in protein-protein 
interactions. While a statistically rigorous evaluation of this hypothesis is not 
possible at present, we looked at details of a few available examples of 
experimentally determined complexes between human disease proteins. 

We analyzed eight experimentally determined structures of complexes of 
disease proteins. This number seems rather small as compared to the number of 
potential protein-protein interactions collected in databases such as OPHID 
(http://ophid.utoronto.ca) [19] (its 5/2005 version collected 8836 protein-protein 
interactions involving at least one disease protein, and 1012 involving two 
disease proteins). This discrepancy illustrates the experimental difficulties 
involved in experimental studies of protein complex formations. 



 

 
 

Figure 2. The mapping of mutations (in red ball-and-sticks) and nsSNPs (in green ball-and-stick) 
on the X-ray structure of SwissProt protein P00367 (PDB code 1l1fA) 

 

 
Figure 3. The mapping of mutations (in red ball-and-sticks) and nsSNPs (in green ball-and-stick) 
on the model of matrix-associated actin-dependent regulator of chromatin (SwissProt accession 
number Q9NZC9). 
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We found that most of such complexes show strong clustering of mutations 
around the binding interface. For instance, as shown in Figure 4, proteins 
integrin beta-3 (P05106) and integrin alpha-IIb (P08514) both have a lot of 
mutations associated with Glanzmann thrombasthenia (GT), the most common 
inherited disease of platelets, and these mutations (red ball-and-sticks) tend to be 
located in their binding interface; in contrast, three SNPs (green ball-and-sticks) 
are farther away from the binding interface.   

 

 
 

Figure 4.  Clusters of disease mutations (red) on the structure of a complex (PDB code 1m1x) of 
two disease proteins, proteins: integrin beta-3 (P05106) and integrin alpha-IIb (P08514). Three 
SNPs highlighted in green ball-and-stick are also shown for comparison.  

 
Another example is provided by the structure of a complex between 

GTPase-activating protein (P20936) and transforming protein p21/H-Ras-1 
(P01112). Both proteins contain multiple domains and are implicated in a variety 
of human tumors. Their interaction is listed in the OPHID database, and more 
importantly, there is an X-ray structure of the complex between two domains one 
from each proteins (PDB code 1wq1). We mapped the mutations and SNPs of 
P20936 and P01112 onto structure 1wq1. Three mutations of P01112 are located 
on the domains present in the complex, forming two unique sites located exactly 
at the center of the interaction interface between protein P20936 and P01112 
(see Figure 5). There are no experimentally determined structures for P09619 

P08514 SNP: 424 D#V 
(chain B, position 40) 

P05106 SNP: 453 V#I 
(chain A, position 373) 

P08514 SNP: 968 Y#N 
(chain B, position 968) 



 

and for P20936 (outside the region of 718-1037). Domain analysis shows that 
P09619 has Igc2 domain and TyrKc domain (Tyrosine kinase domain), and 
P20936 has SH3 and SH2 domains (as well as several other domains and 
RasGAP domain) (see Figure 5). Homology searching shows that the SH3 and 
SH2 domains of P20936 and the TyrKc domain of P09619 can match the SH3, 
SH2 and TyrKc domains of protein Src Family Kinase (with known X-ray 
structure, PDB code 2hck), respectively. It is known that in 2hck, the so-called 
tail peptide (highlighted in blue in Figure 5) of the catalytic domain (TyrKc 
domain) interacts with the binding sites (highlighted in red) in SH2 domain of 
the same protein, helping to lock the structure in an inactive form 
(autoinhibition) [20,21]. Interestingly, three out of four remaining disease-related 
SNPs in P20936 are matched to the tail peptide binding sites in the SH2 domain 
of 2hck, suggesting that these three disease related SNPs are located in the 
binding interface of P20936 and P09619 (involving the tail peptide). We 
mapped the mutations onto structure 2hck (which may be used as a template for 
modeling the complex of P20936 and P09619) in Figure 5, considering it will be 
difficult to precisely model the interaction of the short tail peptide with its 
binding site. In summary, the disease mutations of P20936 and P01112 are 
mainly located in the binding interface of the interaction network composed of 
these two proteins and P09619.   

4. Conclusion 

We have generated three-dimensional models for over a thousand human disease 
proteins and set up a publicly available Web site, showing annotated pictures for 
all the models. The current structural coverage of the human disease proteins is 
close to 50% of the total residues. We expect that the coverage would increase 
with the continuous growth of structural databases. 

Our analysis of the spatial distribution of disease mutations shows their non-
uniform distribution, and in particular forming patches on surfaces of proteins. It 
is tempting to speculate that such patches are located at or near protein-protein 
interaction interfaces.    

To test this hypothesis we evaluated a number of structures of complexes, 
initially focusing on experimentally determined structures. The number of such 
complexes is rather small, but the examples are very suggestive. Indeed, in most 
cases disease mutations cluster at binding interfaces.   

Recently, tremendous advances have been achieved in identifying the 
protein-protein interactions, both from large scale experiments and 
computational approach [22-24]. Thousands of protein-protein interactions 
involving disease proteins have been identified or predicted (as collected in 



 

OPHID database). The huge gap between the number of potential interactions 
and the number of experimentally determined structures of such complexes 
suggests that modeling would play an important role in filling the gap. One 
possibility is to use the structure of a complex as a template [25,26] (as 
suggested by the example shown in Figure 5). But this method is limited because 
only a relatively small number of complexes are available for modeling. Large 
scale ab initio modeling of protein complexes would be necessary to further 
evaluate our hypothesis. We plan to extend the current study by using ab initio 
docking methods, such as GRAMM [27], to predict the structures of complexes 
of disease proteins. Another possibility is to use the non-uniform distribution of 
disease mutations and SNPs in this process as an additional guidance. Also we 
will search for other alternative ways of building models for protein-protein 
interactions [28], such as fitting models to the low resolution complex structure 
from electron microscopy (EM) when data is available. The resulting models of 
complexes would become an important resource for studying the functions of 
disease proteins and the mechanism of diseases. 
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Figure 5. The interaction network of GTPase-activating protein (P20936), transforming protein 
p21/H-Ras-1 (P01112) and alpha-hemolysin (P09619). Two complexes are involved: one is the 
complex between RasGAP domain of protein P20936 and Ras domain of protein P01112 (PDB 
code 1w1q), with disease-related mutations highlighted in red ball-and-stick in the graph (shown in 
the bottom of this figure), and the other one is the complex between SH3 and SH2 domains of 
protein P20936 and the TyrKc domain of P09619 (PDB code 2hck, shown in the top of this figure). 
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