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Integrating diverse sources of interaction information to create protein networks
requires strategies sensitive to differences in accuracy and coverage of each source.
Previous integration approaches calculate reliabilities of protein interaction infor-
mation sources based on congruity to a designated ‘gold standard.” In this paper,
we provide a comparison of the two most popular existing approaches and propose
a novel alternative for assessing reliabilities which does not require a gold standard.
We identify a new method for combining the resultant reliabilities and compare it
against an existing method. Further, we propose an extrinsic approach to evalua-
tion of reliability estimates, considering their influence on the downstream tasks of
inferring protein function and learning regulatory networks from expression data.
Results using this evaluation method show 1) our method for reliability estima-
tion is an attractive alternative to those requiring a gold standard and 2) the new
method for combining reliabilities is less sensitive to noise in reliability assignments
than the similar existing technique.

1. Introduction

The recent availability of high-throughput proteomics data has allowed
genome-wide construction of network models of relationships among
proteins' ™12, These networks are used in such downstream tasks as in-
ferring protein function, identifying potential protein complexes, or inter-
preting gene expression data. In the majority of cases, however, the notion
of protein interaction is biased to mean physical interaction. As argued
in Lee et al.%, the term ‘interaction’ should instead encompass any type
of evidence linking pairs of genes, whether it be physical, functional, ge-
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netic, biochemical, evolutionary, or computational. Integrated networks
from diverse sources give biologists more insight into their data when these
networks are later used for analysis tasks, since each interaction data type
offers an alternative view of the relationships which exist among genes.

The major challenge of integration has been that each individual source
varies in terms of accuracy and coverage over the domain. Thus, estimating
confidence of a particular interaction must account for the number and relia-
bility of the specific sources contributing evidence for that interaction®. For
example, a high-throughput method offers evidence of interaction genome-
wide, yet with many false positives, so interactions supported solely by
that method may be suspect a priori. One answer is to favor interactions
supported by multiple data sources. Even then, high confidence in an in-
teraction is not guaranteed since the individual reliabilities of the sources
supporting that interaction may be low. As such, a large body of liter-
ature is dedicated to estimating error rates of the individual experiment
types? '2. However, nearly all existing methods quantify reliability with
respect to a ‘gold standard,’” such as the percentage of interacting pairs
suggested by the source known to have the same function.

We argue that requiring a gold standard for reliability assessments is
disadvantageous for a number of reasons. First, the choice of gold standard
depends on the task for which a protein interaction network is used and
therefore cannot easily generalize to other tasks without recomputation.
For example, using correlated gene expression profiles as a gold standard
for reliability assessment may not be appropriate for the task of predicting
physical interactions. Also, the need to reserve an information source as
a gold standard decreases the amount of data providing evidence of inter-
action. This point becomes critical in less well-studied organisms where
there may be few sources of information of interaction, let alone enough
information for a gold standard.

In this paper, we present a new method for assigning reliability to in-
dividual data types which does not rely on a gold standard. Rather, our
method leverages on the relative frequency of overlap between the sources,
rating each source by its average agreement with the consensus. Our
method is not biased toward sources representing the same notion of in-
teraction found in a predefined gold standard and as such, is generally ap-

2Note here we are quantifying reliability of evidence for a particular interaction, not
building a general predictor of interaction; thus some issues, such as missing data for
predictive attributes, are not present in our application.
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plicable for use in any downstream task. We compare® our method to two
popular existing reliability assignment techniques®~'2. We then consider
strategies for creating a weighted protein interaction network by probabilis-
tic integration of the individual data sources and their assigned reliabilities.
For integration of reliabilities, we use one technique® appearing in the bio-
logical literature'!>'? as well as a new alternative we identify as applicable
from the statistics literature'®. We propose an extrinsic evaluation strategy
which measures performance of each reliability assessment and integration
method combination on two downstream tasks: inferring protein function
and learning regulatory networks. Our results show that our proposed reli-
ability assessment method is a viable alternative to previous methods and
the alternative integration method is less sensitive to incorrect reliability
assessments than the existing method.

2. Data Sources and Reliability Assignments

Protein interaction networks represent proteins as nodes and integrate in-
teraction sources to identify connections between them. We focus here on
techniques which 1) quantify the accuracy of sources indicating that inter-
action and 2) combine their reliabilities to obtain a consensus reliability
for each interaction. Before addressing the first task, we must first iden-
tify a set of genes and a set of interaction sources. To create comparable
datasets, we use the 6760 annotated orfs in yeast and choose 6760 mouse
genes randomly among those having information in at least three interac-
tion sources. With this strategy we obtain similar coverage, where 50%
of our mouse genes have a known pathway, compared to 80% with known
function in yeast. We use these sets of 6760 genes for all reported results.

We consider two types of data sources which provide positive asser-
tions of relationships: explicit sources which indicate interaction between
genes directly, or implicit sources from which relationships can be derived
by noting when two genes are assigned the same category by the source.
For example, yeast two-hybrid assays are an explicit measure of physical
interaction while presence of identical sequence motifs implies genes may
have related functions or regulators. Though implicit sources individu-
ally may be poor indicators of interaction, accumulation of evidence from
several implicit sources may reliably indicate interaction in the absence of

bThe day of submission we identified a similar comparison paper by Suthram et al. 14
©This measure has identical use by independent research groups. We do not include
logistic regression approaches®7 since each group uses very different attribute sets.
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more explicit information. This point becomes critical in less well-studied
organisms where indirect information may be easier to obtain.

For explicit sources, we include those which experimentally measure
physical, biochemical, and genetic interactions!® 2° as well as those which
computationally predict gene neighborhoods, gene fusion events or con-
served phylogenetic profiles?!. In an effort to create independent indi-
cators, we categorize information from these sources by type, e.g. yeast
two-hybrid or gene fusion® Reliabilities then are calculated for each type
(denoted with capital letters, e.g. Y2H and GENEFUSE). As some indica-
tion of diversity of types and their coverage, for yeast, we have 21 dis-
tinct types with between 208 (GENETIC) and 26k (HMS-PCI) interactions.
For mouse, we use 11 types with between 1 (ELISA) and 2546 (IMMUNO-
PRECIP) interactions. As implicit interaction sources, we use information
about literature references??, sequence motifs?®726, protein categories??,
protein complexes?®, cell phase?”, phenotypes?322, essentiality?®, cel-
lular location??23:28 molecular function?32®, and biological process or
pathway?® 3. Considering each separately for the 6760 gene sets, we ob-
tain eight implicit yeast sources with between 39k (COPROTCATEGORY)
and 179k (COESSENTIAL) interactions. In mouse, we have six sources with
between 30k (COLITERATURE) and 1.2M (GO:COMPONENT) interactions.

Having identified our data sources and interaction types, our first task is
to assign a reliability score to each type which reflects our confidence in its
information. For example, we might assign a low score to a high-throughput
explicit type like yeast two-hybrid or an implicit type like co-location, yet
assign a high score to a low-throughput assay like x-ray crystallography.
Many methods exist for estimating reliability where the accuracy of a source
is quantified by agreement to a gold standard, such as correlated gene ex-
pression, or shared protein complex membership, function or cellular loca-
tion. We consider two of the most prevalent techniques which rely on a
gold standard and propose a third which does not.

The first measure calculates reliability rg as the proportion of pairs from
a source E with a known shared designation according to the gold standard,
relative to all pairs annotated by the source!!'?. We denote this measure
PropGS. For example, we might count the proportion of interacting pairs
suggested by the source with the same function. The second measure of re-
liability calculates the log likelihood of pairs sharing a designation according

dNote, here we do not use any type of interaction evidence which is measured experi-
mentally in another species and transferred to the species of interest using orthologs.
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to the gold standard (denoted LogLikGS)?%:10: rp = log(%)
We say two proteins are linked (L) if they share the same designation in
a gold standard. Then Pr(L) is the prior expectation of linkage, while
—Pr(L) is the prior expectation of non-linkage. The values Pr(L|E) and
—Pr(L|E) represent the analogous expectations calculated only among in-
teractions offered by the data source E. Note that PropGS computes
Pr(L|E). In both of methods, the gold standard is predetermined and
held in reserve of the other information sources.

We propose a third alternative, not utilizing a gold standard, which
relies instead on average agreement of a source with the overall consensus
offered by all sources®, denoted Cons. Let n, be the number of sources indi-
cating an interaction (edge) e between a given pair proteins. We calculate
reliability as: rg = ZEFEE| "¢ where |E| is the total number of interactions
offered by source E. Applicability of this measure assumes relative sparsity
for a good proportion of the sources. Reliability of sources which assert
many edges, such as the implicit or high-throughput sources, will then be
automatically discounted since many of those edges will not have further
support among all experts; the average will thus be taken over many small
values of n.. Unlike the previous alternatives, Cons favors a more diverse
notion of interaction since it does not penalize sources whose interaction
type differs from that of the gold standard.

Given the set of reliability estimates for each interaction information
source, our second task is to create a combined reliability score of each
interaction based on the individual reliabilities of the sources contributing
information for that interaction. We consider two probabilistic approaches
to combine source reliabilities, where interactions are events and informa-
tion sources are ezrperts. Both assume independence of experts which we
address by separating information by experiment type. The first is a noisy-
OR model (NoisyOR), used by several groups':'?, which interprets rg as
the probability’ of interaction according to expert E and calculates the
consensus unreliability of the experts: Pr(e) =1 —[[5(1 — rg), with the
product over experts E contributing edge e. The second is a well-known
result in statistics for computing consensus likelihoods from a collection
of experts, the Linear Opinion Pool (LinOP)'3: Pr(e) = > parPrg(e).
The ap are nonnegative expert weights that sum to 1. Our rg correspond
roughly to «;, since Prg(e) = 1 for each edge offered by expert E and no

¢ Assessing reliability using consensus has precedence in medical decision making3'.

fWe use T = m to create a valid probability value.
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information otherwise; we must renormalize over the applicable experts per
edge. To our knowledge, this is the first formal identification of LinOP from
the statistics community for use in biological problems.

3. Application to Biological Tasks

We use PropGS, LogLikGS and Cons to assign reliabilities to interaction
sources, then use LinOP and NoisyOR with each assignment to obtain a
confidence measure Pr(e) for each interaction e. We compare the various
weighting strategies on two tasks which can make use of weighted inter-
actions: inferring protein function and learning regulatory networks from
gene expression data. In each task, we evaluate 1) whether incorporat-
ing reliability of interaction sources helps, 2) which reliability assignment
method is better, and 3) which reliability combination method is better.

3.1. Protein Function Prediction

Protein function prediction methods include machine learning®? and graph
theoretic methods!?. Since most machine learning methods do not use
pairwise information, we only consider graph-theoretic approaches. The
popular Majority! algorithm is based on ‘guilt by association’ whereby an
unknown protein is assigned the (weighted) majority function of its neigh-
bors in a protein network. As a baseline, Unweighted refers to the use of
uniform edge weights while Weighted refers to the use of Pr(e) as edge
weights. One disadvantage of Majority is revealed when a node is connected
to many proteins with unknown function. The FunctionalFlow!? algorithm
overcomes this difficulty by considering a larger neighborhood around a
node.

For each of the yeast and mouse genomes, we obtain a set of reliability
assignments rg applying PropGS, LogLikGS and Cons to the available set
of interaction types, excluding implicit types based on function or pathway
assignments, such as GO:FUNCTION. We use the MIPS Functional Catalog?®
for yeast and KEGG Pathways2? for mouse as gold standards in PropGS and
LogLikGS, as well as gold standards for evaluating performance (described
below). For yeast, we find an extremely high correlation between the set
of reliabilities assigned by PropGS and LoglLikGS (r = 0.97), with slightly
lower correlation to Cons at r = 0.870 and r = 0.874, respectively. For
mouse, the corresponding values were r = 0.75, r = 0.38, and r = 0.64.

Given a set rg, we obtain consensus interaction probabilities Pr(e) us-
ing LinOP and NoisyOR for use as edge weights in the function prediction
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ROC analysis on a Fixed Topology of 126k edges

algorithms Weighted Majority and FunctionalFlow. We use two-fold cross-
validation in which functions (pathways) for half of the proteins in the
graph are hidden and then predicted from function (pathway) assignments
to the other half. Correctness of multiple function (pathway) predictions
is decided by majority. As done in Nabieva et al.'2, we calculate a modi-
fied ROC curve, showing the number of incorrect predictions (FP) versus
number of correct predictions (TP) as the prediction score threshold varies.

Figure 1 considers relative performance of each Pr(e) assignment to
edges for a fixed topology, allowing us to evaluate weighting strategies on
the same set of edges. Figure 1(a)-(b) show results in yeast using the
prediction algorithms Majority and FunctionalFlow, respectively, while Fig-
ure 1(c)-(d) show the equivalent in mouse. A fixed topology in each organ-
ism is generated by choosing 126k edges at random among those supported
by more than one interaction expert. We choose 126k to make the graph size
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tractable for multiple runs while requiring support from multiple experts
counteracts the effect of promiscuous experts, like COESSENTIAL which
asserts > 50% of the total possible edges in yeast.

To answer the first question of the value of using weights based on
relative reliability of experts, we compare the baseline curves Unweighted
Majority in Figure 1 to the weighted alternatives. For most of the range
of FP, Unweighted Majority identifies fewer TP than the weighted methods.
The exceptions are the graphs for FunctionalFlow where PropGS LinOP and
the Cons variants in yeast (Fig. 1(a)) and the LogLikGS variants in mouse
(Fig. 1(d)) sometimes perform worse than Unweighted Majority. This can
occur when a larger neighborhood involves related but not identical func-
tions, in which case, the actual value of the edge weight determines the

quality of the weighting strategies — the topic of our second evaluation
question.
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The LogLikGS reliability assignments show the best performance in
yeast, yet the worst performance in mouse. Since LoglLikGS is similar to
PropGS corrected for background linkage distributions, their relative per-
formance suggests this may be due to different background distributions
(ﬁlj.fT((LL)) = 0.15 in yeast versus 0.01 in mouse). In fact, we found that the
numerical edge weights were nearly identical for both methods in yeast,
while in mouse, LogLikGS edge weights were generally twice the value of
PropGS weights. Also, the yeast graph has a maximum of 77 neighbors while
mouse has a maximum of 348, an enormous difference in size of neighbor-
hoods which, together with a difference in weightings, allows FunctionalFlow
to propagate a lot more noisy predictions. The Cons variants perform the
best overall in mouse, suggesting better overlap of information from sources
in mouse compared to those in yeast, even though mouse has fewer sources.
Even in yeast, the Cons results, which do not use a function/pathway—
based gold standard, are comparable to PropGS which does. In fact, these
results suggest capturing a more diverse notion of ‘interaction’ using Cons
still proves successful for the task of function prediction. Together, these
results suggest Cons is a valuable alternative to LogLikGS and PropGS in
less-studied organisms, where including diverse types of interaction infor-
mation is critical.

For the third question of whether to use NoisyOR or LinOP to combine
source reliabilities, the NoisyOR variants invariably have slightly higher
performance than LinOP. For a given interaction, the value assigned by
NoisyOR will be greater than by LinOP given the same set of reliability
assignments to sources. In this task, this bias causes NoisyOR to make
the same prediction as LinOP but at a higher threshold, accounting for
the slight vertical shift between the two curves. The effect of this shift in
distribution is the subject of the next figure.

The effect of different edge distributions Pr(e) can be seen by fixing a
probability threshold and allowing only edges which exceed the threshold.
Results using Pr(e) > 0.54 in yeast and Pr(e) > 0.22 in mouse are shown
in Figure 2 (legends indicate graph size per method). Shorter curves mean
fewer predictions were made, a comment on the connectivity. As noted
above, the LinOP variants will include fewer edges than NoisyOR for a given
threshold, though here we see little performance difference between the two
for all methods, except Cons (Fig. 2). This difference arises due to the
large size of Cons NoisyOR (339k edges) versus the others (mean 26k) in
combination with the neighborhood-based FunctionalFlow; for sparse graphs
the immediate neighborhood is equivalent to the extended neighborhood,
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making FunctionalFlow nearly equivalent to Majority. In mouse, LinOP and
NoisyOR yield similar graph sizes so we do not see this effect repeated.
Again, Cons performs strongly in mouse, suggesting this non gold standard-
based approach will be valuable in less well-studied organisms.

3.2. Learning Regulatory Networks

Bayesian networks (BN) are a popular modelling formalism for learning
regulatory networks from gene expression data (see Pe’er et. al 33 for an
excellent example). A BN has two components: a directed acyclic graph
(DAG) capturing dependencies between variables, and a set of conditional
probability distributions (CPDs) local to each node. Nodes represent ex-
pression values, arcs represent potential regulatory relationships, and the
CPDs quantify those relationships.

Algorithms to learn BNs from data can use prior knowledge about the
probability of arcs, such as our Pr(e). Learning performs an iterative search
starting from an initial graph, exploring the space of DAGs by removing,
adding or deleting a single edge, choosing the best scoring model among
these one-arc changes, and terminating when no further improvement in
score can be made. Each candidate model is scored with respect to the log-
likelihood (LL) of the data, e.g. how well the CPDs capture dependencies
inherent in the expression data.

To evaluate the quality of a search, we obtain a single performance
measure as follows. Given a starting model, we obtain a LL-trace of the
best model chosen at each iteration and average the trace over all iterations.
We repeat this process for a set of starting models sampled from some
distribution, and average the average LL-trace over all models. Starting
models are sampled either from an informed structural prior (our Pr(e)),
or an uninformed prior which asserts uniform probability over edges. A
high average LL trace value for a given prior indicates that searches using
that prior consistently explore high-scoring models.

Using the yeast genome, as before we create informed structural priors
Pr(e) using all interaction sources (including functional/pathway sources)
together with the Cons, PropGS and LogLikGS methods to assign reliabilities
(again, KEGG is the gold standard for the latter two) and the LinOP and
NoisyOR methods to combine reliabilities. We learn Bayesian networks for
50 genes using a expression dataset covering 1783 yeast microarray experi-
ments (see refs. in Tanay et al.3*). We also create priors using edge reliabil-
ities calculated by other groups, namely STRING!! (a PropGS NoisyOR (on
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experts different than ours) for predicting protein complexes) and MAGIC??
(a hand-crafted BN for predicting function). Both use expression data as
experts. As baselines, we include a uniform reliability assignment over ex-
perts (Unif5) and two random reliability assignments (Randl and Rand2).
Figure 3 shows the LL trace averages, scaled to give Uninformed the value
z=0.

The worst overall performance by Uninformed demonstrates the value of
using priors based on weighted reliabilities. The poor performance of the
remaining baseline variants demonstrates the effect of neglecting to assign
(Unif) or incorrectly assigning (Rand) reliability to interaction sources. Note
NoisyOR performs worse than LinOP for the baseline priors, yet performs
better for the non-baseline variants. This repeats the effect seen in the
function prediction task where NoisyOR assigns higher values than LinOP.
Here, the performance difference indicates that LinOP is more robust to
errors in reliability assignment than NoisyOR. The strength of STRING,
LogLikGS and MAGIC is due in part to having few high probabilities and
many low probabilities in the corresponding Pr(e), in contrast with the
more evenly distributed Pr(e) for the other methods. Such conservativism
allows the Bayesian learner to strongly preserve only the highest confidence
edges while remaining flexible for the others. Performance of the Cons
variants is comparable to PropGS for this task as well, demonstrating the
utility of our method which does not require a gold standard.

Average of LL Trace Over All lterations

*STRING
*LogOdds NoisyOR
*LogOdds LinOP
#MAGIC
#PropGS NoisyOR
*Cons NoisyOR
*Cons LinOP
*PropG$ LinOP
*Rand2 LinOP
*Rand1 LinOP
#Unif5 NoisyOR
*Unif LinOP
*Rand2 NoisyOR
*Rand1 NoisyOR
fUninformed

0 200 400 600 800 1000 1200

Figure 3. Average of Log-Likelihood trace over all iterations

4. Conclusions

Our results show that the Cons method for assigning reliability to inter-
action sources is an attractive alternative to existing methods and has the
added advantage of not requiring a gold standard for assessment. In the task
of predicting protein function, we demonstrated the effectiveness of using
weighting strategies, where Cons proved competitive against other methods
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which have an unfair advantage of using the same gold standard used for
evaluation. For the task involving regulatory networks, we showed that
learning greatly benefits from correctly informed estimates of reliability.
Again, Cons was comparable to the other methods. We introduced LinOP
as an alternative method for combining reliabilities and demonstrated its
performance to be comparable to NoisyOR in most tasks and more robust
to errors in others.
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