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Transcription factor (TF) binding site discovery is an important step in understanding transcrip-
tional regulation. Many computational tools have already been developed, but their success in
detecting TF motifs is still limited. We believe one of the main reasons for the low accuracy
of current methods is that they do not take into account the structural aspects of TF-DNA in-
teraction. We have previously shown that knowledge about the structural class of the TF and
information about nucleosome occupancy can be used to improve motif discovery. Here, we
demonstrate the benefits of using information about the DNA double-helical stability for motif
discovery. We notice that, in general, the energy needed to destabilize the DNA double helix
is higher at TF binding sites than at random DNA sites. We use this information to derive in-
formative positional priors that we incorporate into a motif finding algorithm. When applied to
yeast ChIP-chip data, the new informative priors improve the performance of the motif finder
significantly when compared to priors that do not use the energetic stability information.

1. Introduction

An important step in deciphering eukaryotic transcriptional regulatory control is
the discovery of TF binding sites. Although the amount of TF binding data and
the number of de novo motif discovery tools have been increasing over the last
few years, the problem of finding and characterizing TF binding sites is far from
being solved. Most DNA motif discovery tools focus on finding overrepresented
motifs in sets of sequences believed to be bound by certain TFs. Recent tools also
use cross-species conservation information, and thus look for overrepresented and
conserved motifs. However, these tools do not take into account structural aspects
of the physical interaction between DNA molecules and TFs.

We have shown previously that using structural information, such as the struc-
tural class of the TF1 or nucleosome occupancy information2 can significantly
improve the accuracy of motif finders. In this paper, we explore another aspect
of the TF-DNA interaction: the stability of the DNA double helix. During tran-
scription, the two DNA strands must be separated so that the RNA polymerase can
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slide along the DNA molecule and synthesize a nascent protein. Since proximal
promoter regions, containing the TATA box and binding sites for general TFs, are
located immediately upstream of the transcribed gene where transcription is initi-
ated, one would expect these regions to have a low DNA duplex stability. It is not
clear, however, whether a low or high DNA duplex stability at specific TF binding
sites would be more beneficial for transcription initiation.

Some regulatory proteins bind DNA in a single-strand specific manner (e.g. the
FBP protein in human3). However, the crystal structure of many TF-DNA com-
plexes reveals interactions between TFs and both strands of DNA. This suggests
that destabilization of the double helix could actually prevent the TFs from bind-
ing to their specific sites on the DNA.

Taking this into account, we hypothesis that TF binding sites occur prefer-
entially in regions with high DNA duplex stability. To test this hypothesis, we
consider a set of high-confidence TF binding sites in yeast and compare the du-
plex stability of these binding sites against the stability of randomly selected sites
from the same genomic regions. As a measure of stability we use the helix desta-
bilization profiles of Bi and Benham.5 These profiles contain, for each position in
a DNA molecule, the incremental free energy needed to separate the base-paired
nucleotides at that position.

We will show that the distribution of the average energy needed to separate the
base pairs in TF binding sites is significantly different than the distribution of the
average energy needed to destabilize random sites, so we use these distributions
to derive informative positional priors that we incorporate into our framework for
DNA motif discovery, PRIORITY.1 Intuitively, the first prior simply guides the
search towards DNA sites that have a high energy of destabilization, while the
second prior gives more weight to motifs with a higher energy of destabilization
in the set of bound sequences than in the genome overall. We show that both
energy-based priors significantly improve the performance of motif finding.

2. Data and methods

2.1. TF binding data
We use the Saccharomyces cerevisiae chromatin immunoprecipitation (ChIP-
chip) data published by Harbison et al.,7 who profiled 203 TFs in several environ-
mental conditions. For each TF profiled under each condition, we define its bound
sequence-set to be those intergenic sequences (probes) reported to be bound with
p-value ≤ 0.001. Of the 307 resulting sequence-sets, we use only the 156 sets that
contain at least 10 sequences each, and correspond to 80 TFs with known bind-
ing sites (as summarized by Harbison et al.,7 or as reported earlier11,12). Each
sequence-set is identified as TF condition (e.g. Mbp1 YPD).
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2.2. DNA duplex stability data

The B-form structure of the DNA double helix is not invariant. At specific
sites, local DNA strand separation must occur for certain processes to take place
(e.g. initiation of transcription or replication). The problems of characterizing the
duplex stability of DNA molecules and finding the locations most susceptible to
strand separation have been studied intensively by Benham and collaborators.4,5,6

Although eukaryotic chromosomes are linear, it is easier to understand the
process of duplex destabilization in the context of circular DNA. These molecules
have a constant linking number, defined as the number of times either strand links
through the closed circle formed by the other strand.5 All conformational rear-
rangements that do not break the strands must preserve this constant. The case
of linear DNA molecules is similar because they are partitioned into topological
domains consisting of closed loops within a chromosome, and these loops have
fixed linking numbers in the relaxed state.5

Due to transient strand breakage and re-ligation, the actual linking number
of a DNA molecule can deviate from the linking number in the relaxed state,
a phenomenon known as DNA superhelicity. In general, DNA superhelicity is
negative in vivo (i.e. the actual linking number is smaller than the linking number
in the relaxed state) and therefore imposes untwisting torsional stresses on the
DNA that can destabilize the double helix at specific sites, a phenomenon called
SIDD (stress-induced duplex destabilization).5

Bi and Benham5 developed an approximate method for analyzing local desta-
bilization in superhelically stressed DNA molecules. The method uses statistical
mechanics and nearest neighbor energetics of local denaturation to find all states
with free energy below a certain threshold, among the 2N possible states for a
DNA molecule of size N . Each state can be viewed as a binary array of size
N , with each position indicating the state of the base pair at that position (dena-
tured or not). Next, the authors use the ensemble of low energy states to derive a
measure of destabilization called the (helix) destabilization profile. For each po-
sition j in a DNA molecule X , the destabilization profile G(X , j) represents the
incremental free energy needed to separate the base pair at that position.

We use Bi and Benham’s online tool WebSIDD6 to compute the destabiliza-
tion profiles for all 6140 DNA probes in the yeast TF binding data. Accurate
estimation of the energy profile requires that it be computed within a larger ge-
nomic context, because the stacking interactions of neighboring base pairs may
have non-local influence on the energy profile. For this reason, when computing
the profile for each probe, we include 1000 base pairs upstream and downstream.
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2.3. Average destabilization energy at TF binding sites vs. random sites

To compute the average energy of destabilization at TF binding sites we use the
4312 high-confidence sites reported by MacIsaac et al.8 The width of these bind-
ing sites varies from 5 to 13 nucleotides. Since in our study we primarily search
for motifs of size 8—whose length can be refined later using criteria such as in-
formation content—we restrict our attention to the 2740 binding sites of size 7
to 9 nucleotides. For every resulting binding site B we compute the energy of
destabilization G(B) as the average of the destabilization profiles G(B, j) for all
positions j in the site.

We build a histogram of the energies of the
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Figure 1. The cumulative distribution
functions (CDFs) for the average en-
ergy of destabilization at TF binding
sites (solid) versus random DNA sites
(dashed). A two-sample Kolmogorov-
Smirnov test indicates these two distri-
butions to be different at a p-value of
2× 10−68.

2740 binding sites, normalize the values to get
a valid probability distribution, and then use a
moving average to obtain a smooth distribution
of energy values, plotted as a CDF in Figure 1.
For every energy value e, this distribution rep-
resents the probability of a DNA site S having
that energy, given that S is a true TF binding
site, i.e. P (G(S) = e | S ∈ TFBS), where
TFBS is the set of all binding sites.

Next, for each high-confidence binding
site B of size 7 to 9 nucleotides we randomly
select 20 DNA sites of the same size, from the
same intergenic sequence as B. We compute
the energy of destabilization for each of the
54,800 random sites, and use these values to
build the distribution of energies for random DNA sites, plotted as a CDF in Fig-
ure 1. For every energy value e, this distribution gives us the probability of a DNA
site S having that energy, i.e. P (G(S) = e).

We can now use Bayes rule to compute the probability that a DNA site S is a
TF binding site, given its energy:

P (S ∈ TFBS | G(S)) =
P (G(S) | S ∈ TFBS)× P (S ∈ TFBS)

P (G(S))
(1)

The only unknown term on the right side of Eq. (1) is the prior probability of S
being a TF binding site. We estimate this term using the frequency of random
DNA sites that have a significant overlap with any of the known TF binding sites,
as reported by MacIsaac et al.8

Given that the distributions of the average energy of destabilization are sig-
nificantly different for true TF binding sites compared to random sites, we can
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leverage this information to improve TF binding site discovery. More precisely,
we use P (S ∈ TFBS | G(S)), as defined in Eq. (1), to derive informative po-
sitional priors that we incorporate into PRIORITY,1 our generative framework for
identifying motifs in sets of DNA sequences.

2.4. The PRIORITY framework

Let X = {X1, . . . ,Xn} be a set of n DNA sequences reported to be bound
by the same TF. For simplicity, we assume that each DNA sequence contains at
most one binding site of the TF, and we use a vector Z to denote the starting
location of the binding site in each sequence: Zi = j if there is a binding site
starting at location j in Xi. Since the TF binding data may have been affected by
experimental errors, we also allow for the DNA sequences to contain no binding
sites, and in this case we adopt the convention that Zi = 0.

We model the TF binding sites as position-specific scoring matrices (PSSMs)
of length W parameterized by φ, and we assume that the rest of the sequence
follows some background model parameterized by φ0. We fixed the length W of
the binding sites to be 8, and the background model φ0 to be a third order Markov
model trained on all intergenic regions in yeast.

The goal of our motif finding algorithm is to find the φ and Z that maxi-
mize the joint posterior distribution of all the unknowns given the data. Assuming
independent priors P (φ) and P (Z) over φ and Z respectively, our objective is:

arg max
φ,Z

P (φ, Z | X,φ0) = arg max
φ,Z

P (X | φ, Z,φ0)× P (φ)× P (Z) (2)

We use Gibbs sampling to sample repeatedly from the posterior over φ and Z

with the hope that we are going to visit those values of φ and Z that maximize the
posterior probability. Gibbs sampling is a Markov chain Monte Carlo (MCMC)
method that approximates sampling from a joint posterior distribution by sampling
iteratively from individual conditional distributions.9 For faster convergence, we
apply collapsed Gibbs sampling10 and integrate out φ to sample only the Zi:

P (Zi | Z [−i],X,φ0) = P (X | Zi,Z [−i],φ0)× P (Zi)/P (X | Z [−i],φ0)

∝ P (Xi | Z,φ0)× P (Zi) (3)

Most motif discovery algorithms based on Gibbs sampling strategies implic-
itly assume a uniform prior over the possible starting locations Zi of a binding site
in each sequence Xi, and thus sample only according to the likelihood term. Our
algorithm has a great advantage over other motif finders: it allows the incorpora-
tion of informative positional priors.
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2.5. Building an energy-based positional prior

Given a DNA sequence Xi and the energy profile G(Xi, j) we derive an infor-
mative positional prior in two steps. First, for each W -mer XW

i,j that starts at
position j in sequence Xi we compute an energy-based score that reflects the
prior probability of the W -mer being a TF binding site:

SE(Xi, j) = P
(
XW

i,j ∈ TFBS | 〈G(Xi, j)〉W
)

(4)

where 〈G(Xi, j)〉W is the average energy of destabilization for the W -mer that
starts at position j in sequence Xi:

〈G(Xi, j)〉W =
1
W

W−1∑
k=0

G(Xi, j + k) (5)

The score SE can then be calculated from the distributions of the average energy
of destabilization, as described in Eq. (1).

The second step in the derivation of the positional prior is to build a valid
probability distribution P (Zi = j) using the energy-based score SE . Note that
the values SE(Xi, j) themselves do not define a probability distribution over j,
as they may not sum to 1. In addition, according to our model, we allow for the
sequence Xi to contain no binding sites. In this case, none of the positions in Xi

can be the starting locations of binding sites, so we must have:

P (Zi = 0) ∝
li−W+1∏

u=1

(1− SE(Xi, u)) (6)

where li is the length of sequence Xi. On the other hand, if Xi has one binding
site at position j, not only must a binding site start at location j but also no such
binding site should start at any of the other locations in Xi. Formally, we write:

P (Zi = j) ∝ SE(Xi, j)
li−W+1∏

u=1
u6=j

(1−SE(Xi, u)) for 1 ≤ j ≤ li−W +1 (7)

We then normalize P (Zi) using the same proportionality constant in Eqs. (6) and
(7), so that under the assumptions of our model we have:

∑li−W+1
j=0 P (Zi = j) =

1, for 1 ≤ i ≤ n. Finally, we incorporate this energy-based positional prior
into our search algorithm PRIORITY, and we refer to the resulting algorithm as
PRIORITY-E .

To visualize how the positional prior E can improve TF binding site discov-
ery, we show in Figure 2 the score SE from which the prior E is computed, over
four DNA probes from the sequence-set corresponding to TF Mbp1 profiled in
YPD. We notice that most of the Mbp1 sites, depicted as black boxes on the DNA

Pacific Symposium on Biocomputing 13:453-464(2008)



September 25, 2007 1:14 Proceedings Trim Size: 9in x 6in psb2008˙REVISED

probe iYMR305C, positions 300-700

probe iYIL026C, positions 1-280
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probe iYGR189C, positions 100-500
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Figure 2. The energy-based score SE used to compute the E prior. The x-axes represent DNA probes
from the sequence-set Mbp1 YPD. The black boxes on the DNA sequences represent matches to the
Mbp1 motif, ACGCGT.

sequences in Figure 2, correspond to peaks of the energy score SE , so they also
correspond to peaks of the prior P (Zi = j). Thus, when prior E is used for
sampling the starting locations of putative binding sites (see Eq. (3)), the loca-
tions of the true Mbp1 sites already have a high weight, even before the likelihood
information is taken into account.

2.6. Building a discriminative energy-based positional prior

In Figure 2 we notice that matches to the Mbp1 motif correspond to peaks of the
energy-based score. However, SE has a number of other peaks that do not corre-
spond to Mbp1 sites. This is not surprising since we cannot expect all the high-
energy sites in these DNA sequences to be binding sites of the profiled TF, Mbp1.
The other peaks may correspond to binding sites of other TFs, or to other DNA
elements that have a high energy of destabilization. To address this issue we build
a second informative prior, DE , which uses the energy profiles in a discriminative
manner. To do this we need, in addition to the set X of bound sequences, another
set Y that contains sequences believed not to be bound by the TF in question.
Both sets of sequences can be obtained from large-scale experimental methods
like ChIP-chip.

The prior DE is derived similarly to the derivation of the simple energy prior
E , but using a new score that takes into account the energy of putative binding
sites in both the positive (bound) and the negative (unbound) sequences. For a W -
mer XW

i,j starting at position j in sequence Xi, the discriminative energy score is
defined as the ratio between the sum of the simple energy score for the occurrences
of XW

i,j in the positive set, and the sum of the energy score for the occurrences of
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Figure 3. The discriminative energy score SDE used to compute theDE prior. The x-axes represent
DNA probes from the sequence-set Mbp1 YPD. The lighter curves represent the simple energy score
SE over the same DNA sequences. The black boxes on the DNA sequences represent matches to the
Mbp1 motif, ACGCGT.

the same W -mer in both the positive and negative sets:

SDE(Xi, j) =

∑
(k,l):XW

kl =XW
ij

SE(Xk, l)∑
(k,l):XW

kl =XW
ij

SE(Xk, l) +
∑

(k,l):Y W
kl =XW

ij

SE(Y k, l)
(8)

Using the discriminative score SDE instead of the simple score SE we build a valid
probability distribution P (Zi = j), as described in Section 2.5. We call the new
prior DE , and we refer to our algorithm with this informative prior PRIORITY-DE .

To illustrate the advantages of the new discriminative prior over the simple
energy prior, we show in Figure 3 the score SDE over the last two DNA sequences
in Figure 2 (see the Supplementary Material for plots of SDE over all four DNA
sequences). We notice that in both sequences the highest SDE peaks correspond
to Mbp1 sites. In the first sequence, the simple score SE has two peaks that do not
correspond to Mbp1 sites: the peak on the left corresponds to a Mot3 motif, and
the peak on the right to a Swi5 motif. The score SDE does not contain these two
peaks because of its specificity for the profiled TF, which in this case is Mbp1. In
the second sequence, the highest peak of SE is misleading: it corresponds to an
imperfect match to the Swi4/Swi6 motif. SDE , however, does not have a peak at
this position. Instead, it indicates the correct location of the Mbp1 binding site.

The energy-based priors E and DE are derived from distributions of the aver-
age energy of destabilization for both known TF binding sites and random DNA
sites. When using these priors to find the binding motif of a certain TF, one might
worry that occurrences of this motif may have been included in the training data
(i.e. the set of known binding sites) and therefore the algorithms may be successful
simply because they are being tested on some of the data that was used for train-
ing. One way to overcome this issue is to remove all the binding sites of the TF
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Figure 4. Summary of the results obtained by PRIORITY with priors U , E , D, and DE . Each
column represents a possible combination of successes (filled balls) and failures (empty balls) for the
four priors. Out of the 16 possible combinations, we only depict those that occur in at least one of
the 156 sequence-sets. The number of sequence-sets falling into each category is indicated below the
respective column. The last column contains the total number of successes for each algorithm.

in question from the set of known binding sites, compute the two energy distribu-
tions, derive the priors, and then apply the algorithms for that TF. We did exactly
this and noticed that the two energy distributions were virtually unchanged. This
makes sense since the set of binding sites is very large (2740 sites), so leaving out
the sites of a particular TF does not influence the distribution of average energy
significantly.

3. Results

To assess the performance of PRIORITY-E and PRIORITY-DE we use the 156
sequence-sets compiled from the ChIP-chip data of Harbison et al.7 (see Sec-
tion 2.1). For each sequence-set we run the algorithms 10 times from different ran-
dom starting points for 10,000 sampling iterations and report the top-scoring motif
among the 10 runs. We consider an algorithm to be successful for a sequence-set
only if the top-scoring motif is at a distance less than 0.25 from the literature
consensus. For details about the distance function, see Narlikar et al.2

We first compare the performance of the energy-based positional priors with
that of a uniform prior U and a simple discriminative priorD. These two priors are
similar to E and DE , respectively, except that they do not use information about
the destabilization energy. We build the uniform prior using a flat score SU = 0.5.
The simple discriminative prior D is calculated similarly to DE , but using the
uniform score SU instead of the energy score SE in Eq. (8). We incorporate the
priors into our framework PRIORITY and refer to the new algorithms as PRIORITY-
U and PRIORITY-D. The results of the four algorithms on the 156 sequence-sets
are summarized in Figure 4 and presented in detail in the Supplementary Material.
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3.1. Energy-based priors perform better than uniform prior

An accurate quantification of the extent to which the energy-based priors improve
motif discovery can be obtained by comparing PRIORITY-E and PRIORITY-DE
with PRIORITY-U .

We notice that PRIORITY-E is able to find 54 correct motifs, an improvement
of 17% over the uniform prior. PRIORITY-DE performs even better: it finds the
correct motif in 70 sequence-sets, 52% more than the uniform prior. Furthermore,
we notice that in all the sequence-sets where PRIORITY-U succeeds, the energy-
based priors also succeed, so they are never detrimental to motif discovery. We
also mention that in the sequence-set Mbp1 YPD, from which the DNA sequences
depicted in Figures 2 and 3 were extracted, PRIORITY-U is unable to find the
correct Mbp1 motif, while both PRIORITY-E and PRIORITY-DE succeed.

The improvement of PRIORITY-DE over PRIORITY-U is remarkable: 70 cor-
rectly found motifs versus 46. We note, however, that this improvement is not
due solely to the energy information, but also to the discriminative information.
Out of the 24 motifs found by PRIORITY-DE and not found by PRIORITY-U , 9
motifs are only detected when using the discriminative priors, so it is probably the
discriminative information that causes the improvement in these cases. In 9 other
sequence-sets, though, the DE prior is the only one to find the correct motif. This
suggests that neither E nor D alone contains enough information to identify the
true motif, though the combination DE is successful.

Figure 4 also reveals that there are four cases in which either E or D succeeds
in finding the correct motif, but DE fails. We next discuss these cases in more
detail. The two sequence-sets where PRIORITY-E is the only one that finds the
correct motif are Met32 SM and Sip4 YPD. In both cases we notice that the oc-
currences of the true motif in the bound set have a high energy of destabilization,
which explains the success of PRIORITY-E , but the two motifs also have a high
energy of destabilization overall in the genome, which explains why PRIORITY-
DE fails. We also notice that the sequence-sets Met32 SM and Sip4 YPD contain
very few occurrences of the Met32 and Sip4 motifs, respectively. We believe it
is possible that some high-energy occurrences of these motifs in the unbound sets
are in fact binding sites of the profiled TFs, but were not bound in the particular
environmental conditions of the ChIP-chip experiments.

In two sequence-sets, theD prior succeeds while both energy-based priors fail:
Skn7 H2O2Lo and Msn2 H2O2Hi. In the case of Skn7 H2O2Lo, both E and DE
fail because they get stuck in local optima. If we score the motif found by D
according to the posteriors obtained using E and DE , we get significantly higher
scores than the ones reported by PRIORITY-E and PRIORITY-DE , respectively, for
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their top motifs (which do not match the literature consensus). In the case of
Msn2 H2O2Hi, the fact that PRIORITY-DE does not find the correct motif is due
to the motif size, which by default is 8. If we set it to 6—the true size of the Msn2
motif—PRIORITY-DE succeeds. For the same sequence-set Msn2 H2O2Hi, the
failure of PRIORITY-E seems to be the result of the algorithm getting stuck in a
local optimum.

3.2. Comparison with popular motif finders

Finally, we present a comparison between the results of our algorithm with energy-
based positional priors and the results of six popular motif finders, as reported by
Harbison et al.7: AlignACE,13 MEME,14 MDscan,15 and three methods that use
evolutionary conservation information (MEME c,7 a method of Kellis et al.,16 and
Converge7). We emphasize, however, that the goal of this paper is not to intro-
duce a new motif discovery tool, but to show that structural information typically
disregarded by motif finders can significantly improve their performance.

Out of the 156 sequence-sets, AlignACE is successful in 16, MEME in 35,
MDscan in 54, MEME c in 49, the method of Kellis et al. in 50, and Converge
in 56, so our algorithm PRIORITY-DE outperforms all six methods, with a total of
70 correctly identified motifs. Furthermore, even the simpler PRIORITY-E outper-
forms five of the six methods.

4. Discussion

In this paper we demonstrate the benefits of using information about the DNA
double-helical stability to detect TF binding sites. Using the energy profiles of Bi
and Benham5 as a measure of stability, we notice that in general more incremental
free energy is needed to separate the DNA strands at TF binding sites compared
to random sites across the genome. This is not surprising since TF binding sites
are usually GC-rich. We stress, however, that the energy profiles we used in our
analysis were computed using a complex method that takes into account not only
individual base pairs, but also the neighboring effects of other base pairs in the
same DNA region. Although there is some correlation between the energy profiles
and the GC content of the DNA sequences, using an informative positional prior
similar to E but derived from GC content instead of destabilization profiles did not
show any improvement over the uniform prior.

One limitation of using helix destabilization energy is that the only eukary-
otic organism whose profile has been made available is yeast. The online tool
WebSIDD5 could in principle be used to compute energy profiles for other eu-
karyotic genomes, but it is limited to sequences a few kilobases long and a down-
loadable version of the software is not currently available.
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The improvement obtained using the energy-based priors demonstrates, once
again, the importance of incorporating structural information into motif discovery
algorithms; whenever structural information can be translated into a prior over
sequence positions, it can be straightforwardly incorporated into our PRIORITY
framework for DNA motif discovery. We have shown that useful positional priors
can be derived from knowledge of TF structural class,1 from nucleosome occu-
pancy information,2 and now from profiles of helix destabilization energy. The
usefulness of each of these sources of information leads naturally to the ques-
tion of the degree of redundancy among them; for instance, the positioning of
nucleosomes may be correlated with DNA duplex stability. However, we observe
that only some priors are successful on certain sequence-sets. As one example,
although both the discriminative nucleosome prior DN 2 and the discriminative
energy prior DE succeed on 70 sequence-sets, in 10 of these sets, only one of
the two succeeds, suggesting that combining the informative priors in a princi-
pled way—which is not a trivial task—has the potential to further improve motif
discovery using informative positional priors.

Supplementary material is available at www.cs.duke.edu/∼raluca/psb08/.
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