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Whole genome tiling arrays at a user specified resolution are becoming a versa-

tile tool in genomics. Chromatin immunoprecipitation on microarrays (ChIP-
chip) is a powerful application of these arrays. Although there is an increasing

number of methods for analyzing ChIP-chip data, perhaps the most simple and

commonly used one, due to its computational efficiency, is testing with a mov-
ing average statistic. Current moving average methods assume exchangeability

of the measurements within an array. They are not tailored to deal with the

issues due to array designs such as overlapping probes that result in correlated
measurements. We investigate the correlation structure of data from such ar-

rays and propose an extension of the moving average testing via a robust and

rapid method called CMARRT. We illustrate the pitfalls of ignoring the correla-
tion structure in simulations and a case study. Our approach is implemented

as an R package called CMARRT and can be used with any tiling array platform.
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1. Background

Whole genome tiling arrays utilize array-based hybridization to scan the
entire genome of an organism at a user specified resolution. Among their
applications are ChIP-chip experiments for studying protein-DNA inter-
actions. These experiments produce massive amounts of data and require
rapid and robust analysis methods. Some of the commonly used methods
are ChIPOTle,1 Mpeak,2 TileMap,3 HMMTiling,4 MAT5 and TileHGMM.6

Although these algorithms have been shown to be useful, they don’t address
the issues due to array designs. The most obvious issue is the correlation of
the measurements from probes mapping to consecutive genomic locations.15

The basis for such a correlation structure is due to both overlapping probe
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design and fragmentation of the DNA sample to be hybridized on the ar-
ray. There are several hidden Markov model (HMM) approaches to address
the dependence among probes but the current implementations are lim-
ited to first order Markov dependence.4 Generalizations to higher orders
increase the computational complexity immensely. We investigate the cor-
relation structure of data from complex tiling array designs and propose an
extension of the moving average approaches1,7 that carefully addresses the
correlation structure. Our approach is based on estimating the variance of
the moving average statistic by a detailed examination of the correlation
structure and is applicable with any array platform. We illustrate the pit-
falls of ignoring the correlation structure and provide several simulations
and a case study illustrating the power of our approach CMARRT (Correla-
tion, Moving Average, Robust and Rapid method on Tiling array).

2. Methods

Let Y1, ..., YN denote measurements on the N probes of a tiling path. Yi

could be an average log base 2 ratio of the two channels or (regularized)
paired t-statistic for arrays with two channels (e.g., Nimblegen) and a (reg-
ularized) two sample t-statistic for single channel arrays (Affymetrix) at the
i-th probe. These wide range of definitions of Y make our approach suitable
for experiments with both single and multiple replicates per probe.

A common test statistic for analyzing ChIP-chip data is a moving aver-
age of Yi’s over a fixed number of probes or fixed genomic distance.1,3,7 The
parameter wi will be used to define a window size of 2wi +1, i.e., wi probes
to the right and left of the i-th probe. In the case of moving average across
a fixed number of probes for tiling arrays with constant probe length and
resolution, the window size wi is calculated by L×(2wi+1)−2wi×O = FL,
where L is the probe length, O is the overlap between two probes and FL

is the average fragment size. Our framework also covers tiling arrays with
non-constant resolution. In this case, wi will be different for each genomic
interval and corresponds to the number of probes within a fixed genomic
distance. For simplicity in presentation, we will utilize window size of fixed
number of probes. We assume that the data has been properly normal-
ized by potentially taking into account the sequence features,8 and that
E[Y ] = µ and var(Y ) = σ2. Consider the following moving average statis-
tic

Ti =
1

2wi + 1

i+wi∑

j=i−wi

Yi. (1)
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Then, standard variance calculation leads to

var(Ti) =
1

(2wi + 1)2


(2wi + 1)σ2 +

i+wi∑

j=i−wi

∑

k 6=j

cov(Yj , Yk)


 . (2)

The standardized moving average statistic is given by

Si =
Ti√

var(Ti)
. (3)

Standard practice of using moving average statistics relies on (1) estimat-
ing σ2 based on the observations that represent lower half of the unbound
distribution; (2) ignoring the covariance term in equation (2); (3) and ob-
taining a null distribution under the hypothesis of no binding at probe i.
In particular, ChIPOTle considers a permutation scheme where the probes
are shuffled and the empirical distribution of the test statistic over several
shufflings is used as an estimate of the null distribution. As an alternative, a
Gaussian approximation is utilized assuming that Yi’s are independent and
identically distributed as normal random variables under the null distribu-
tion. As discussed by the authors of ChIPOTle, both approaches assume
the exchangeability of the probes under the null hypothesis. Exchangeabil-
ity implies that the correlation within any subset of the probes is the same.
However, empirical autocorrelation plots from tiling arrays often exhibit ev-
idence against this (Fig. 1). In particular, in the case of overlapping designs,
a correlation structure is expected by design. When the spacing among the
probes is large, correlation diminishes as expected (the right panel of Fig.
1), and this was the case for the dataset on which ChIPOTle was developed.

We illustrate the problem with ignoring the correlation structure on a
ChIP-chip dataset from an E-coli RNA Polymerase II experiment utiliz-
ing a Nimblegen isothermal array (Landick Lab, Department of Bacteriol-
ogy, UW-Madison). The probe lengths vary between 45 and 71 bp, tiled
at a 22 bp resolution. Approximately half of the probes are of length 45
bp. We compute the standardized moving average statistic Si (assuming
cov(Yj , Yk) 6= 0) and S∗i (assuming independence of Yi’s). A method of esti-
mating cov(Yj , Yk) is described in the next section. The p-values for each Si

and S∗i are obtained from the standard Gaussian distribution under the null
hypothesis. We expect the quantiles of Si and S∗i for unbound probes to fall
along a 45◦ reference line against the quantiles from the standard Gaussian
distribution, whereas the quantiles for bound probes to deviate from this
reference line. As evident in Fig. 2, if the correlation structure is ignored,
the distribution of S∗i ’s for unbound probes deviates from the standard
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Gaussian distribution. Since the data is obtained from a RNA Polymerase
II experiment, we expect a larger number of points, corresponding to pro-
moters, to deviate from the reference line. An additional diagnostic tool is
the histogram of the p-values. If the underlying distributions for Si and S∗i
are correctly specified, the p-values obtained should be a mixture of uniform
distribution between 0 and 1 and a non-uniform distribution concentrated
near 0. The histograms of the p-values (Fig. 2) again illustrate that the
distribution for Ti is misspecified.

2.1. Estimating the correlation structure

Although it is desirable to develop a structured statistical model that cap-
tures the correlations, developing such a model is both theoretically and
computationally challenging due to the complex, heterogeneous data gen-
erated by tiling array experiments. We propose a fast empirical method
that estimates the correlation structure based on sample autocorrelation
function. The covariance cov(Yj , Yj+k) can be estimated from the sample
autocorrelation ρ̂(k) and sample variance σ̂2,10

ρ̂(k) =
∑T−k

t=1 (Yt − Ȳ )(Yt+k − Ȳ )∑T
t=1(Yt − Ȳ )2

, ĉov(Yj , Yj+k) = ρ̂(k)σ̂2. (4)

The following strategy is used in CMARRT for estimating the correlation
structure. The top M% of outlying probes which roughly correspond to
bound probes are excluded in the estimation of ρ̂(k). For the remaining
probes, the sample autocorrelation at lag k (ρ̂j(k)) is computed for each
segment j consisting of at least N consecutive probes. Genomic regions
flanking a large gap or repeat masked regions will be considered as two
separate segments. For any lag k, we let ρ̂(k) to be the average of ρ̂j(k)
over j. Here, N can be considered as a tuning parameter and our initial
experiments with ENCODE datasets suggest that N = 500 works well
in practice based on the diagnostic plots discussed in Section 1. M is an
anti-conservative preliminary estimate of the percentage of bound probes
which can be obtained under the assumption of independence among probes
(usually ∼ 1− 5%, depending on the type of ChIP-chip experiment).

3. Simulation studies

In this section, we investigate the performance of CMARRT, the conventional
normal approximation approach under the independence assumption (In-
dep) and the HMM option in TileMap under various scenarios where we

Pacific Symposium on Biocomputing 13:515-526(2008)



know the true bound regions in terms of sensitivity and specificity while
controlling FDR at various levels used in practice.

Simulation I: Autoregressive model. We consider the following
model

Yi = Ni + Ri, Ni =
p∑

k=1

αi−kNi−k + εi, (5)

where Ni is the autoregressive background component and Ri is the real
signal. We generate 100,000 Ni from AR(p) to represent the background
component under the assumption of cor(Ni, Ni+k) = ρ0.4(k−1)+1 and ran-
domly choose 500 peak start sites. We let the size of a peak to be 10 probes,
so that ∼ 5% of the probes belong to bound regions. To design scenarios
similar to what we have observed in practice, we also allow for ∼ 3 out-
liers within a bound region. The data is simulated from various p (AR
order), ρ (cor(Ni, Ni+k)) and σ (var(Ni)) for the background component,
and strength c for the real signal.

Simulation II: Hidden Markov model. In this scenario, the
data is simulated from hidden markov models (HMMs)12 with ex-
plicit state duration distribution to introduce direct dependencies at
the probe level observations. Let the duration HMM densities be
pSi

(di) ∼Geometric(pSi
). The transition probabilities (aij) and the pa-

rameters pSi
in the duration HMM densities are chosen such that ∼ 5%

of the probes belong to bound regions. We consider the joint observa-
tion density fNi

(Y1, Y2, ...Yd1) ∼ MV N(0,ΣN ) for the unbound regions
and fBi(Y1, Y2, ...Yd1) ∼ MV N(µ,ΣB), µ > 0 for the bound regions, where
MV N denotes the multivariate normal distribution. The parameters µ, ΣN

and ΣB are chosen such that generated data resembles observed ChIP-chip
data exhibiting correlations at the observation level.

Each simulation scenario is repeated 50 times. A probe is declared as
bound if its adjusted p-value11 is smaller than a pre-specified FDR level
α when analyzing with CMARRT and Indep. For TileMap, we use the direct
posterior probability approach13 to control the FDR.

3.1. Results of simulations I and II

In Fig. 3, we summarize the sensitivity at the peak level and the speci-
ficity at various FDR thresholds from Simulation I for CMARRT, Indep, and
TileMap. CMARRT is able to identify most of the bound regions at FDR
of 0.05 and above while TileMap tends to be more conservative in declar-
ing bound regions as shown in the sensitivity plots. Although Indep has
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the highest sensitivity, it also has a high proportion of false positives. The
specificity of Indep is significantly lower compared to CMARRT, even under
the case of low correlation among the probes. Similar results are obtained
in Simulation II under the duration HMM (Fig. 4). The left panels show the
sensitivity and specificity for the case of smaller peaks with an average peak
size of 10 probes while the right panels are for the case of larger peaks of
size 20 probes on average. These results illustrate the superior performance
of CMARRT in terms of both sensitivity and specificity even when the data
is generated from a complex model. The heuristic way of estimating the
correlation structure in CMARRT is able to reduce the false positives (speci-
ficity) significantly, but not at the expense of increasing false negatives
(sensitivity). On the other hand, ignoring the correlation structure results
in a higher proportion of false positives. Additionally, the HMM option in
TileMap is more conservative than the moving average approach when the
FDR is controlled at the same level.

4. Case study: ZNF217 ChIP-chip data

We provide an illustration of CMARRT with a ZNF217 ChIP-chip data
tiling the ENCODE regions (available from Gene Expression Om-
nibus (http://www.ncbi.nlm.nih.gov/geo/)14 with accession number
GSE6624). The ENCODE regions were tiled at a density of one 50-mer
every 38 bp, leading to ∼ 380,000 50-mer probes on the array. We analyze
two different replicates of this dataset separately and compare the analysis
on these single replicates. In Krig et al.,14 the bound regions were identi-
fied with the Tamalpais Peaks program,9 which requires a bound region to
have at least 6 consecutive probes in the top 2% of the log base 2 ratios.
This criteria tends to be too stringent and fails to identify bound regions
which contain a few outlier probes with log base 2 ratios below the top 2%
threshold and may result in a higher level of false negatives. In the top right
panel of Fig. 5, we show one potential peak missed by the Tamalpais Peaks
program. In such cases, the sliding window approach is more powerful for
finding peaks. Moreover, this method also assumes the observations are in-
dependent. As evident in the left panel of Fig. 1, observations from nearby
probes in this tiling array are correlated. As shown in Fig 5, the histograms
of p-values for the unbound probes under the independence assumption de-
viates from the expected distribution in both replicates. Similar problem is
present in the normal quantile-quantile plots (online supp. mat.) when the
correlation structure is ignored.

As in Krig et al.,14 we require the number of consecutive probes in each
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bound region to be at least 6. A set of peaks is obtained for each replicate
at a given FDR control. We assess the extent of overlaps between the set of
peaks in these two replicates. The results are summarized in Table 1. All
the methods identified more peaks in replicate 1 than replicate 2. Therefore,
using the peaks from rep 1 as reference, the common peaks are defined as
the percentage of overlapping peaks in replicate 2. For all FDR thresholds
(except 0.01), CMARRT has the highest value of common peaks, followed by
Indep and TileMap, which illustrates the consistency of the peaks identified
by CMARRT.

As an independent validation, we determine the location of bound re-
gions relative to the transcription start site (TSS) of the nearest gene using
GENECODE genes from UCSC Genome Browser as in Krig et al.14 (Table
1). For a given FDR control, the percentage of peaks located within ±2kb,
±10kb and ±100kb of the TSS is the highest in CMARRT, followed by Indep
and TileMap. As expected, these numbers decrease as we increase the FDR
threshold for all the three methods. These results illustrate the power of
CMARRT in detecting biologically more plausible bound regions of ZNF217.

5. Discussion

We have investigated and illustrated the pitfalls of ignoring the correlation
structure due to tiling array design in ChIP-chip data analysis. We proposed
an extension of the moving average approaches in CMARRT to address this
issue. CMARRT is a robust and fast algorithm that can be used with any
tiling platform and any number of replicates. Both the simulation results
and the case study illustrate that CMARRT is able to reduce false positives
significantly but not at the expense of increasing false negatives, thereby
giving a more confident set of peaks. We have recently became aware of
the work of Bourgon15 who carefully studies the correlation structure in
ChIP-chip arrays and proposes a fixed order autoregressive moving average
model (ARMA(1, 1)) and we are in the process of comparing CMARRT with
this approach.

CMARRT is developed using the Gaussian approximation approach and
the diagnostic plots illustrated can be utilized to detect whether a given
dataset violates this assumption. One possible relaxation of this assumption
is a constrained permutation approach that aims to conserve the correlation
structure among the probes under the null distribution. Implementation of
such an approach efficiently is a challenging future research direction.
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Table 1. Distance of ZNF217-binding sites relative to TSS.

FDR=0.01 CMARRT Indep TileMap

Common peaks 0.803(791/935) 0.819(1423/1736) 0.718(799/1113)

% of peaks within ±2kb 0.334 0.278 0.136
% of peaks within ±10kb 0.619 0.565 0.442

% of peaks within ±100kb 0.911 0.903 0.824

FDR=0.05 CMARRT Indep TileMap

Common peaks 0.806(1023/1269) 0.790(1796/2272) 0.714(978/1370)

% of peaks within ±2kb 0.321 0.267 0.134
% of peaks within ±10kb 0.589 0.565 0.431

% of peaks within ±100kb 0.903 0.900 0.826

FDR=0.10 CMARRT Indep TileMap

Common peaks 0.805(1209/1491) 0.779(2096/2689) 0.703(1071/1524)
% of peaks within ±2kb 0.300 0.265 0.135

% of peaks within ±10kb 0.579 0.561 0.428

% of peaks within ±100kb 0.904 0.894 0.821

FDR=0.15 CMARRT Indep TileMap

Common peaks 0.794(1333/1678) 0.763(2301/3051) 0.701(1171/1671)
% of peaks within ±2kb 0.284 0.259 0.136

% of peaks within ±10kb 0.564 0.552 0.434

% of peaks within ±100kb 0.899 0.890 0.827
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Fig. 1. Example autocorrelation plots from ChIP-chip data. The left, middle and right
panels are from the data in Krig et al.,14 Landick Lab and Kim et al.2 respectively.

The autocorrelation plots for Krig et al.14 and Landick Lab clearly show the presence

of correlations among probes. The autocorrelation plot for Kim et al.2 shows that the
correlation structure diminish with increasing spacing between probes. The data from

Krig et al.14 and Landick Lab are from tiling arrays with overlappping probes, whereas

the design in Kim et al.2 have subtantial spacing between probes (i.e., probe length =
50 bp and resolution = 100 bp).
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Fig. 2. Normal quantile-quantile plots (qqplot) and histograms of p-values. The left

panels show the qqplot of Si and distribution of p-values under correlation structure.

The top right panel shows that if the correlation structure is ignored, the distribution of
S∗i ’s for unbound probes deviates from the standard Gaussian distribution. The bottom

right panel shows that if the correlation structure is ignored, the distribution of p-values

for unbound probes deviates from the uniform distribution for larger p-values.
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Fig. 3. Sensitivity at peak level (top figure) and specificity (bottom figure) at various

FDR control (x-axis). The background N is generated from various autoregressive models
with sd(Ni)=0.3, Yi = Ni + 1.5, p = {3, 6, 9} and ρ = {0.3, 0.5, 0.7}. Vertical lines are
error bars. CMARRT is able to identify most of the bound regions at FDR of 0.05 and above.

TileMap tends to be more conservative in declaring bound regions. Although Indep gives

the highest sensitivity, it also has the highest proportion of false positives. The specificity
for CMARRT is significantly higher than the Indep approach.
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Fig. 4. Sensitivity and specificity at various FDR control (x-axis). The left panels are
the results under duration HMM simulation with average peak size of 10 probes. The

right panels correspond to using average peak size of 20 probes. TileMap tends to be

more conservative and has the lowest sensitivity and highest specificity. CMARRT is able
to achieve a balance between sensitivity and specificity at each FDR threshold. Indep

tends to identify many false positives.
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Fig. 5. Histograms of p-values for replicates 1 and 2 and an example of peak missed

by the Tamalpais Peaks program. The distributions of the probes for unbound regions
deviates from uniform distribution when the correlation structure is not taken into ac-

count (bottom panels). The dotted line in top right panel is the 98-th percentile of the

log base 2 ratios. Tamalpais Peaks requires a peak to have at least 6 probes in a row to
be in the top 2 %.
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