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The growing availability of inexpensive high-throughput sequence data is enabling researchers to se-
quence tumor populations within a single individual at high coverage. But, cancer genome sequence
evolution and mutational phenomena like driver mutations and gene fusions are difficult to investi-
gate without first reconstructing tumor haplotype sequences. Haplotype assembly of single individual
tumor populations is an exceedingly difficult task complicated by tumor haplotype heterogeneity,
tumor or normal cell sequence contamination, polyploidy, and complex patterns of variation. While
computational and experimental haplotype phasing of diploid genomes has seen much progress in
recent years, haplotype assembly in cancer genomes remains uncharted territory.

In this work, we describe HapCompass-Tumor a computational modeling and algorithmic
framework for haplotype assembly of copy number variable cancer genomes containing haplo-
types at different frequencies and complex variation. We extend our polyploid haplotype assembly
model and present novel algorithms for (1) complex variations, including copy number changes,
as varying numbers of disjoint paths in an associated graph, (2) variable haplotype frequencies
and contamination, and (3) computation of tumor haplotypes using simple cycles of the compass
graph which constrain the space of haplotype assembly solutions. The model and algorithm are
implemented in the software package HapCompass-Tumor which is available for download from
http://www.brown.edu/Research/Istrail_Lab/.
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1. Introduction

Cancer is the worldwide leading cause of death and the second leading cause of death in
the United States. Despite the tremendous amount of effort and resources spent on cancer
research, our knowledge of the disease pathology is limited and the outlooks for certain types
of cancer are usually dire. The commercialization of high-throughput sequencing platforms in
the last decade has accelerated the growth of cancer genomics research dramatically. Since the
first whole genome tumor sample was sequenced in 2008,1 there have been hundreds of studies
on numerous cancer types.2–5 One of the fundamental computational challenges common to
many of these studies is to separate the true driver mutation signal from the biological noise
(e.g. passenger mutations) and experimental noise (e.g. sequencing errors). While it is possible
to map sequence reads from tumor samples to a reference genome and call genomic variants,
it is exceedingly difficult to determine the parental chromosome of origin for each variant
allele – that is, the variant’s phase. But, the chromosomal sequence of alleles, or haplotype,
is important for elucidating genomic events critical to the understanding of cancer like gene
fusions or driver mutations.

A theory for carcinogenesis formulated by Knudson in 1971 demonstrates the importance
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of haplotype phase in cancer.6 In the two-hit hypothesis, Knudson suggested that in order to
cause cancer, at least two “hits” have to take place. The first “hit” is usually an inherited
mutation, and the second “hit” is a somatic mutation in the same gene or a different gene in the
same pathway occurring later in life and out of phase with the first mutation. Having the ability
to reconstruct tumor haplotypes would enable the discovery of such compound heterozygous
relationships between variants and enhance our ability to identify driver mutations.

The computational problem of haplotype assembly aims to compute the sequence of co-
inherited variant alleles for each chromosome given a set of aligned sequence reads and vari-
ants.7,8 Haplotype assembly of diploid genomes has been addressed by many researchers9,10

and several haplotype assembly algorithms for diploid genomes are available for use.11,12 How-
ever, the methodologies for diploid haplotype assembly are unable to model polyploid genomes
or complex copy number aberrations (CNA). Recently, we developed HapCompass-Polyploidy,
the first modeling and algorithm for haplotype assembly in genomes with more than two sets of
homologous chromosomes (polyploidy).13 The HapCompass-Polyploidy algorithm assembles
pairs of variants in polyploid genomes and then produces a haplotype assembly consistent
with the pairwise variant phasings.

Cancer genomes have many similarities with polyploid genomes but present additional
complexities that current methodologies do not model. Sequencing reads sampled from cancer
patients exhibit a mixture of normal diploid cells and heavily rearranged, aneuploid cells. This
introduces two major complexities into the haplotype assembly model: (1) heavily rearranged
or translocated chromosomes will exhibit changes in copy number and (2) the heterogeneous
nature of tumor samples requires reconstruction of more than two haplotypes each with a
sample frequency which biases sequence read coverage.

Before these complexities can be modeled, the spectrum of variation must be inferred.
While early cancer research was focused on small variants such as single nucleotide variants
(SNV) and indels in a single gene or a small set of genes, advances in technology have enabled
us to study large structural variants such as CNAs and large chromosomal rearrangements in
tumor genomes. Several recent studies on multiple tumor genomes have found the important
role of these large structural variants in tumor development.3,4,14,15 In general, detection of
cancer variation with sequencing data involves detecting those variants that are supported
in the tumor genome but not found in the normal genome. The algorithms can be largely
divided into three categories determined by the variant type they are trying to detect, i.e.
small variants (SNVs and indels), CNAs and complex structural variants (translocations,
duplications, and inversions).

Strelka jointly models the normal sample as a mixture of germline variation with noise, and
the tumor sample as a mixture of the normal sample with somatic mutations, in a Bayesian
framework.16 VarScan 2 also uses the sequence reads from tumor and normal cells simultane-
ously, but uses a one tailed Fisher’s exact test to determine whether the variants are somatic,
normal, or loss of heterozygosity.17 Control-FREEC not only uses the coverage information
but also the read count frequencies to estimate CNAs in tumor samples.18 Control-FREEC
also normalizes the tumor read depths by GC content and mappability and hence a normal
genome is not required, although it could also be used for normalization.
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Detection of large structural variations is often made possible by exploiting the properties
of paired-end sequence reads. For example, the insert sizes of reads that are mapped to both
sides of a large deletion would appear to have much larger insert sizes than the rest of the pop-
ulation. CREST first looks for a cluster of soft-clipped reads that exhibit evidence of a break
point for a structural variant, and then locates the other break point by scanning the location
neighboring the paired read.19 However, the accuracy of these methods can be seriously af-
fected when there is contamination in the samples. Cibulskis et al developed a Bayesian model
to estimate the level of cross-individual contamination in each sample.20 Contamination may
also exist within an individual; tumor tissue can be contaminated with normal DNA and vice
versa. Both incorrect variant calling as well as sequence contamination represent sources of
complexity and errors for haplotype assembly.

Fig. 1. An example
tumor sample
GC with three unique
haplotypes. Vertices
are variants and edges
show pairwise haplo-
type assemblies.

In this work, we leverage the existing literature and tools for can-
cer genome variant inference and build on the polyploid HapCompass
model to construct the first methodology for cancer genome haplo-
type assembly. In Section 2 we provide the necessary details of the
HapCompass polyploid model and extensions for cancer genome hap-
lotype assembly. The modeling section is followed by Section 3 which
describes the HapCompass-Tumor algorithm and Section 4 which eval-
uates the implementation of the algorithm on cancer genome data.
Finally, Sections 5 and 6 present a discussion of alternative models of
cancer genome haplotype assembly, limitations and extensions to our
model, future work, and conclusions.

2. Modeling

Let k be an integer representing the number of unique tumor hap-
lotypes in a sample of tumor tissue. Because the tumor is actively
evolving, this k may vary for independent samples of the same tumor.
We assume that each sequence read is sampled from a single haploid
fragment generated from one of the k haplotypes; this property en-
ables the building of haplotype phase relationships between alleles in
sequence reads that contain two or more heterozygous variants (ho-
mozygous variants do not provide phase information for assembly).
The phase-informative sequence reads and variants are modeled with
two graph structures termed the compass graph, GC , and chain graph,
Gh. These data structures are described in Aguiar et al. 2013 but their
definitions are repeated here in order to present the novel aspects of
the model for tumor genomes.13

The compass graph GC(VC , EC) has v ∈ VC for each variant and (vi, vj) ∈ EC if variants vi
and vj are contained within a sequence read. Edges (vi, vj) are annotated with the most likely
haplotype phasing between variants vi and vj given the set of reads that contain both vi and
vj (Figure 1).
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2.1. Phasing edges of GC

Given the probability of sequencing error, se and a set of reads overlapping the two variants,
r1, ..., rn, the likelihood of a particular phasing, pp from the set of all phasings between the
two variants P can be computed as in Equation 1. Edges of GC are phased by choosing the
pp that maximizes this likelihood.

L(pp|se, r1, r2, ..., rn) =
P (r1|se, pp) · · ·P (rn|se, pp)∑|P |

i=1 P (r1, r2, ..., rn|se, pi)
(1)

Equation 1 models haplotypes that are in equal proportion which may not be true for
heterogeneous tumor samples. Thus the likelihood must be modified to accommodate the
different frequencies of haplotypes. Consider the normal haplotype contamination that is often
present in tumor sequence samples. Contamination may be modeled by jointly assembling the
k tumor haplotypes with two low frequency normal haplotypes. Therefore, the probability
of a haplotype h with frequency fh in the phased haplotypes of a pair of variants can be
expressed as p(h|se, p) =

∑
h∈p fhF (se, p, h) where F is a function that takes the sequencing

error probability se, the set of all haplotypes for the two variant phasing p and the particular
haplotype h and computes the probability of generating a read containing haplotype h.

For example, assume the three haplotypes 00, 00, and 11 exist between two variants and
one of the 00 haplotypes was considered contamination at frequency 10%. If the other two
haplotypes were in equal proportions, then

P (00|se, {00, 00, 11})F (se, {00, 00, 11}, 00) = (1− se)
2 · 0.1 + (1− se)

2 · 0.45 + (se)
2 · 0.45 (2)

The number of unique phasings of an edge depends on the number of unique tumor hap-
lotypes k and the allele content of the variant pair. Let the number of 1 alleles for variants
vi and vj be l(vi) and l(vj) respectively. Then, the number of phasings of an edge is upper

bounded by min
((

k
l(vi)

)
,
(

k
l(vj)

))
. This is a bound and not equality because some phasings may

be repeated in this enumeration.

2.2. Chain graph

Haplotype phasings of the edges of GC can be extended to paths. Because two adjacent edges
share a variant, haplotypes with the same allele can be merged on the shared vertex. If two
paths in GC of length i and j vertices are merged, the new phasing will have i+ j− 1 variants.

For paths or trees in GC , there is exactly (at least) one consistent haplotype phasing,
with respect to the edge phasings along the path or tree, for genomes with k = 2 (k > 2). In
contrast, simple cycles in GC may be either conflicting or non-conflicting depending on how
many phasings are consistent with the cycle. A conflicting cycle does not have a consistent
phasing while a non-conflicting cycle has at least one. The chain graph Gh is constructed for
each simple cycle to determine its conflicting state.13

The chain graph Gh(Vh, Eh) is constructed for a path or simple cycle c =

((v1, v2), ..., (vs−1, vs), (vs, v1)) in the compass graph GC . We introduce k haplotype vertices
corresponding to the phasing for each edge (vi, vj) in the path or cycle. Vertices in Gh created
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from adjacent edges of GC share a variant; edges connect vertices in Gh if they share a variant
and allele. Then, source nodes s1, ..., sk are arbitrarily assigned to vertices at level 1 and sink
nodes t1, ..., tk are assigned to vertices at level s if the level s vertex shares an allele with the
level 1 vertex. Vertices are annotated with ti if there exists at least one si to ti path which is
computed by a depth first from each source. Gh can be described as a trellis graph in which the
vertices can be divided into levels; each level in this case corresponds to an edge of GC . Trel-
lis graphs have a wide range of applications including communication network topology and
survivability, encryption, encoding and decoding, and are a central data structure in Markov
models.

2.3. Disjoint siti paths in the trellis graph Gh

We now present new results on the theoretical properties of this graph and extensions to phas-
ing the entire compass graph. A valid phasing of a path of compass graph edges e1,2, ..., es−1,s
is defined as k vertex-disjoint paths from level 1 to level s in the corresponding Gh. A valid
phasing of a cycle of compass graph edges e1,2, ..., es,1 is defined as k vertex-disjoint paths from
each source si to its corresponding sink ti in the corresponding Gh. There always exists at
least one phasing for paths of GC by definition of Gh; cycles may not exhibit a valid phasing
(Lemma 2.1).

Lemma 2.1. There exists at least one valid phasing of k haplotypes for a cycle c if and only
if there exists a valid matching between sink node annotation and chain graph nodes at each
level of Gc.

Proof. If: Adjacent edges share a variant and thus the number of x alleles at level i must
equal the number of x alleles at level i + 1 where x is any allele of the shared variant. If there
is a matching at level i and i+1, then there must exist an edge between valid haplotype phase
nodes because they share a common allele (adjacent levels). One can extend a valid haplotype
phasing path from level i to i+1 using the edge generated by the shared allele. Only-if: Assume
one level does not have a valid matching; then, either (1) at least two haplotypes share a phased
haplotype node or (2) at least one phased haplotype node contain no sink node annotation.
Case (1): multiple haplotype paths must share a phased haplotype node which breaks the
vertex disjointness condition. Case (2): each level has exactly k nodes each of which must be
taken once. If one or more phased haplotype nodes contain no sink annotation, then at least
one phased haplotype node must be shared by 2 or more haplotype paths which breaks vertex
disjointness.

We will use this property of Gh later in the computation of the tumor haplotype phasing.

2.4. Copy number aberrations and translocations in Gh

The chain graph and disjoint paths framework accommodates modeling the types of variation
typical of tumor genomes (Figure 2). CNAs insert or remove large genomic regions. Genomic
deletions are modeled as an edge connecting the variants flanking the deletion breakpoint. In
this case, the model still expects the computation of k disjoint paths spanning the deletion.
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Large insertions of genetic material can be modeled as the addition of a temporary path in
between or potentially overlapping vertices of Gh. The number of disjoint paths in this case
changes to k+ 1. Translocations may be modeled in Gh by combining deletions and insertions.

Fig. 2. Deletions and insertions are modeled with disjoint paths. The green edge models a deletion which
effectively removes the deleted variants in the chain graph. The blue node insertion adds an extra path in Gh.

2.5. Disjoint subgraphs in the general chain graph

The general chain graph Gg is our final graph structure for representing the overall phasing of
tumor genomes. Because there may be many matchings at each level of Gh, haplotype assembly
of non-conflicting cycles in GC will yield a set of potential phasings. The haplotype phasings
of Gh constrain the haplotype assembly to include one of the k disjoint path solutions.

Gg is built from the conflict-free spanning tree cycle basis of GC . The vertices of Gg are
constructed in a similar manner as Gh; each edge (vi, vj) of GC generates a vertex for each
haplotype in the phasing of (vi, vj). Each Gh constructed from a non-conflicting cycle of GC

defines a set of edge adjacencies; these adjacencies are represented in Gg. Therefore, if two
edges are adjacent in a Gh, then they are also adjacent in Gg. Because of Lemma 2.1, we can
determine the number of disjoint path solutions passing through adjacent levels i and j by
simply computing the valid extensions of matchings from level i to j. We assume each of the l

valid extensions of the sets of matchings at adjacent levels ei and ej are equally likely. Then,
the weight of a particular extension w(ei)w(ej)

l where w(ei) is the score or likelihood of edge ei,
is added to the edges of Gh (and Gg).

However unlike Gh, Gg is not necessarily a trellis graph if the cycles in the basis do not
agree on the ordering of edge adjacencies (Figure 3). If Gg were a tree, finding a phasing could
be modeled as packing disjoint Steiner trees or disjoint spanning trees. Instead, we model
the computation of the tumor haplotype assembly as the k-maximum weight node-disjoint
spanning tree problem. That is, we compute a set of k node-disjoint (within levels) spanning
trees in Gg whose total weight is maximum over all k node-disjoint spanning trees and includes
every vertex in Gg.

3. HapCompass-Tumor Algorithm

HapCompass-Tumor optimizes the minimum weighted edge removal (MWER) problem.
MWER aims to compute a set of edges L of minimum weight, whose removal resolves all
conflicting cycles of GC . After all conflicting cycles have been removed, each non-conflicting
cycle’s Gh is added to Gg. Gg represents the constrained solution space by incorporating the
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Fig. 3. (Left) An example tumor genome GC with three non-conflicting cycles. Dashed lines represent edges
not in the spanning tree of GC . The inclusion of each non-tree edge creates a cycle in the cycle basis of GC .
The two inner cycles ((v0, v1), (v1, v3), (v3, v0)) and ((v0, v2), (v2, v3), (v3, v0)) create the red-edge adjacencies
in Gg (right). Computing the haplotype assembly of a tree (Gg with just the red edges) is simple. However, if
the blue non-tree edge is added, the edge adjacency ((v0, v1), (v0, v2)) is included in Gg creating a cycle.

valid haplotype assemblies on subsets of variants computed from each non-conflicting Gh (Al-
gorithm 1).

input : Sequence reads, variant calls, and number of distinct haplotypes k
output: k haplotypes

GC ← spanning tree cycle basis
CC ← set of conflicting simple cycles with respect to GC

for cC ∈ CC do
Remove edge with smallest likelihood in cC
Reconstruct GC

end
Compute Gg

CN ← set of non-conflicting simple cycles with respect to GC

for cN ∈ CN do
Compute Gh with respect to cN
Compute matchings at each level of Gh

Compute disjoint paths of Gh

Increase the weight of each edge e between levels shared by Gh and Gg in Gg

proportional to the number of disjoint paths using edge e and the likelihood of
each edge (Equations 1 and 2)

end
Compute a maximum weight spanning tree of the adjacencies in Gg

Output the haplotype assembly computed from the spanning tree of Gg

Algorithm 1: HapCompass-Tumor

The final step involves computing k spanning trees in Gg which are node disjoint in re-
spect to haplotype level vertices. Adjacencies between levels in Gg correspond to matchings
between the haplotype nodes (Figure 4 right). So, HapCompass-Tumor computes k disjoint
spanning trees corresponding to the k tumor haplotypes. We have implemented two algo-
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rithms inspired by Kruskal’s and Prim’s algorithms for computing maximum spanning trees.
The principle difference between the two algorithms in the context of HapCompass is the
Kruskal-like algorithm focuses on constructing disjoint trees by including strong phasings on
the same haplotype (edges of Gg) while the Prim-like algorithm phases all haplotypes between
two levels at a time (vertices of Gg).

We illustrate the modeling and algorithm with a series of examples. Let the compass graph
GC of a tumor sample with three unique haplotypes be shown in Figure 1. Then, if (v0, v3),
(v2, v1), and (v3, v2) are the non-tree edges of GC , the chain graphs in Figure 4 (left) are
constructed. Figure 4 (right) shows the Gg updated after the disjoint paths and weights of
edges in Gh are computed and distributed to Gg.

Fig. 4. (Left) chain graphs (Gh) from the compass graph in Figure 1. The level corresponding to edges in
GC are denoted by black (non-tree edges) and blue (spanning tree edges) lettering above the vertices. In this
example, the edge phasing probabilities in GC are all 1. So, an edge connecting level i to level j which is in b
disjoint path solutions will receive a weight of b/d if there are d unique disjoint path solutions from level i to
level j. The weights of edges calculated from disjoint siti paths in each Gh are added to the Gg (right).

4. Results

We implemented HapCompass-Tumor and evaluated its performance on simulated tumor hap-
lotypes. In these experiments we use insert size as a proxy for the computed haplotype length.
It has been shown that the dominant factor in producing long haplotype assemblies is the
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length between the read pairs.13,21 Briefly, if the length between two variants is x and the
insert size is y, then a sequence read can never span the two variants if x > y.

4.1. Dependence on insert size and error rates

Using the sequence for the BRCA1 breast cancer susceptibility gene, we simulated three hyper
variable tumor haplotypes. Distance between variants were distributed normally ∼ N(500, 50).
The following procedure was repeated 250 times for each data point in Figure 5. Given the set
of variants which remained fixed for each experiment, a random phasing is computed that is
consistent with the allele distributions. We then sampled 10000 phase-informative simulated
reads from the true haplotypes and computed the average edit distance between assembled
and true haplotypes. We compared the distance of haplotype assemblies for the randomly
generated triploid BRCA1 genes while varying sequence read insert size, standard deviation
of insert size, and single base substitution error rate.

Figure 5 (left) demonstrates several interesting trends. First, as the insert size is increased
the haplotype assemblies become more accurate. Second, the more variable the insert length,
the more accurate the haplotype assembly. A hyper variable insert length appears to have
a similar effect as increasing the insert size. These findings confirm patterns observed in
conventional diploid haplotype assembly. Finally, while the error rate does affect haplotype
assembly accuracy, as long as the error rate is less than 0.2%, the haplotype assemblies are
similar in quality. This phenomenon is likely caused by the constant coverage coupled with
uncertainty in phasing the edges of GC . When the coverage is fixed and the insert sizes are
short, haplotype assemblies are smaller but more accurate. Conversely, when error rates reach a
threshold where edge phasings are no longer accurately called, the haplotype assembly quality
suffers.

4.2. Cancer genome heterogeneity

We also compared the accuracy of haplotype assembly in terms of tumor genome heterogeneity
(Figure 5 right). Sequencing parameters were fixed to produce insert sizes between 500 and
2500, short insert size standard deviations, 10000 sequence reads, and no errors. Each data
point contains the average of 250 haplotype assembly edit distances. The more unique tumor
haplotypes in the sample the less accurate the solution. The increasing edit distance with 5

unique haplotypes between insert sizes 2000 and 2500 is likely an effect of the rising uncertainty
of edge phasings when coverage is kept fixed and more edges are being generated in GC .

4.3. NA12878

We simulated paired tumor sequence reads and their mappings with Enhanced Artificial
Genome Engine (EAGLE) developed by Illumina Cambridge Ltd (personal communications).
The sequencing parameters were set to model paired-end Illumina data with 101bp read lengths
and a mixture of long (length=N(60000, 1412)) and short (empirical distribution from 2× 101

runs, with median size ∼ 300bp) fragment sizes. The variants simulated include SNV and indels
called in NA12878 by the Genome in a Bottle Consortium22 and the HCC1187 tumor sample
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Fig. 5. (Left) The average edit distance between haplotypes and the simulated true haplotypes is calculated
with a fixed coverage and varying insert sizes, error rates (error), and standard deviations (std). (Right)
Haplotype assembly accuracy is plotted as a function of the number of tumor haplotypes in the sample.

(downloaded from Illumina’s Basespace23). Variants were combined then randomly divided
into two sets for each homologous chromosome, with 30X coverage for the first chromosome
and 15X coverage for the second to simulate tumor genome amplification. Sequence reads were
mapped to their simulated location after single base mismatches were introduced according
to empirical error rates.

We evaluated HapCompass-Tumor on all autosomes of the EAGLE simulated data and
longer reads simulated using HapCompass. The reads simulated from HapCompass include
medium (200bp) and long (2000bp) read lengths with error rates of 2% and 5% respectively to
model the higher error rates associated with long-read high-throughput sequence technologies.
We used the number of allele bit flips required to map the sequence reads to the assembled
haplotypes as the evaluation metric. Table 1 shows the results for HapCompass-Tumor using
the Kruskal-like and Prim-like algorithms for resolving Gg. Additionally, we implemented a
scoring scheme that scores pairs of vertices with more diversity in haplotype sequence higher
(termed Diverse in Table 1). This scheme is designed to limit uninformative pairs of vertices
in the spanning tree of the compass graph GC .

Table 1 demonstrates that the accuracy of the haplotype assembly depends minimally on
the selection of algorithm when using Illumina-like sequencing parameters. However, as the
read length increases, the Kruskal-like algorithm becomes favorable.

5. Discussion

Opportunities exist to extend HapCompass-Tumor to address some of the limitations in the
current model. First, HapCompass-Tumor only computes a single solution when the compass
graph model allows computation of suboptimal solutions. Phase extension in Gg is determin-
istic but many highly probable suboptimal solutions may exist. As long as the number of
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Table 1. The proportion of incorrectly mapped alleles (error) by Gg resolution al-
gorithm. Sequence data was simulated for 1000 Genomes Project individual NA12878
using EAGLE to simulate Illumina reads and HapCompass to simulate reads with
medium (200bp, 2% error rate) and long (2000bp, 5% error rate) read lengths.

Gg resolution error (autosomes, EAGLE) error (chr20, 200bp) error (chr20, 2000bp)

Kruskal 0.002658 0.02079 0.04626
Kruskal Diverse 0.002659 0.02071 0.04679

Prim 0.002659 0.02789 0.05639
Prim Diverse 0.002659 0.02631 0.05867

alternative disjoint paths is bounded by a low degree polynomial, we can carry these partial
solutions to the assembly step and report multiple haplotype assemblies.

Second, incorporating a priori knowledge of haplotype distributions from population sam-
ples or long read lengths would improve the assembly. For example, we assumed each valid
haplotype phasing for a cycle in GC is equally likely. However, this assumption can be easily
modified to accommodate known haplotype likelihoods in the area (e.g. linkage disequilib-
rium). Consider a collection of valid disjoint paths for a cycle in GC ; if the probability of
both phasings is 1 and the edge extension has i distinct matchings, then each matching is
given a weight 1

i . If, however, one of the haplotypes in an extension is never observed in the
population, HapCompass-Tumor could penalize the extension.

A related application of HapCompass-Tumor is in cancer panomics. Much attention in
cancer research has been focused on allelic specific expression (ASE). Studies have shown that
germline ASE is associated with cancer risk;24,25 and somatic ASE is associated with tumor
development.26 ASE in cancer was found not only correlated with CNAs,26 but also with
allelic specific methylation (ASM).27 Existing algorithms for detecting ASE with RNA-seq and
detecting ASM with Bisulfite-Seq do not usually make use of phased genotype information.26,28

We therefore propose using the phased haplotypes from whole genome sequencing of tumor
samples as a reference for RNA-seq and Bisulfite-seq alignment when such data is available.

Finally, the viral quasispecies reconstruction (VQR) problem aims to compute the spec-
trum of viral quasispecies haplotypes from the sequence reads of a heterogeneous viral sample.
The problems of haplotype assembly and VQR are similar but the research literature is largely
independent due to the inability of haplotype assembly algorithms to model more than two
sets of homologous haplotypes. However, it is possible to model VQR with HapCompass-
Tumor by leaving the number of haplotypes in the sample (k) as an unknown parameter. Two
possible approaches include inferring the number of quasispecies a priori and then perform-
ing haplotype assembly with k unique haplotypes or computing assemblies for a number of
different k and comparing the quasispecies solutions. But, using a general haplotype assembly
tool for VQR does not take advantage of two critical properties of most viral genomes: (1)
knowledge of the phylogenetic relationships between mutations is known for well-studied viral
genomes especially those under selective pressures from treatment and (2) the genomes are
many orders of magnitude smaller than eukaryotes.
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6. Conclusions

In this work, we developed algorithms and models for tumor genome assembly building on
our existing haplotype assembly framework HapCompass. We demonstrated how to model
tumor haplotype heterogeneity and haplotypes containing CNAs and translocations. The
HapCompass-Tumor algorithm was presented using the combined evidence of cycles in GC

and disjoint paths in Gh to inform which haplotype assemblies in Gg are probable. Finally, we
evaluated the HapCompass-Tumor algorithm on simulated cancer data showing that, while
the accuracy is a function of many parameters including the level of cancer genome hetero-
geneity, we are still able to produce accurate haplotype assemblies. HapCompass-Tumor is
available for download from http://www.brown.edu/Research/Istrail_Lab/.
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