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Genotyping and large-scale molecular phenotyping are already available for large patient cohorts and will 
soon become routinely available for all patients. Exome or complete genome sequences are being 
increasingly collected and are explored as newborn screening technologies. These data are setting the 
stage for rapid advances in personalized medicine, enabling better disease classification, more precise 
treatment, and improved disease prevention. Robust statistical and computational methods for analyzing 
these data are critical to realizing the promise of genome-based medicine. The challenges span from 
accurate low level analyses of high throughput datasets to identification of causal links between different 
layers of molecular information, and incorporating them into diagnostics. Important analysis problems 
include accurate phenotypic characterization, identifying and correcting for latent structure, dealing with 
missing data, deciding at what level to test (e.g. single base pair values, sets of polymorphisms, exonic 
regions, etc.), data heterogeneity, the problem of multiple testing, integrating various modalities, deducing 
functional consequences in silico, addressing data quality, and making sense of new data types as they 
become available. 
 



For example, in genome-wide association studies, population structure and family relatedness can reduce 
power and cause spurious associations. In gene expression and epigenetic studies, experimental artifacts 
and environmental influences have been shown to corrupt results of naive analyses.  All of these problems 
can be tackled by various classes of latent variables, such as those related to Principal Components 
Analysis and probabilistic variations thereof, linear and non-linear mixed models. These models learn 
latent factors from the large scale of the data---that is, patterns which permeate many of the features, and 
therefore speak to wide-spread “contamination”. By removing these broad patterns, we hope to be left 
with the true associations; however, being certain of this is difficult [1-14]. 
 
Using patient genotype to inform treatment in the clinic is limited by our ability to accurately predict the 
impact of genetic variation, and the lack of models for its mechanistic effect. While whole genome 
sequencing has been successfully used to identify causal mutations for severe developmental disorders 
and other Mendelian diseases, use of genotype information has not yet permeated clinical practice, save 
for a handful of single locus tests [15]. Personalized approaches, however, are becoming increasingly 
common in applications to cancer treatment, albeit these are at present mostly limited to a research setting. 
Questions that remain are whether to treat the sequence data as clinical test, and only report known causal 
locus results for any phenotype under heavy regulation, or whether to broadly disclose any incidental 
findings. Many found variants are of unknown effect, and precise statistical models, as well as convenient 
software are needed to help practitioners make decisions [16]. To this end, efforts such as Critical 
Assessment of Genome Interpretation [17,18] are performing controlled experiments to probe the limits 
of our ability to predict phenotype from genotype. 
 
The path from genotype to disease state goes through intermediate phenotypes [19]. To modulate the 
disease risk or trait, one of the molecular intermediates must be changed in a controlled way using small 
molecules or changes in environment, but one current limitation is finding out the right targets for these 
interventions. A first level of understanding should come from genetic mapping studies - to which extent 
do the loci responsible for heritable disease risk affect intermediate traits? Some progress has been made 
on this front over the last years, especially for RNA levels [20,21], but also protein and metabolite 
abundances [22,23], with much remaining to be done. The next task is distinguishing the actual drivers of 
ailment from traits that do respond to genotype, but do not cause disease. Causal models, such as 
Mendelian randomization methods, will play a crucial role in separating out the molecular causes of 
disease from the high-dimensional state of the organism [24,25]. 
 
Clinical grade confidence in data and methods to use genome information for providing better treatment 
has been difficult to establish, with heterogeneous and imperfect medical records also remaining a real 
bottleneck. However, each year brings more rigor and agreement in applications of genome-based 
personalized medicine in the field. Still, much work is required in all areas, from basic discovery of 
molecular mechanisms of disease pathology, to statistical methods of causality and publicly available 
computational infrastructure to deliver on the promise of genetic information in the clinic. The payoffs 
will be large. 
 
 
 
 



Session contributions 
 
The session keynote is given by Robert Gentleman, who has spearheaded the use of computational 
methods in biology and medicine [26], and is currently employing them to design cancer therapeutics. 
 
The availability of inexpensive partial genotype data, and increasingly cheaper full genome sequencing to 
complement traditional diagnostic markers has fuelled the promise of personalised genomic medicine. 
However, genetic tests inform the diagnosis and treatment for only a minority of heritable disease cases in 
clinic today. This is partly due to low explanatory power of common small effect variants that underlie 
the common disease risk, but also due to larger effect alleles not being well captured by standard 
genotyping arrays as they have low frequency. In our session, Martin et al. analyse the performance of 
different genotyping platforms for imputing rare coding variation. Perhaps somewhat surprisingly, they 
find that genotyping arrays dedicated to measuring rare exome variants can be less useful in imputing 
unobserved rare variants than dense common variant arrays. This occurs because the latter are actually 
able to tag unmeasured variants (including rare ones) better than the specialized rare variant chips.  
 
Interpreting incidental findings in whole-genome sequencing is difficult, and can take up considerable 
time of clinicians and genetic counselors. Daneshjou et al. will present PATH-SCAN, a publicly 
available tool that automatically annotates the variants that have been designated as pathogenic by 
ClinVar. The tool is expected to accelerate the analysis of genes that have been recommended by the 
American College of Medical Genetics and Genomics to be followed up and reported to the patient. 
 
Also in our session, Zhe et al. tackle the problem of employing genotype and endophenotypes 
(intermediate phenotype) in disease diagnosis. Focussing on dissecting the genetic basis of Alzheimer’s 
disease, a neurodegenerative disorder, they apply a latent variable model to the genotypes, magnetic 
resonance imaging, and diagnosis label where all the three types of observed features are sparse 
manifestations of a single continuous underlying disease state. After learning the model parameters, they 
then use them to predict disease state in a patient cohort, achieving better performance compared to 
current alternatives, and also uncovering several potentially causal links between genotype and the 
measured endophenotypes. 
 
An important role for personalized medicine is in predicting frequency of drug side effects from genotype. 
Oetjens et al. genotyped 34 genes for 127 heart transplant recipients, 35 of whom had an adverse reaction 
to an immune suppressor. Incorporating data from electronic medical records, known predisposition to 
chronic kidney disease, and broad variance components in the genotype, the authors identified a single 
non-synonymous variant that significantly increased the risk of renal failure. Their study serves as a nice 
proof-of-principle that even with limited sample size and number of genotyped loci, genotype-dependent 
side effects can be identified using statistical analyses of longitudinal data. 
 
Parikh et al. consider the problem of simultaneously inferring gene expression networks from a series of 
evolving conditions (e.g., healthy tissue versus cancer stages) to identify functional roles of individual 
genes and pinpoint the causal changes. They propose a model that finds a sparse representation of the 
gene co-expression patterns sharing information across the different stages in a principled manner, and 
one which accounts for potential differences in the network structures. 



 
Finding individual-specific contributors to immune response can help inform therapy of viral infections. 
In our session, Perina et al. propose a bag of words model to describe the distribution of epitopes 
presented by cells that are targeted by immune surveillance mechanisms. Their approach is able to better 
explain the correlations between individual epitopes compared to alternatives. For a clinical application, 
they test the models on a cohort of HIV patients to find links between distribution of epitopes and the 
viral load. 
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