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In case-control studies of rare Mendelian disorders and complex diseases, the power to 
detect variant and gene-level associations of a given effect size is limited by the size of the 
study sample. Paradoxically, low statistical power may increase the likelihood that a 
statistically significant finding is also a false positive. The prioritization of variants based on 
call quality, putative effects on protein function, the predicted degree of deleteriousness, and 
allele frequency is often used as a mechanism for reducing the occurrence of false positives, 
while preserving the set of variants most likely to contain true disease associations. We 
propose that specificity can be further improved by considering errors that are specific to the 
regions of the genome being sequenced. These problematic regions (PRs) are identified a-
priori and are used to down-weight constitutive variants in a case-control analysis. Using 
samples drawn from 1000-Genomes, we illustrate the utility of PRs in identifying true variant 
and gene associations using a case-control study on a known Mendelian disease, cystic 
fibrosis(CF).  
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1.  Introduction 

Exome sequencing is a potentially powerful tool in detecting variants and genes responsible 
for both simple and complex diseases. Recent successes in identifying the causal variants of 
several Mendelian or monogenic disorders1-4 have highlighted the utility of heuristic 
methods of variant filtering and prioritization in the discovery process. These methods often 
preferentially retain or prioritize variants based on novelty, functional impact, putative 
effects in the protein coding regions (i.e. missense/nonsense substitutions, coding indels, 
and splice site-acceptor and donor sites), population frequency, and/or concordance with a 
subjective assessment of phenotypic features5. This biologically informed reduction in the 
number of variants helps maintain statistical power by reducing the number of formally 
tested hypotheses and the subsequent impact of multiple testing correction procedures 
required in high-throughput experiments6. 

While these strategies may enrich the set of disease-associated variants based on 
variant/functional-level information and disease phenotype, they do not directly address the 
occurrence of false positives stemming from sequencing inaccuracies. Exome sequencing 
coverage varies greatly across the genome7-8 with some regions under-covered due to areas 
of low-complexity, areas of high GC content, and the occurrence of segmental duplications 
and homopolymers9-10. In case-control studies investigating variant-disease associations, 
alignment and mapping errors in these problematic regions (PRs) reduces the sensitivity to 
detect true associations in these regions and may introduce false positive associations in 
instances where cases and controls have differential coverage depths11. The integration of 
PR information in a case-control analysis may help identify false discoveries not readily 
identified by other commonly used methods of variant prioritization.  

Using a well-characterized set of samples drawn from 1000-Genomes12 we illustrate the 
utility of PRs in resolving known causal variants in cystic fibrosis (CF). Combined with other 
variant prioritization methods, the use of PRs improves the specificity of both standard 
variant association tests and gene-level collapsing methods in identifying true associations 
despite limited sample sizes.   

2.  Methods 

2.1.  Subject Samples 

All DNA samples were drawn from the 1000Genomes project. Samples were drawn from a 
pool of subjects broadly identified as Caucasian and known to be affected (cases) or 
unaffected (controls) with CF. Information regarding ethnicity, sex, and known mutations in 
this group of samples, including those samples harboring the ΔF508 common founder 
mutation, were obtained from the CFTR Human Gene Mutation Panel records at the Center 
for Disease Control13 and Coriell Institute for Medical Research14 websites. Cases and 
controls were sequenced separately using identical platforms and technologies. Raw 
sequencing data were aligned and variants were called simultaneously for all case and 
control samples. 



 

 

 

2.2.  Genomic Library Construction, Exome Sequencing, Alignment and Variant Calling 

DNA libraries were prepared using Illumina TruSeq Genomic DNA High throughput Sample 
Prep Kits (Illumina, San Diego, CA) and exome enrichment (targeting 62Mb) was 
accomplished using the TruSeq Exome Target Enrichment kit (Illumina, San Diego, CA) 
according to manufacturer’s protocols. Sequencing was performed using Illumina Hiseq2000 
or HiSeq2500 sequencers with single lane, paired-end 2X100bp reads.  DNA fragments were 
generated and amplified using Clonal Single Molecule Array technology (Illumina, San Diego, 
CA). The sequences were determined using the Clonal Single Molecule Array and 
Sequencing-by-Synthesis using Illumina’s proprietary instrumentation and Reversible 
Terminator Chemistry.  Sequencing reads of at least 2x100bp in length for a total of at least 
8Gb of sequence data per sample were generated for each sequenced sample.  

Raw sequence data were in FASTQ format and were analyzed in multisample mode with 
standard (Sanger) Phred-scale quality scores. The Pipeline then uses an integrated set of 
proprietary and public analysis tools to align and variant call genomic sequencing data.  
Gapped alignment is performed using the popular Burrows-Wheeler Aligner (BWA) 
combined with Picard and the Genome Analysis Toolkit (GATK) to improve sequence 
alignment and to correct base quality scores. Data was aligned to the hg19 genome, 
producing standard, compressed Binary Alignment Map (BAM) format files.  

GATK’s Unified Genotyper module provides the Pipeline’s core set of SNV calls and their 
accompanying quality metrics. Calls are enhanced by proprietary SNV accuracy software 
which incorporates both genomic context and sequence alignment information into a model 
that corrects miscalled loci. All calls are made on BAM files that have been recalibrated by 
GATK’s base quality score recalibration (BQSR). SNV and small indels are reported in VCF 
format. Reference calls and no-call information is returned in BED files. 

Variants were annotated using the Personalis Annotation Engine, which applied 
population frequencies, genetic region information, effect on genes, protein impact, protein-
protein interactions and additional structural and functional features to the variants.  

2.3.  Problematic Regions of the Genome 

Based on a previous study of discordant variant calls among multiple sequencing 
platforms8,15 and further work in elucidating the mechanisms underlying these errors16, a 
database of PRs was constructed. PRs are comprised of regions having >3X the average error 
rate seen among variant calls deemed high-quality by VQSR (i.e. largely PASS calls). PRs 
included those regions of the genome with high GC content, low coverage, degeneracy due to 
redundant paralogous sequences, low complexity repetitive elements, segmental 
duplications, and compression regions17 for which large amounts of discordance in variant 
calls were previously observed.  It also includes HLA regions and breakpoint library regions 
for structural variants (BreakSeq18). While PR regions are not always mutually exclusive in 
terms of their categorization, the bulk of PRs (~70%) are due to 100bp regions having >70% 



 

 

 

GC content, degenerate 100bp single reads, and simple repeats > 100bp long. Variants called 
in the case-control analyses were mapped onto the PR database and were flagged as 
potentially problematic variant calls if they fell into a PR region. 

2.4.  Case Control Analysis 

Eighteen unrelated subjects with CF were matched to 54 unrelated and unaffected subjects 
based on sex and broad ethnic category (i.e. Caucasians) to form a 1:3 case-control study 
design. In a second case-control analysis, the case-group was redefined to only include the 
subset of CF-affected individuals without the ΔF508 founder mutation. These 8 case-subjects 
were again compared to the same 54 unaffected control subjects to form a ~1:7 case-control 
match. Analysis was performed independently in each of these case-control studies to 
investigate variant and gene associations with CF.  

In each study, variants were removed from analysis if they failed our internal QC 
requirements. These QC standards required that 1) no more than 10% of the data was 
missing across case samples and/or control samples and 2) the multi-sample variant call 
from GATK’s Variant Quality Score Recalibration (VQSR) was “PASS”- indicating that there 
was sufficient evidence that the site was really variant in one or more samples. In order to 
reduce the likelihood of false discoveries when reporting CF-associated variants and genes, 
variants were also filtered to retain only those that were protein-coding. These filtering 
criteria were used when reporting variant-level associations with CF and as input criteria 
when testing for gene-level associations. 

Remaining variants were assessed for association with disease-status using Fisher’s 
Exact Test. Effect size was summarized as the Odds Ratio (OR) calculated from the 
conditional maximum likelihood estimate of a 2x2 contingency table containing alternative 
and reference allele counts in cases and controls assuming an additive model. Significance 
testing of the null of conditional independence (OR=1) used a two-tailed test.  

Analysis of the second case-control study, in which all cases with the ΔF508 founder 
mutation were removed, was done to investigate the occurrence of PRs in studies where 
smaller effect sizes among causal variants could be expected. This required detection 
strategies that could accommodate the genetic heterogeneity of the remaining affected 
individuals- since known causal variants were interspersed throughout the CFTR gene13-14. 
Given the challenges in detecting rare variant enrichment with a limited number of 
heterogeneous case samples, we collapsed the variant-level associations based on gene-
membership. An implementation of the Combined Multivariate and Collapsing (CMC) 
method19 was used to assess the combined association of variants within the same gene to 
CF. Variants were binned into groups based on their respective gene membership and 
further binned (rare vs. common) based on a 1000-Genome derived minor allele frequency 
(MAF) cutoff of 5%. A multivariate test, Hotelling T-squared, was performed on the counts 
within all bins to determine differences among the cases and controls with asymptotic p-



 

 

 

values calculated based on the F-distribution. The method of Storey20 was used to calculate 
FDR-adjusted p-values (i.e. q-values). 

3.  Results 

The application of filtering criteria related only to QC-criteria (i.e. variant-call quality and 
missing data) among the 18 cases and matched controls, resulted in 541,119 variants for 
which association with CF was tested. Distribution of observed -log10(p-value) revealed 
departure from the expected distribution and severe inflation of type-1 error (Figure 1). 
Filtering of variants to include only those that were protein-coding reduced the number of 
variants 10-fold (54,178) and improved data characteristics.   

 

Figure 1. Q-Q Plot comparing the expected normal distribution of –log(p-values) to the observed 
distribution revealed inflated Type-I error when only data quality filters are applied (left). Filtering 
variants to include only those that are protein-coding (right) improves the data characteristics and 
revealed significant (p<10-5) true associations (ΔF508), false positives occurring in problematic 
regions (PR), and false positives that would have been removed based on low allele frequency 
requirements (F). 

Given the number of variants available after QC-criteria and protein-coding filters were 
applied, an exome-wide significance threshold was set at a p-value of 10-5. At this level, five 
variants were significantly associated with CF-status, including the known causal variant 
ΔF508 (rs199826652) that was present in eight affected individuals. Three variants, all 
indels, occurred in PR regions (Figure 1, “PR”), and one SNP was a missense mutation in the 
gene DOK3 (Table 1). For variants occurring in PRs of the genome, the underlying presence 
of simple repeats (POU4F2, KIAA0664) or interspersed repeats (COPB1) caused sequencing 



 

 

 

errors. The SNP, rs3749728, had an allele frequency of 14% according to 1000-Genomes, 
and would have been identified as a likely false positive based on low frequency 
assumptions often used for rare, Mendelian disorders (Figure 1, “F”). 

Table 1. Five variants significantly (p<10-5) associated with CF-status after applying QC criteria and 
and protein-coding filters. Also show are the associated frequencies (MAF) and occurrences in PRs  

dbSNP/Gene Chromosome 
Position 

Ref/Alt Allele MAF PR p-value 

POU4F2 Chr4: 
147560457 

TGGCGGCGGCGGC/ 
TGGC,TGGCGGCGGCGGCGGC,TGGCGGC,T 

 Yes 4.0x10-9 

COPB1 Chr11: 
14521144 

CGTA/C  Yes 4.2x10-6 

rs3749728/     
DOK3 

Chr5: 
176936819 

C/G 14% No 7.7x10-6 

rs199826652/ 
CFTR 

Chr7: 
117199644 

ATCT/A 1% No 7.7x10-6 

KIAA0664 Chr17: 
2595272 

GCCCCCGCCACGCCCCCGCCGCGCACCTG/
G,GCCCCGCCGCGCACCTG 

 Yes 1.0x10-5 

Aside from the ΔF508 mutation, no other variants in the CFTR gene occurred in more 
than 3 case samples, reflecting the genetic heterogeneity of CF. Since an analysis of only 
case-samples not harboring the ΔF508 founder mutation would be severely underpowered 
to detect the smaller effect sizes of the remaining CFTR variants, we aggregated variant 
effects based on gene-membership (i.e. collapsing). Subsequent association testing of 10522 
genes with CF-status revealed 15 genes with FDR-controlled p-values (q-values) < .05. Of 
these, CFTR was ranked the 4th gene by p-value. Table 2 summarizes these 15 genes, the 
nominal p-values derived from the CMC test-statistic, the number of variants contributing to 
the test statistic, the percentage of those variants found in PRs and the predominant PR type. 
Collectively, out of the 27 variants occurring in PRs and contributing to these collapsing 
results, the majority (14) occurred in areas of high-GC content, 10 occurred among 
segmental duplications, and the remaining occurring among areas of low complexity/simple 
repeats. Notably one gene association listed in Table 2, ATF7IP2, had no constitutive variants 
in PRs, yet was ranked higher than the known causal gene (i.e. CFTR). Further examination of 
this result revealed good coverage in this area across samples indicating that this was likely 
reflecting a true difference between cases and controls. However, 3 out of 4 constitutive 
variants had MAFs > 5%, indicating that these differences are unlikely to be causally related 
to CF and would be typically excluded using MAF threshold filters. 



 

 

 

Table 2. Collapsing results using only CF-affected samples without the ΔF508 
mutation revealed 15 genes with q-values<0.05. The nominal p-values, the 
percentage of those variants in PRs, and the predominant PR type is shown.  

Gene p-value Number of 
variants 

Percentage of 
variants in PR 

PR types 

POU4F2 1.5x10-9 2 100% Repetitive 
sequence, 
High GC 

MSX1 4.9x10-8 5 40% High GC  

ATF7IP2 2.7x10-7 4 0% -- 

CFTR 4.5x10-7 29 0% -- 

FUZ 1.2x10-6 3 33% High GC 

C8orf74 1.2x10-6 5 40% High GC 

TRIM10 1.2x10-6 7 0% -- 

COL6A1 3.4x10-6 6 33% High GC 

PTK2B 6.1x10-6 8 0% -- 

FAM108A1 1.2x10-5 2 100% Segmental 
Duplication 

MAP7D1 1.6x10-5 7 43% High GC 

SCN10A 1.8x10-5 13 0% -- 

DIDO1 3.5x10-5 4 24% High GC 

FLG 4.0x10-5 9 89% Segmental 
Duplication 

COPB1 8.7x10-5 2 50% Repetitive 
sequence 

 



 

 

 

4.  Discussion 

In retrospective observational studies of disease association, where disease-affected samples 
(cases) may be compared to previously sequenced shared controls, alignment and mapping 
errors can create false evidence for polymorphisms when there are differences in coverage 
and read depth between groups. Recent evidence has shown that these types of errors can 
persist when the same genome is sequenced twice under identical analytical 
environments16. Even in carefully designed case-control studies, where samples are matched 
appropriately and are collected, sequenced, and analyzed together to avoid experimental 
bias, these errors reduce statistical power for detecting true disease associations.20 
Reduction in these errors are essential for many diseases in which it is a challenge to 
sufficiently power a case-control study, and is particularly important for complex diseases in 
which filtering based on frequency thresholds and functional impact may not be appropriate, 
and where expected effect sizes for a single variant/gene are small or moderate. 

CF and the associated study samples used here provide a dataset well-suited to testing 
the effects of PRs on detection specificity, given that the underlying causal gene and 
mutations are well-known. Even with a limited number of case samples, we are sufficiently 
powered to detect variants or genes known to be associated with CF, but suffer from an 
inflated Type-I error rate. While the effects of these errors can be mitigated through the use 
of commonly used filtering criteria using a-priori knowledge of the disease (e.g. rare, 
Mendelian, monogenic), their presence indicates a likely underlying source of bias occurring 
in the study. No evidence of population stratification was observed when the variance across 
samples was summarized using principal components- largely discounting biases that might 
have arisen during the case-control matching process. A potential source of this high error 
rate may be due to the use of a multi-sample VQSR variant-quality call. In multi-sample 
mode, a VQSR filter call of “PASS” denotes that the variant call is likely correct in at least one 
sample- but does not insure it is of sufficient quality across all samples. Variants in which a 
subset of samples contain low quality calls may introduce false positives associations when 
those calls occur disproportionality in either the case or control groups. The use of sample-
specific (rather than multi-sample) variant-quality calls may help target only those variants 
of sufficient quality across all samples, providing a higher quality set of variants for 
association testing in downstream analysis. 

Even with the use of filtering criteria, sequencing errors that occur in PRs of the genome 
cause several false-discoveries to persist. While the variants in Table 1 included those 
related to errors in covering repeat sequences, examination of PRs in Table 2 revealed that 
the majority of errors were related to areas of high-GC content and the occurrences of 
segmental duplications. A comprehensive database integrating these regions provides a 
mechanism to identify and experimentally or statistically address these potential sources of 
error.  



 

 

 

While the rational use of variant prioritization and/or filtering can enrich the pool of 
variants likely to be associated with disease, the concomitant reduction in detection 
sensitivity often increases the Type-II error rate. Filtering variants based on PRs would be 
particularly problematic in this regard, given that these occur throughout the genome and 
are not directly related to disease characteristics. Alternative strategies have used 
probabilistic models incorporating read-specific quality scores and/or sequencing training 
data in an effort to distinguish true variants from sequencing errors22-23. The outcome is 
typically a decision rule designed to improve false-positive or false-negative error rates in 
variant detection, or a scoring system in which variants can be differentially weighted in 
subsequent analysis. While these approaches are certainly improvements over simple 
filtering of variants, they do not explicitly model all sources of errors inherent in the 
sequence data itself, including areas of degeneracy, high GC content or areas of low-
complexity.  

Regardless of the strategy used to distinguish sequencing errors from true discoveries, 
the errors in the sequence data still exist. The greatest potential impact of a database of PRs 
is in the identification of areas in the genome that should be targeted for improved coverage- 
the result being reductions in sequencing error rates16 regardless of the underlying cause. 
Improvements in coverage can have beneficial effects on sensitivity; and will improve 
specificity in large-scale studies where the error rates can differ across samples.  
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