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Enormous efforts of whole exome and genome sequencing from hundreds to thousands of patients 
have provided the landscape of somatic genomic alterations in many cancer types to distinguish 
between driver mutations and passenger mutations. Driver mutations show strong associations with 
cancer clinical outcomes such as survival. However, due to the heterogeneity of tumors, somatic 
mutation profiles are exceptionally sparse whereas other types of genomic data such as miRNA or gene 
expression contain much more complete data for all genomic features with quantitative values 
measured in each patient. To overcome the extreme sparseness of somatic mutation profiles and allow 
for the discovery of combinations of somatic mutations that may predict cancer clinical outcomes, here 
we propose a new approach for binning somatic mutations based on existing biological knowledge. 
Through the analysis using renal cell carcinoma dataset from The Cancer Genome Atlas (TCGA), we 
identified combinations of somatic mutation burden based on pathways, protein families, evolutionary 
conversed regions, and regulatory regions associated with survival. Due to the nature of heterogeneity 
in cancer, using a binning strategy for somatic mutation profiles based on biological knowledge will be 
valuable for improved prognostic biomarkers and potentially for tailoring therapeutic strategies by 
identifying combinations of driver mutations. 
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1.  Introduction 

Cancer is a complex and heterogeneous disease, many of which are caused by somatic mutations 
or structural alterations. Recent meta-dimensional omics data from The Cancer Genome Atlas 
(TCGA) or the International Cancer Genome Consortium (ICGC) have provided exceptional 
opportunities to investigate the complex genetic basis of disease for improving the ability to 
diagnose, treat, and prevent cancer [1,2]. Multiple alterations affecting cancer can be observed 
directly as somatic mutations or copy number changes, and indirectly as changes in epigenomic, 
transcriptomic, and proteomic dimensions. In particular, one of the main issues in cancer research 
is to distinguish between driver mutations and passenger mutations based on somatic mutation 
profiles. Massive efforts of whole exome/genome sequencing from hundreds to thousands of 
patients have provided the landscape of somatic genomic alterations in each specific cancer or 
across several cancer types [3,4]. 

Driver mutations show strong associations with survival in several different types of cancer [5]. 
Thus, evaluation of survival models to predict the disease trajectory of cancer patients based on 
somatic mutation profiles is one of the most imperative foci in the development of prediction 
models for cancer prognosis. However, due to the heterogeneity of tumors, somatic mutation 
profiles are exceptionally sparse whereas other types of genomic data such as miRNA or gene 
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expression contain nearly complete data for all genomic features with quantitative values 
measured in each patient. Somatic mutations, in contrast, occur with low to intermediate frequency 
among cancer patients (2-20%). Thus, it is common that patients do not share any somatic 
mutations even though they have same clinical features such as prognosis [6]. 

Previously, we proposed a framework for data integration to predict clinical outcomes in 
ovarian cancer [7]. However, somatic mutation profiles were not appropriate for predicting 
outcomes due to the sparseness. To overcome this challenge, we developed a new strategy to use 
somatic mutation profiles by performing a biologically based collapsing/binning of the mutations 
to look for an accumulation of somatic mutations in specific types of features based on biological 
knowledge such as pathways. Then, these somatic mutation burden features in specific pathways 
can be tested for association with cancer outcome such as survival. It may be desirable to focus on 
identifying driver pathways instead of driver mutations associated with survival because the 
patterns of altered pathways may be similar even though patients within a cancer subtype might 
have diverse mutations [8]. The hypothesis is that rather than looking for the shared mutation to be 
the driver, it is important to look for the shared pathway (or other biological feature) to be the 
driver. We applied grammatical evolution neural networks to identify not only specific pathways 
associated with cancer survival, but also interactions/combinations of pathways. In addition, we 
tested not only pathways as biological features, but also protein families, regulatory regions, and 
evolutionary conversed regions to test the association between different types of knowledge-based 
somatic mutation burden and survival. To test the utility of the proposed strategy, we applied our 
approach on somatic mutation profiles from renal cell carcinoma from TCGA, which is the most 
common type of kidney cancer. 

2.  Methods 

2.1.  Data 

Somatic mutations from renal cell carcinoma patients were retrieved from the TCGA (http://tcga-
data.nci.nih.gov/) on 1 July 2014. Due to the extreme sparseness of somatic mutation profile, we 
used all classes of somatic mutations generated from the mutation calling conducted by Baylor 
College of Medicine (BCM) as a mutation annotation format (MAF) and extracted patient 
mutation profiles where the analyte was a DNA sample from the tumor. Somatic mutations from 
417 patients with renal cell carcinoma were retained for subsequent analysis. Based on 
chromosomal positions, there were 27,194 unique somatic mutations across all patients. As a 
clinical outcome, survival information was downloaded for 417 patients as well as sex and age for 
adjusting potential confounding factors when modeling. 

2.2.  BioBin 

BioBin is a flexible collapsing or binning method using biological knowledge to automate the 
binning of low frequency variants for association tests [9,10]. The main function of BioBin 
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provides access to comprehensive knowledge-guided multi-level binning. For example, bin 
boundaries can be formed using genomic locations from: genes, regulatory regions, evolutionary 
conserved regions, and/or pathways. BioBin uses a built-in database called the Library of 
Knowledge Integration (LOKI), which is a repository of data assembled from public databases. 
LOKI contains multiple data resources [11]. 

Similar to germline low frequency variants, somatic mutations tend to occur with low or 
intermediate frequency among cancer patients. Thus, we used BioBin for binning somatic 
mutations based on biological knowledge, such as pathway, in order to overcome the sparseness of 
somatic mutation profiles. First, we converted MAF to variant call format (VCF) as an input for 
BioBin (Fig. 1). Then, we applied BioBin to generate KEGG pathway, Pfam, evolutionary 
conversed region (ECR), and regulatory bin profiles by accumulating somatic mutations in a 
specific bin. BioBin is open source and available at http://ritchielsb.psu.edu. 

 

Fig. 1. Illustration of somatic mutation analysis using BioBin and ATHENA for predicting survival. 

2.3.  ATHENA 

The Analysis Tool for Heritable and Environmental Network Associations (ATHENA) is a multi-
functional software package designed to perform three essential functions to determine the meta-
dimensional models of complex disease: (1) performing feature selections from categorical or 
continuous independent features; (2) building additive and interaction models that explain or 
predict categorical or continuous clinical outcomes; (3) interpreting the candidate models for use 
in further translational bioinformatics [7,12]. For this analysis, we used Grammatical Evolution 
Neural Networks (GENN) as the modeling component. ATHENA is open source and available at 
http://ritchielab.psu.edu. 
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2.4.  Grammatical Evolution Neural Networks (GENN) 

Various computational methods have been developed to identify non-linear interactions between 
genomic variables that have small or large main effects such as a multi-factor dimensionality 
reduction (MDR) [13]. However, MDR performs an exhaustive search of all possible combination 
of interacting loci to generate multi-locus predictor models. The search space increases 
exponentially with the number of variables and became infeasible when integrating meta-
dimensional genomics data. Thus, stochastic methods using evolutionary algorithm have been 
developed and shown to utilize the full dimensionality of the data without exhaustively evaluating 
all possible combinations of variables [14,15]. 

Artificial Neural Network (ANN) is a flexible and robust machine learning technique designed 
to imitate neurons in the brain to solve complex problems. ANN is a good candidate for 
identifying complex and non-linear interactions that influence variance in an outcome of interest. 
Generally, the method for applying ANN to a classification problem is to use gradient descent 
algorithm such as backpropagation to fit the weights of the network given input variables and 
network architecture. However, the variables and network architecture are not known a priori. In 
order to simultaneously optimize the input variables, weights, and network structures, 
evolutionary algorithm approaches have been developed and applied [15,16]. Genetic 
programming, a specialization of genetic algorithms, is an evolutionary algorithm-based method 
that uses “survival of the fittest” to evolve optimal solutions from a population of random 
solutions [17]. Grammatical evolution is a more flexible version of genetic programming since it 
can also evolve functional solutions, or computer program, via grammar rules [15]. The details of 
the grammar rules were described in a previous study [15]. The GENN algorithm is briefly 
described as follows: 
(1) The data is divided into five parts for five cross validation with 4/5 for training and 1/5 for 
testing. 
(2) A random population of binary strings is generated to be ANNs using a Backus-Naur grammar. 
The total population is divided into demes as sub-populations across a user-defined number of 
CPUs for parallelization. 
(3) All ANNs are evaluated with training data, and the solutions with the lowest prediction errors 
are selected for crossover and reproduction. The new population is composed of mutated original 
solutions and new random solutions. 
(4) Step 3 is repeated for a set number of generations. Migration of best solutions also occurs 
between demes during evolution for a pre-defined number of times. 
(5) The best solution at the final generation is tested using the remaining 1/5 test dataset and 
fitness is recorded. 
(6) Steps 2-5 are repeated four more times, each time using a different 4/5 of the training data and 
1/5 of testing data. 



 

 

 

2.5.  Survival fitness function 

The goal of this study is to predict censored survival outcome based on somatic mutation burden 
generated from BioBin. In general, it is difficult to directly predict raw survival data via measuring 
of goodness-of-fit, such as R2, due to the censored observations. Thus, an appropriate measure of 
goodness-of-fit should be required for predicting censored survival data. Martingale residuals are 
defined as the difference between the cumulative hazards assigned to an individual i with failure 
time ti and its observed status, 0iδ = censored, 1iδ = event [18]. Thus, martingale residuals could 
be intuitively interpreted as the surplus deaths. Martingale residuals are calculated from the fitted 
Cox model as 

( )i i iM tδ= −Λ                                                                  (1) 
whereΛ is a cumulative hazard function [18]. 

According to the model, the result of cumulative hazard function reflects the number of 
expected death events per individuals failing at ti. The range of martingale residuals is between 
negative infinity and 1 because the cumulative hazard function does not have upper limit. 
However, the sum of all martingale residuals is zero. Each patient with a negative martingale 
residual is interpreted as a good prognosis, whereas one with a positive martingale residual is 
interpreted as a poor prognosis. The martingale residual of each patient is obtained from the 
reduced model with no genomic effects from somatic mutations. Thus, martingale residuals can be 
used as a new continuous outcome since they reflect the unexplained portion beyond what is 
explained by the adjusted clinical covariates excluding the genomic features [18]. In addition, 
another advantage of martingale residual is that the model can be adjusted by potential 
confounders such as sex and age. As a proof of concept, we adjusted for age and sex when 
calculating martingale residuals using survival R package. 

Since the distribution of martingale residuals is more exponentially shaped, the assumption of 
R2, which has normally distributed residuals, is not satisfied. Thus, a new fitness function was 
proposed for measuring the mean absolute differences (MAD) between observed martingale 
residuals ( iM ) and predicted martingale residuals ( |i xM ) from GENN with genomic covariate 
vector x [19]. The new fitness function is formulated as follows:  

(2) 

  

Fitness function = 1 – MAD                                                      (3) 
The output of the MAD fitness function will be from 0 to 1. The model with 1 fitness score 
represents the best predictive model whereas the one with 0 fitness score means the worst 
predictive model. We used MAD for the subsequent experiments. 

2.6.  Experiment setup 

Figure 1 shows the overview of the analysis pipeline, which consists of a binning step using 
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BioBin and a modeling step using ATHENA. After converting MAF to VCF, BioBin was used to 
generate pathway, Pfam, ECR, regulatory bin profiles. Then, we used ATHENA to build 
additive/interaction models associated with survival. Martingale residuals and each bin profile can 
be used as an input for ATHENA. For building GENN models, we randomly split the input dataset 
into two groups, 4/5 dataset (n=333) for learning models and 1/5 dataset (n=84) for the validation. 
This is independent of the cross-validation (CV) procedure. The CV procedure was performed on 
the learning dataset which is 4/5 of the total dataset. Based on GENN results from 5-fold CV, the 
features from each model across 5 CVs were selected, and then, we reran GENN using selected 
features to generate the final model from entire training dataset. Lastly, the final GENN model can 
be used to predict survival from the validation dataset. To avoid over-fitting, the validation dataset 
was not used for the entire learning step. Table 1 shows the GENN parameters for the analysis. 
Based on the output of the final GENN model as predicted martingale residuals, the validation 
dataset was divided into two sub groups, low-risk group and high-risk group, by the median 
threshold of predicted martingale residuals. Then, survival analysis was performed using survival 
R package. 

Table 1. GENN parameter settings 

Parameter Value 
Number of demes (CPUs) 20 
Population size/ Deme 5,000 
Number of generations 1,000 
Number of migrations 20 
Probability of crossover 0.9 
Probability of mutation 0.01 
Fitness function 1 – MAD 

3.  Results and Discussion 

3.1.  Binning somatic mutations using BioBin 

To predict survival based on somatic mutation burden, BioBin was used to generate KEGG 
pathway, Pfam, ECR, and regulatory bin profiles. Somatic mutation burden analysis can be biased 
when using bins consisting of extremely small number of mutations, thus bins from KEGG 
pathway, Pfam, ECR, and regulatory regions with more than 10 mutations were selected for the 
further study. The total number of KEGG pathway, Pfam, ECR, and regulatory bins were 272, 
922, 250, and 41, respectively. Since somatic mutation profiles were conducted by whole-exome 
sequencing, regulatory bin profiles had a relatively small number of bins compared to other bins. 
Figure 2 shows the difference of sparseness between raw somatic mutation profiles and pathway 
bin profiles. 
 



 

 

 

                       
Fig. 2. Difference of sparseness between raw somatic mutation profiles and KEGG pathway bin 
profiles. For somatic mutation profiles, mutations from chromosome 22 were extracted for generating the 
heatmap figure. Each black dot represents the presence of either somatic mutation in the left heatmap or 
mutation burden in a pathway in the right heatmap. 

3.2.  GENN modeling for somatic mutation burden 

A simulation study was conducted to demonstrate the validity of the proposed survival fitness 
function and martingale residuals as a new outcome for predicting survival (data not shown) [Kim 
et al., submitted]. According to the results from the simulation data, martingale residuals 
performed well as a new outcome in terms of finding true survival genes and limited false 
positives using GENN. Next, somatic mutation profiles in renal cell carcinoma were analyzed to 
identify additive/interaction models based on knowledge-based somatic mutation burden. After 
generating pathway, Pfam, ECR, and regulatory bins using BioBin, GENN models were trained to 
predict survival from the validation dataset. The final model of GENN is the evolved neural 
network with optimized input variables, weights, and network structure to identify additive or 
interaction models that predict survival outcome. Figure 3 shows the best GENN models from 
each bin profile: KEGG pathway, Pfam, ECR, and regulatory bins, respectively. Finally, the final 
GENN model was used to predict survival from the validation dataset, which consisted of 84 
patients. The fitness scores from the validation dataset for each of the best models with pathway, 
Pfam, ECR, and regulatory bin profiles were 0.641, 0.67, 0.665, and 0.654, respectively (Fig 3 and 
Table 2). Among four different bin profiles, Pfam bin profiles showed the best performance for 
predicting survival. 

Table 2. Performance comparison between different types of bin profiles. Performance was measured from the 
validation dataset.  

GENN model 1 - MAD Permutation p-value 
KEGG pathway bins 0.641 0.602 
Pfam bins 0.67 0.108 
ECR bins 0.665 0.2 
Regulatory bins 0.654 0.423 
Integration 0.685 0.026 



 

 

 

                            

(a) Pathway bins (Fitness score: 0.641)                                                (b) Pfam bins (Fitness score: 0.67) 

                                                                 

(c) ECR bins (Fitness score: 0.665)                                           (d) Regulatory bins (Fitness score: 0.654) 

Fig. 3. Best GENN models from each knowledge-based somatic mutation profiles. PSUB, PMUL, and 
PADD are a subtraction, multiplication, and addition activation node, respectively. Knowledge 
features such as pathway, Pfam, ECR, regulatory regions are shown in the gray boxes. (a) pathway-based 
mutation profiles (b) Pfam-based mutation profiles (c) ECR-based mutation profiles (d) regulatory-based 
mutation profiles 

To build an interaction model between different knowledge-guided bins associated with survival in 
renal cancer, we integrated pathway, Pfam, ECR, and regulatory bin profiles. The final integration 
model was generated using GENN with variables from the best models of each bin profile. The 
final integration model was also used to predict survival for the validation dataset. In terms of 
predictive power, the integration model showed the best performance with a fitness score of 0.685 
(Table 2). The selected features in the final integration model are methyl-CpG binding domain and 
insulinase (Peptidase family M16) from Pfam bin profile, ecr_vertebrate_chr3_band1567 and 



 

 

 

ecr_vertebrate_chr15_band356 from ECR bin profiles, and regulatory_EOMES from regulatory 
bin profiles (Fig. 4). To test the statistical significance of each GENN model, permutation testing 
was performed. The survival outcome for the validation dataset was randomly permuted 1000 
times and permutation p-values of each GENN model were obtained from the 1000 random 
validation sets (Table 2). The integration model showed a significant result (P = 0.026) while other 
GENN models were not significant based on permutation testing. In addition, survival analysis 
was performed for two sub groups, low-risk and high-risk groups, which were divided by a 
median threshold of predicted martingale residuals for the validation dataset. Kaplan-Meier 
analysis showed that the two groups generated from the integration model were significantly 
different based on survival (Fig. 5). 

 

Fig. 4. Integration model containing variables from different knowledge-based mutation profiles. 
Red, green, and blue boxes represent Pfam, ECR, and regulatory region features, respectively. PADD 
represents an addition activation node. A fitness score of the integration model was 0.685.  

3.3.  Biological interpretation 

Four pathways, arginine and proline metabolism, adherens junction, toxoplasmosis, and 
rheumatoid arthritis, were found in the GENN models. Adherens junctions are one of the most 
relevant junctional complexes in the kidney epithelium and adherens junction disruption is 
associated with cell proliferation, invasion, and angiogenesis in renal cell carcinoma [20]. In 
addition, arginine and proline metabolism has been shown to be important in renal cell carcinoma 
using proteomic and metabolic profiles [21]. Interestingly, rheumatoid arthritis was identified as 
one of the features in the final model. Associations between rheumatoid arthritis and kidney cancer 
have been reported in many studies. For example, infliximab, anti-tumor necrosis factor α (TNF-α) 
antibody, is licensed for use in rheumatoid arthritis and TNF-α might be a therapeutic target in 
renal cell carcinoma [22]. Notably, the top pathway model showed complex and non-linear 
interactions between pathways associated with survival. This suggests it is important to consider 



 

 

 

interactions associated with survival, which might have crucial roles in molecular pathogenesis, 
progression, and prognosis of renal cell carcinoma, that are not easily detected by traditional 
pathway analysis approaches. For Pfam model, a combination of methyl-CpG binding domain, 
cid1 family poly A polymerase, ubiquitin carboxyl-terminal hydrolase family 1, insulinase 
(peptidase family M16), and nuclear envelope localization domain was found to be associated with 
survival. In particular, the epigenetic silencing of cancer-related genes such as ABCG2 has been 
shown to be associated with renal cell carcinoma via being mediated through recruitment of a 
group of proteins, called methyl-CpG binding domain (MBD) [23]. Epigenetic control of the 
ubiquitin carboxyl terminal hydrolase family 1, which plays an important role in cell growth and 
differentiation, can be disturbed in renal cell carcinoma [24]. Several evolutionary conversed 
regions were also selected from ECR model. Many genes located in selected evolutionary 
conversed regions such as BAP1, EIF4G1, EBAG9, or FBN1 were found as import genes involved 
in several cancers. In particular, BAP1 loss defines a new class of renal cell carcinoma [25]. In 
addition, somatic mutation burden in the regulatory regions of CACNA1A, LOXHD1, DNAH5, 
DCC, or EOMES might play a functionally significant role in renal cell carcinoma survival. In the 
integration model, where we used multiple knowledge sources, methyl-CpG binding domain and 
insulinase (Peptidase family M16) from Pfam model, chr3_band1567 and chr15_band356 from 
ECR model, and EOMES from regulatory model were selected. Combination of somatic mutation 
burden based on multiple biological knowledge sources might reflect the complex molecular 
pathogenesis and progression of renal cell carcinoma. 

 

Fig. 5. Kaplan-Meier survival plots for the validation dataset. Validation dataset was divided into 
high-risk and low-risk groups based on a median value of predicted outputs from the integration 
model. 

4.  Conclusions 

In this study, we proposed a new approach of binning somatic mutation based on biological 
knowledge for predicting survival in order to overcome the extreme sparseness of somatic 
mutation profiles. Through the analysis using renal cell carcinoma dataset, we identified 
interaction/combinations of somatic mutation burden based on pathway, protein families, 



 

 

 

evolutionary conversed regions, and regulatory regions associated with survival. Knowledge 
guided binning/collapsing somatic mutations dramatically reduce the sparseness of profiles as well 
as search space, from 27,194 mutations to 272 pathways. In terms of predictive power, some of 
the GENN models were not significant based on the permutation test. However, it might be due to 
the fitness function based on mean absolute difference. Even though survival outcome of 84 
patients were shuffled, a mean difference between observed martingale residuals and predicted 
martingale residuals could not be too large. In addition, a small number of patients in the 
validation dataset limit our power as sample size is often a limiting factor. Improving the 
methodology by incorporating directionality of the pathway when binning somatic mutations 
could also potentially increase the predictive power of pathway-based approach. Notably, the 
predictive power of the integration model outperformed other models from single types of 
biological knowledge sources. These results suggest that each biological knowledge source can be 
complementary to the prediction power of survival because each knowledge source has its specific 
biological context. Furthermore, the survival analysis for the validation dataset demonstrated that 
somatic mutation burden based on biological knowledge showed significant associations with 
cancer prognosis in renal cell carcinoma. 

The present study underpins our on-going work. First, not only somatic mutations but also 
germline mutations can be regarded as important genomic features that are associated with cancer 
outcomes [5]. Thus, as one of promising future works, it would be valuable to combine both types 
of mutations to investigate the associations with cancer outcomes. It would be also interesting to 
investigate whether known somatic mutations influence the models. In addition, the proposed 
approach could be applied to explore associations with other cancer clinical outcomes such as 
stage, grade, recurrence, or metastasis. Furthermore, the current approach by biological-based bins 
such as pathways may unnecessarily inject noise into the model. It would be intriguing to apply an 
adquate filtering step to the mutations in future studies. Due to the nature of heterogeneity in 
cancer, using a binning strategy for somatic mutation profiles based on biological knowledge will 
be valuable for improved prognostic biomarkers and tailoring therapeutic strategies by identifying 
interactions/combinations of driver mutations. 
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