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We introduce the integrative protein-interaction-network-based pathway analysis (iPINBPA) for 

genome-wide association studies (GWAS), a method to identify and prioritize genetic associations 

by merging statistical evidence of association with physical evidence of interaction at the protein 

level. First, the strongest associations are used to weight all nodes in the PPI network using a guilt-

by-association approach. Second, the gene-wise converted p-values from a GWAS are integrated 

with node weights using the Liptak-Stouffer method. Finally, a greedy search is performed to find 

enriched modules, i.e., sub-networks with nodes that have low p-values and high weights. The 

performance of iPINBPA and other state-of-the-art methods is assessed by computing the 

concentrated receiver operating characteristic (CROC) curves using two independent multiple 

sclerosis (MS) GWAS studies and one recent ImmunoChip study. Our results showed that 

iPINBPA identified sub-networks with smaller sizes and higher enrichments than other methods. 

iPINBPA offers a novel strategy to integrate topological connectivity and association signals from 

GWAS, making this an attractive tool to use in other large GWAS datasets. 

 

  



1.  Introduction 

In the last decade, Genome-wide association studies (GWAS) have been a powerful tool to identify 

statistically significant differences in allelic frequencies between cases and controls at each tested single 

nucleotide polymorphism (SNP) for hundreds of phenotypes.
1
 In order to consider a signal of genome-wide 

significance, a Bonferroni correction is usually applied (p-value < 5 x 10
-8

 for 1 million markers) under the 

assumption of independence among SNPs.
2
 While this method ensues a low ratio of false positives, it 

inevitably increases the ratio of false negatives, thus neglecting a sizable proportion of risk SNPs and 

limiting the overall utility of this approach. Furthermore, the results of GWAS do not directly provide any 

functional information of the variants. Recent advances in our understanding of biological networks, 

especially the large-scale human protein interaction network (PIN), have enabled its use to investigate 

statistically modest associations in GWAS in the context of functional modules (referred to as pathways) to 

elucidate the underlying molecular mechanisms of several human diseases.
3-5

  

Pathway analysis approaches can be divided into three broad classes. The first class of methods 

attempts to compute the over-representation of a given list of genes in gene ontology (GO) or pre-computed 

pathway databases (e.g., KEGG, Biocarta, etc.). Examples include DAVID
6
 and INRICH.

7
 The second 

class of methods involve functional class scoring (FCS) approaches, such as GenGen,
8
 SSEA

9
 and 

PARIS.
10

 The input data to these tools is SNP-based statistics, such as p-values. FCS methods aggregate 

SNP-wise statistics into a single score for each pre-defined pathway. While potentially revealing, both the 

first and second classes of methods ignore the functional connections between genes and assume 

independence between pathways. A third class is composed of network-based analyses, and largely 

overcomes the assumption of pathway independence. These approaches commonly use a scaffold of protein 

interactions to build connections between gene products, where nodes represent proteins and edges 

represent physical or functional interactions between pairs of proteins. Rather than focusing on individual 

markers, network-based analysis methods take into account multiple loci in the context of molecular 

networks. Due to this critical feature, these methods can afford to use sub-genome-wide statistical 

significance and yet increase the power to detect new associations and functional relationships between 

genes in complex traits.
5
 

To date, several network-based methods have been proposed to identify functional modules in the form 

of sub-networks of a given larger ensemble. For example, protein interaction network-based pathway 

analysis (PINBPA) of GWAS data was developed to identify over-represented modules in a large multiple 

sclerosis (MS) GWAS.
5
 This approach, adapted from a similar method for gene expression analysis, uses a 

greedy algorithm
11

 to identify sub-networks based on aggregated gene-wise statistics. Dense module 

searching of GWAS (dmGWAS) also extensively searches for sub-networks enriched with low p-value 

genes in GWAS datasets.
12

 Aside from using the human PIN as a scaffold, neither PINBPA nor dmGWAS 

exploit topological properties of this network. Another tool, called network interface miner for multigenic 

interactions (NIMMI),
13

 combines topological connectivity with association signals from GWAS. In this 

tool, sub-networks are generated for each node by adding their neighbors up to the second-order. Nodes are 

weighted using a modified Google PageRank algorithm, and then the pre-generated sub-networks are 

scored.
13

 More recently, the disease association protein-protein link evaluator (DAPPLE)
14

 was reported to 

prioritize novel associations in Crohn’s disease and rheumatoid arthritis datasets. Using a fixed PIN, 



  

DAPPLE builds direct and indirect networks among a list of genes or SNPs and computes the 

probabilities that those connections may have arisen by chance. However, DAPPLE does not take into 

account gene-wise or SNP-wise GWAS statistics.  

In this paper, we introduce the integrative protein-interaction-network based pathway analysis 

(iPINBPA), a novel network-based pathway analysis strategy. This approach, based on the same principles 

of PINBPA, integrates topological connectivity among genes in PIN space and the association signals from 

GWAS to extensively search for sub-networks enriched in significant GWAS signals. We tested the 

performance of iPINBPA against PINBPA and dmGWAS using two independent well-powered datasets in 

multiple sclerosis (MS). Our results show that iPINBPA can identify sub-networks involving MS genes 

with much higher precision than the other tested methods. 

2.  Data and Methods 

2.1.  Data 

The data used in this work include two independent GWAS data sets in MS, human PIN and benchmark 

MS genes for evaluation of our proposed method.  

2.1.1.  GWAS data sets 

Two large-scale GWAS data sets have been used to evaluate the proposed method. The first data set is a 

meta-analysis (denoted as Meta2.5) of seven independent moderately powered GWAS and one meta-

analysis and includes 137,432 SNPs mapped to 17,425 unique genes for 5,545 cases and 12,153 controls.
15

 

The second data set is the largest GWAS in MS to date (denoted as WTCCC2), and is composed of 137,457 

SNPs mapped to 17,401 unique genes in 9,772 cases and 17,376 controls.
16

 For both data sets, the SNP-

wise statistical significance (SNP-wise p-value), was transformed into gene-wise significance (gene-wise p-

value), using the versatile gene-based association study (VEGAS) tool.
17

 If the gene-wise p-value  0.05 in 

GWAS data set, the corresponding gene is defined as nominally significant. There are 1,982 unique 

nominally significant genes in WTCCC2 and 1,690 in the Meta2.5 data set.  

2.1.2.  Human protein interaction network 

We used a high-confidence, manually curated human protein interaction network previously reported,
5
 

which is composed of 8,960 proteins and 27,724 interactions. The PIN is represented as an undirected 

graph.  

2.1.3.  Benchmarking 

We assess the performance of our proposed method for two sets of benchmark genes: 1) the 45 genes 

emerging from GWAS as of 2011 (denoted as WTCCC2 genes), and 2) the 135 genes from the most recent 

MS study, the ImmunoChip custom genotyping array
18

 (denoted as iChip genes). 



2.2.  Method 

Given a human protein interaction network, and gene-wise p-values from a GWAS data set, iPINBPA 

detects enriched sub-networks in three steps as shown in Fig. 1. First, for a given GWAS data set, the 

nominally significant genes (gene-wise p-value  0.05) are selected as seed genes, and then nodes in the 

network are weighted (i.e. network smoothing) via the random walk with restart algorithm according to 

their connectivity to seed genes based on guilt-by-association. Second, a network score is defined by the 

combination of the gene-wise p-values with node weights using the Liptak-Stouffer method.
19

 The 

background distribution for the network score is calculated using random sampling for various network 

sizes. Finally, a heuristic algorithm extensively searches for modules enriched in genes with low p-values 

and high weights, i.e., high network score. We will explain each step in detail in the following subsections.   

 

Fig. 1 Work flow of iPINBPA 

2.2.1.  Random walk with restart  

Based on the assumption of guilt-by-association, Köhler et al.
20

 developed a random walk with restart 

method to prioritize disease-associated genes. In this method, a walker starts moving from a seed node to 

connecting neighbors randomly. Nodes in the network are scored according to the probabilities of the 

walker reaching them at the end of the process. iPINBPA extends Köhler’s approach by weighting the edge 

    connecting    and    using corresponding gene-wise p-values as:                       , 

where    and    are gene-wise p-values of     and   , and normalizing the adjacency matrix W by its 

columns. A score vector is calculated after each step of the walker as follows: 



  

                          ( 1 ) 

where      is the score after t steps of walking, and r  is the restart ratio. The initial score vector      

represents a-priori knowledge of genes (in our case, nominal significance), where 1 is assigned for seed 

genes and 0 for the rest. Finally, all nodes are scored according to their values in the vector     , which 

quantitatively measures the topological connection to seed genes. 

As mentioned above, iPINBPA requires a group of seed genes to start random walks. In this study, we 

used the nominally significant genes (gene-wise p-value   0.05) in the GWAS data set as seed genes. This 

network smoothing step refines the searching for enriched sub-networks, as nominally significant genes 

will be assigned higher scores than the non-significant ones.  

2.2.2.  Network scoring 

In the second step of our approach, each p-value    is transformed into its standard normal deviate    using 

the inverse normal CDF:             , and then a score for a network A containing k nodes is defined 

using a weighted Z transform test
19

 (also called Liptak-Stouffer formula), as shown in Equation (2). By 

using this formula, the gene-wise significance from GWAS is combined with node connectivity to known 

disease genes. According to this algorithm, nodes with low p-value and close to known associated genes 

will score higher. 

 
   

           

       
 

   

 
( 2 ) 

To determine the significance of the network score calculated above, we performed a random 

sampling
11

 of gene sets of size           for 1000 times. For gene sets at size k, we computed their 

scores   , then calculated the mean of network score    and the standard deviation    . The adjusted 

network score is defined as: 

    
     

  
 ( 3 ) 

2.2.3.   Greedy algorithm 

The last step of iPINBPA is to find locally optimal sub-networks according to the adjusted network scores. 

A greedy algorithm starts searching for the optimal sub-network G for each node        in the network. It 

searches all neighbors of G as long as their shortest path to        is less than or equal to 2, if adding a 

neighbor increases the network score   , then add the neighbor with the largest increase. It stops adding 

until there is no increasing of   . Then it starts searching any node inside G as long as this node is not 

       and removable, which means G is still a connected sub-network after removing this node. If 

removing a node will increase   , then remove the one with the largest increase. The algorithm stops 

searching until there is no increasing of   . The pseudo code of this algorithm is as follows:  

(1)            



(2) For each neighbor node v of G and depth <= 2: 

(3)     Calculate score   
  if add v into G 

(4) If       
       then: 

(5)     Add the corresponding node      into G 

(6)     Go back to step (2) 

(7) Else: 

(8)     For each node v in G except       : 

(9)         Calculate score   
  if remove v from G 

(10)     If       
       then:  

(11)         If the corresponding node     
  is removable: 

(12)             Remove      
  from G 

(13)             Go back to step (8).  

(14)     Else: 

(15)        Return G  

2.2.4.  Parameters 

We chose the network’s characteristic path length (4.38 for the used PIN) as the default time step (T = 5). 

The second parameter of random walk is the restart ratio r, which weights prior knowledge. As there is no 

standard criterion to select the restart ratio, we set up the default value as 0.5. Furthermore, we tested 

iPINBPA with different restart ratios and the corresponding performance is discussed in section 3.4.  

2.2.5.  Evaluation 

To evaluate the performance of iPINBPA, we tested two sets of reported benchmark genes. As shown in a 

previous study,
5
 if we define association regions (blocks) composed of significant genes (gene-wise p-value 

  0.05), there are 665 association blocks containing 1,982 unique genes in the WTCCC2 data set, and 612 

blocks containing 1,690 unique genes in the Meta2.5 data set. The size of associated blocks vary from 1 

to >100, thus posing a challenge to quantitatively compare the prediction or enrichment performance for 

each association block. In this study, we applied iPINBPA to identify sub-networks in a high-confidence 

PIN and a GWAS data set, and ranked genes using their highest network score in descending order. For 

genes having the same network score, they were ranked by their gene-wise p-values in ascending order. 

Based on the ranking, CROC curves
21

 were computed to assess the efficiency of iPINBPA in identifying 

the benchmark genes. CROC curves use an exponential function (                     ) to 

magnify any relevant portion of the corresponding ROC by an appropriate continuous transformation of the 

coordinates. CROC curves have been shown to be more effective than ROC curves to measure the ability 

of methods in drug discovery and gene prediction.
21

 In our case, the early retrieval performance is also 

adequate, as we only consider the top scored/ranked nodes or sub-networks, and the size of benchmark 

genes is less than one percent of the total number of genes in the network.   

3.  Results  

Based on its predecessor (PINBPA), iPINBPA introduces node-weighting by means of significant disease-

related genes and integrates these weights with gene-based significance into a score, which is further 



  

normalized by network size (see methods). We applied the iPINBPA approach to two independent large-

scale GWAS datasets in multiple sclerosis (MS) (Meta2.5 and WTCCC2), and benchmarked its 

performance against other established methods on the same input data.  

In pathway analysis of GWAS, it is necessary to compute gene-wise (rather than SNP-wise) 

significance. Given that most associations fall outside coding regions, allocating a significant finding to a 

gene is not always straightforward.  One common strategy is to assign the significant association to the 

closest gene, taking into account recombination hotspots. However, due to linkage disequilibrium (LD), it 

is not unusual to find that several genes map within the “area of influence” of the lead SNP. While usually 

the closest gene to the lead SNP is assigned, in reality, patterns of extended LD make it impossible to 

assign any given gene within that area with certainty.  

It is challenging to compare different pathway analysis methods because of the lack of accurate 

knowledge of complex traits and the incomplete human PIN. Since DAPPLE and NIMMI do not accept a 

user-defined network and DAPPLE only accepts a short list of SNPs or genes (up to 500), it is not possible 

to directly compare these methods to iPINBPA. Thus, we compared iPINBPA to PINBPA and to 

dmGWAS. We performed three different tests: (1) Prediction of WTCCC2 genes using Meta2.5 data; (2) 

Prediction of iChip genes using WTCCC2 data; and (3) Significantly enriched networks from both GWAS 

data sets.  

3.1.  Prediction of WTCCC2  genes using Meta2.5 data 

We first tested the ability of each method to identify the WTCCC2 genes using Meta2.5 data. There are 45 

WTCCC2 genes previously identified in GWAS studies (24 of them are represented in our network). 

Meta2.5 data are aggregated from seven moderately powered GWAS and one meta-analysis before the 

completion of WTCCC2. Meta2.5 GWAS data set contains weaker association signals than WTCCC2 

GWAS data set (26 SNPs with p-value <5 x 10
-8

 and 1,690 nominally significant genes in Meta2.5, but 57 

associated SNPs and 1,982 nominally significant genes in WTCCC2).  

We measured the fold enrichment of AUC score of each method compared to a random classifier. As 

shown in Fig. 2A, iPINBPA (fold enrichment= 5.858) performs marginally better than PINBPA (fold 

enrichment= 5.386) and significantly better than dmGWAS (fold enrichment = 3.646), with   

              .  

3.2.  Predicting iChip genes using WTCCC2 data 

We also tested the ability of each method to identify the latest MS genes reported in a recent study using 

the ImmunoChip (iChip) custom genotyping array
18

 using WTCCC2. In this test, a total of 135 genes were 

associated with MS (Although the total number of reported associated loci is 110, some SNPs map to more 

than one gene). Of these 135 iChip MS genes, 42 genes were WTCCC genes (23 of them are represented in 

our network), and thus 93 genes (54 genes represented in our network) found in iChip are novel. As shown 

in Fig. 2B, iPINBPA (fold enrichment = 6.22) performs better than PINBPA (fold enrichment = 5.211) and 

dmGWAS (fold enrichment = 2.818) in the prediction of iChip genes, with                 .  



 

Fig. 2 CROC curves of Meta2.5 and WTCCC GWAS data sets 

3.3.  Significantly enriched networks 

As the primary goal of our approach is to identify the enriched pathways for the given GWAS data set, we 

selected the top scored sub-networks (score > 3 and size ≥ 5) from each method. For this analysis we also 

tested NIMMI, which returns sub-networks with p-values.  For NIMMI, the sub-networks with p-value < 

0.0013 (equivalent z-score to the other methods) were selected. As shown in Table 1, iPINBPA is more 

sensitive to GWAS signals and identifies smaller networks, resulting in higher precision. By overlapping 

the selected networks from both WTCCC2 and Meta2.5, iPINBPA identified 1,299 genes (including 17 

WTCCC2 genes and 44 iChip genes), PINBPA identified 5,047 genes (including 23 WTCCC2 genes and 69 

iChip genes), dmGWAS identified 7,634 genes (including 24 WTCCC2 genes and 77 iChip genes). NIMMI 

identified 4,832 genes (including 19 WTCCC2 genes and 49 iChip genes). Altogether, iPINBPA achieved 

the highest precision for both sets of benchmark genes.  

To evaluate the biological significance of the 1,299 candidate associated genes reported by iPINBPA, 

we tested their functional annotation clustering using the online tool DAVID. The KEGG pathways in the 

cluster with the highest enrichment score (8.94) are listed in Table 2. While the precise etiology of MS is 

still unclear, it has been consistently described as a T-cell-mediated autoimmune disease. As such, it is not 

surprising that related KEGG pathways such as allograft rejection, type 1 diabetes mellitus, graft-versus-

host disease, and thyroid disease are significantly enriched. This result suggests that genes prioritized by 

iPINBPA are consistent with the biological functions likely implicated in MS pathogenesis.  



  

Table 1. Stats of top scored sub-networks from iPINBPA, PINBPA and dmGWAS 

  iPINBPA PINBPA dmGWAS NIMMI 

GWAS data set WTCCC2 Meta2.5 WTCCC2 Meta2.5 WTCCC2 Meta2.5 WTCCC2 Meta2.5 

# networks  1496 1295 4079 4080 7109 7000 402 400 

# total nodes 2163 1938 6012 6079 7665 7643 4950 4979 

# overlap of  nodes 1299 5047 7634 4832 

Precision  

(# WTCCC2 genes) 

0.013 

(17) 

0.005 

(23) 

0.003 

(24) 

0.004 

(19) 

Precision  

(# iChip genes) 

0.034 

(44) 

0.014 

(69) 

0.01 

(77) 

0.01 

(49) 

 

Table 2. Functional annotation clusters of 1299 genes selected from iPINBPA in DAVID 

KEGG Pathway Count  P-Value Benjamini  

Allograft rejection 24 4.7E-12 3.5E-11 

Type I diabetes mellitus 24 4.0E-10 2.1E-9 

Graft-versus-host disease 22 3.5E-9 1.6E-8 

Autoimmune thyroid disease 23 2.6E-7 9.8E-7 

3.4.  Tuning parameters 

The restart ratio r in random walk with restart can be tuned by the user. We tested iPINBPA with 

different restart ratios (0.1, 0.3, 0.5, 0.7, and 0.9) and evaluated its performance as shown in Fig. 3.  

 

Fig. 3 CROC fold enrichments of different values of restart ratio r 
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In addition, we also tested iPINBPA with different cutoffs of selecting seed genes to start random 

walks, which controls the sensitivity of iPINBPA indirectly. By default, we used the nominally 

significant genes (gene-wise p-value   0.05). If a more stringent cutoff is used to select fewer number 

of seed genes, iPINBPA usually returns smaller sub-networks. Table 3 shows the sizes and precision of 

top selected sub-networks from iPINBPA with different cutoffs.   

Table 3. Stats of top selected sub-networks from iPINBPA with different cutoffs 

  p-value ≤ 0.01 p-value ≤ 0.005 p-value ≤ 0.001 

GWAS data set WTCCC2 Meta2.5 WTCCC2 Meta2.5 WTCCC2 Meta2.5 

# networks  1732 1224 1691 1293 1547 1458 

# total nodes 2108 1522 2000 1535 1774 1617 

Mean of network 

size (node) (std) 

17.25 

(15.49) 

12.71 

(8.78) 

12.6 

(11.12) 

10.24 

(4.36) 

9.95 

(4.52) 

7.7 

(2.32) 

Mean of network 

size (edge) (std) 

26.91 

(34.93) 

16.22 

(16.87) 

16.21 

(23.8) 

12.38 

(7.73) 

10.68 

(6.6) 

8.37 

(3.67) 

# overlap of  nodes 1133 1106 1082 

Precision  

(# WTCCC2 genes) 

0.014 

(16) 

0.013 

(14) 

0.01 

(11) 

Precision  

(# iChip genes) 

0.036 

(41) 

0.034 

(38) 

0.028 

(30) 

 

4.  Discussion 

GWAS have been extremely successful in identifying thousands of associations in hundreds of complex 

traits. Due to the extensive statistical adjustments needed to avoid type 1 errors, type 2 errors are 

necessarily a consequence of GWAS studies, thus limiting their effectiveness. Furthermore, typically, only 

a few markers are replicated in any given GWAS. Effective post-GWAS analysis methods can help 

prioritize associations using additional sources of evidence and are becoming a useful complementary 

strategy to the standard analytical pipeline.  

Here we introduced a novel network-based pathway analysis strategy for GWAS, which integrates 

topological connectivity in a PIN and the association signals from GWAS to detect significant sub-

networks and also prioritize genes associated with a complex disease. The main feature of iPINBPA is the 

strategy we employed to identify enriched sub-networks by merging evidence from multiple sources. To 

our knowledge, this is the first method that integrates node weighting with a greedy search for significant 

sub-networks. Comparisons with different data sets and methods have demonstrated that our integrative 

approach dramatically improves the performance in predicting novel associations. The increase of 

prediction precision comes mostly from the fact that, unlike in the classical approach, potential associations 

with no biological relationships to statistically confirmed associations are down-weighted in this approach.  



  

Given the multi-dimensional nature of GWAS data, it is not uncommon to see a low precision in 

prioritizing novel associations through network-based pathway analysis. The identified sub-networks 

presented here are around nodes with quite significant p-values, thus the overlap of these sub-networks 

lends additional support to our methods. By incorporating additional information (e.g., regulatory, cell-

specific expression, etc.), the precision of network-based pathway analysis would be improved gradually.   

Unlike dmGWAS, iPINBPA and PINBPA use VEGAS to map SNPs to genes. For the analysis of 

GWAS data, the mapping of SNPs to genes is an open challenge. In this paper, we focus on the comparison 

of methodology and performance of different network-based analysis methods. We did not address 

potential variations emerging from using different strategies of mapping SNPs to genes; the default 

mapping recommended for each method was utilized.  

An inherent limitation of all approaches using protein networks, is that interactions have only been 

described for a subset of all known proteins. Furthermore, if only high confidence interactions are taken 

into account as described in this study, approximately only half of all proteins are represented in the 

network. This necessarily places an upper boundary to the number of successful predictions any of these 

methods can make. With new and more accurate techniques to determine protein interactions, this 

limitation may be overcome in the near future. Another potential restriction of these methods is that they 

use global interactions, when actually tissue specific interactions might be more appropriate. Several efforts 

are currently underway to develop tissue-specific protein interactions that, together with knowledge about 

the organ/tissue compromised in a given disease, could be incorporated into network analysis of GWAS in 

the future. Furthermore, with the incorporation of genome-wide regulatory data (e.g., ENCODE, 

Epigenomics Roadmap, etc.), it will be possible to derive cell specific networks. This will greatly enhance 

the performance of this approach, as it will enable the incorporation of pathophysiologically relevant and 

disease-specific data.  

The integrative strategy we proposed in this study is generic can be readily applied to any disease or 

biological datasets, e.g., gene expression datasets and proteomic data, as long as quantitative gene-wise or 

protein-wise statistical measures and putative disease genes are available.  
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