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Recent studies on copy number variation (CNV) have suggested that an increasing burden of CNVs is 
associated with susceptibility or resistance to disease. A large number of genes or genomic loci contribute to 
complex diseases such as autism. Thus, total genomic copy number burden, as an accumulation of copy 
number change, is a meaningful measure of genomic instability to identify the association between global 
genetic effects and phenotypes of interest. However, no systematic annotation pipeline has been developed to 
interpret biological meaning based on the accumulation of copy number change across the genome associated 
with a phenotype of interest. In this study, we develop a comprehensive and systematic pipeline for 
annotating copy number variants into genes/genomic regions and subsequently pathways and other gene 
groups using Biofilter – a bioinformatics tool that aggregates over a dozen publicly available databases of 
prior biological knowledge. Next we conduct enrichment tests of biologically defined groupings of CNVs 
including genes, pathways, Gene Ontology, or protein families. We applied the proposed pipeline to a CNV 
dataset from the Marshfield Clinic Personalized Medicine Research Project (PMRP) in a quantitative trait 
phenotype derived from the electronic health record – total cholesterol. We identified several significant 
pathways such as toll-like receptor signaling pathway and hepatitis C pathway, gene ontologies (GOs) of 
nucleoside triphosphatase activity (NTPase) and response to virus, and protein families such as cell 
morphogenesis that are associated with the total cholesterol phenotype based on CNV profiles (permutation 
p-value < 0.01). Based on the copy number burden analysis, it follows that the more and larger the copy 
number changes, the more likely that one or more target genes that influence disease risk and phenotypic 
severity will be affected. Thus, our study suggests the proposed enrichment pipeline could improve the 
interpretability of copy number burden analysis where hundreds of loci or genes contribute toward disease 
susceptibility via biological knowledge groups such as pathways. This CNV annotation pipeline with 
Biofilter can be used for CNV data from any genotyping or sequencing platform and to explore CNV 
enrichment for any traits or phenotypes.  Biofilter continues to be a powerful bioinformatics tool for 
annotating, filtering, and constructing biologically informed models for association analysis – now including 
copy number variants. 
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1.  Introduction 

Precision medicine, an emerging approach for prevention and treatment strategies that takes into 
account individual variability in genes, lifestyle, and environment for each person, has become one 
of the main research interests of biomedical science [1]. Recently, a precision medicine initiative 
was announced as a new research initiative that plans to boost progress toward a new era of 
personalized medicine [1]. Thus, collecting and utilizing patients’ rich information through 
electronic health records (EHRs) is one of the most important keys in precision medicine in order 
to tailor disease prevention and effective treatment strategies. First, precision medicine will need 
to be tested in many pilot studies to guide clinical practice. 

The electronic MEdical Record and GEnomics (eMERGE) is a national network organized and 
funded by the National Human Genome Research Institute (NHGRI) that combines DNA 
repositories linked with electronic medical record (EMR) systems for performing large scale, 
high-throughput genetic association studies [2]. Many genome-wide association studies (GWAS) 
have been performed for multiple phenotypes generated from the eMERGE network [3,4]. In 
addition, a phenome-wide association study (PheWAS) approach has been used to query 
genotype-phenotype associations between targeted single-nucleotide polymorphisms (SNPs) and 
multiple phenotypes and to detect pleiotropy [5]. Despite many efforts to investigate genotype-
phenotype associations, genetic studies to date have still only identified a small fraction of the 
heritability of complex traits [6]. Many alternative approaches to improve the ‘missing heritability’ 
problem have been proposed such as investigating gene-gene interactions associated with 
phenotypes or a systems genomics approach [7,8]. In addition, an alternative explanation for the 
‘missing heritability’ could be copy number variations (CNVs) [9]. 

Disease-associated rare/common CNVs have been identified through multiple studies [10,11]. 
However, one conclusion from the extensive CNV association studies is that there are hundreds or 
thousands of genes or genomic regions that contribute to disease susceptibility for certain 
disorders such as autism. Thus, total genomic copy number burden, as an accumulation of copy 
number change, is a meaningful measure of genomic change that may contribute to phenotypes 
that are associated with many genes/regions. Previously, we found that autism is associated with 
increased levels of copy number burden [12]. However, one of the current limitations of this 
approach is that it is difficult to interpret biological meaning based on the accumulation of copy 
number change genome-wide. Is it the amount of copy number change that is important or is it 
which genes/pathways the copy number change occurs that is important? In this study, we develop 
a comprehensive and systematic pipeline for annotating copy number variants into genes/genomic 
regions and subsequently pathways and other gene groups using Biofilter – a bioinformatics tool 
that aggregates over a dozen publicly available databases of prior biological knowledge [13]. Next 
we conduct enrichment tests of biologically defined groupings of CNVs including pathways, Gene 
Ontology (GO), or protein families. We applied the proposed pipeline to a CNV data set in a 
cholesterol phenotype from the Marshfield Clinic, a study site of the eMERGE network. We 
identified several significant pathways, GOs, and protein families that are associated with the 
cholesterol phenotype based on CNV profiles. The results discussed herein demonstrate the utility 
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of the proposed pipeline as a novel method for annotating the results of CNV burden analysis 
underlying complex traits such as cholesterol. 
 
2.  Methods 

2.1.  Data 

Median total cholesterol as a phenotype for this study was extracted from the EHR from the 
Marshfield Personalized Medicine Research Project (PMRP) [14]. Table 1 shows the descriptive 
statistics of the data set. High-density SNP genotyping was performed on DNA samples at the 
Center for Inherited Disease Research (CIDR) using the Illumina 660W-Quad. After quality 
controls (QC), 3,399 samples with available median total cholesterol phenotype from the 
Marshfield PMRP were selected for the present study. DNA samples from this site were genotyped 
using the Illumina 660W-Quad array as previously described [15]. QC is described in further 
detail in the CNV Burden Analysis section. 

Table 1. Descriptive statistics on Marshfield Median Total Cholesterol data set. Total number of samples after QC is 
presented. 

Phenotype Sex Birthdate Year* 
(MeanേSD) 

Total 

Male Female 

Median Total Cholesterol 1,428 1,971 3.1779േ1.1772 3,399 

*Birthdate Year denotes decade of birth where 1=1910, 2=1920, 3=1930, 4=1940, 5=1950, and 6=1960. 

2.2.  CNV Burden Analysis 

Figure 1 shows the illustration of the entire pipeline. In order to detect CNV, log R ratio and B 
Allele Frequency values were extracted from the Illumina 660W-Quad array. The PennCNV 
software, based on a hidden Markov model, was used for calling CNVs [16]. First, individual 
CNV calls were generated as raw CNV calls and then several QC steps were performed. CNVs 
that had a high success rate of attempted SNPs, a low standard deviation of normalized intensity, 
and low genomic wave artifacts passed QC thresholds. All samples had genetically inferred 
European ancestry and any genotypic duplicates were removed. In addition, samples with spurious 
large homozygous deletions were removed. After QC, 3,399 samples were analyzed for the CNV 
burden analysis. Linear regression models using PLATO software [17] were fit to the data to 
evaluate the associations between CNV burden, i.e. accumulation of duplication or deletion in 
each individual, or collectively, as total base pairs of altered copy number (i.e. total CNV burden), 
and the median total cholesterol phenotype. Analyses were adjusted for potential confounders, 
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including age (decade of birth), sex, and the first three principal components of ancestry that were 
generated from the PCA analysis based on SNP data set. 

	

Fig. 1. Illustration of the pipeline for functional annotation based on the results of the CNV burden analyses. 
PennCNV is used for calling CNVs, then copy number burden analysis is performed using CNV calls after QC. 
A new function of Biofilter 2.0 provides functional annotation results based on copy number burden. 

2.3.  Biofilter 2.0 

Biofilter 2.0 is a software tool that provides a convenient single interface for high-throughput 
annotation, filtering of genetic data via accessing multiple publicly available human genetic data 
sources, and constructing biologically informed models for association analysis [13]. This 
software uses a build-in database called the Library of Knowledge Integration (LOKI), which 
contains a number of public data resources. LOKI includes not only information about the 
genomic locations of SNPs and genes, but also information about biological networks, 
connections, and/or pathways to be used for determining relationships between genes. For more 
information, see: http://ritchielab.psu.edu/software/. 

A new function was added in Biofilter 2.0 for CNV analyses. CNV data, which are specified by 
a chromosome and base pair range from any genotyping or sequencing platform, can be mapped to 
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genes (Fig 1). These CNV regions can be mapped to genes based on percent of overlap of the 
genes with the CNV region or based on the number of base pairs overlapped. In addition, 
biological knowledge such as pathway, GO, or Pfam along with list of its gene members can be 
extracted using Biofilter 2.0 for the functional annotation calculation based on the results of CNV 
burden analyses (Fig 1). For the current study, 281 Kyoto Encyclopedia of Gene and Genomes 
(KEGG) pathways, 1,454 GOs, and 2,908 Pfams were used. 

	

Fig. 2. Overview of the functional annotation calculation based on CNV profiles. After the CNV data set was 
mapped to genes using Biofilter 2.0, functional enrichment tests can be used to identify significantly enriched 
biological knowledge such pathway, GO or Pfam. KB, knowledgebase. 

2.4.  Functional Annotation based on CNV Profiles 

Figure 2 describes the overview of the functional annotation calculation based on CNV profiles. 
After the CNV data set was mapped to genes using Biofilter 2.0, functional enrichment tests can 
be used for the functional annotation. However, an over-representation analysis (ORA) approach, 
which is one of the most common methods for the pathway analysis, is not appropriate for 
annotating the results of CNV burden analyses since it does not consider the frequency 
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information of rare and/or common CNV across samples. Thus, we propose a new functional 
annotation method based on the results of CNV burden analyses in order to capture the frequency 
information of rare and common CNV. Knowledgebase score (KB_Score) was calculated via 
aggregating not only frequency of genes within a specific pathway but also frequency of those 
genes across samples (Fig 2). KB_Scores can be obtained from cases and controls, respectively, 
and then each KB_Score should be normalized by dividing by the number of cases/controls. Next, 
a final KB_Score can be achieved as a ratio of each KB_Score, which is generated from the 
cases/controls, respectively. After calculating KB_Score per pathway, we randomly permuted the 
phenotype 1,000 times to generate random data sets, that is, the phenotypes are randomly 
associated with the CNV profiles. To assess whether annotated biological knowledge (observed 
KB_Score) is more significant than expected by chance, any observed KB_Score higher than the 
950th highest KB_Score in the permuted data set was recorded in a final list of significant 
biological knowledge (Fig 2). Even though the proposed method is suitable for case/control 
phenotypes, continuous phenotypes can be dichotomized based on quartiles as described more 
below. 

3.  Results and Discussion 

3.1.  The Results of CNV Burden Analysis 

We assessed the significance of the association between CNV burden variables (duplication, 
deletion, and total CNV burden) and median total cholesterol using linear regression. Through the 
CNV burden analysis, duplication and total CNV burden were significantly associated with 
cholesterol phenotype, P = 0.0023, P = 0.0099, respectively. Thus, duplication regions and total 
CNV regions were mapped to genes using Biofilter 2.0. Since functional annotation results were 
similar between different overlap criteria between CNV regions and genes (data not shown), CNV 
data was mapped to genes based on 1bp overlap criteria for further analysis. From 3,399 samples 
7,150 distinct genes and 9,587 distinct genes were mapped based on duplication and total CNV, 
respectively. 

3.2.  Significant Pathways, GOs, and Pfams Associated with Cholesterol 

Since the proposed method for annotating the results of CNV burden analyses is appropriate for 
the case/control phenotype, the median total cholesterol, a continuous phenotype, was 
dichotomized in three different ways based on quartiles: (1) 4th quartile (cases) vs. 3rd, 2nd, 1st 
quartiles (controls); (2) 4th, 3rd quartiles (cases) vs. 2nd, 1st quartiles (controls); (3) 4th, 3rd, 2nd 
quartiles (cases) vs. 1st quartile (controls). We compared the annotation results between different 
dichotomized phenotypes (Table 2). Since total number of significant biological knowledge 
between dichotomized phenotypes was not too different and there were many distinct biological 
knowledge that were shared between at least two dichotomized phenotypes, we chose the first way 
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Table 2. Comparison of total number of significant knowledge features based on different dichotomized cholesterol 
phenotypes. Each element is the number of significant knowledge features from the functional annotation calculation 
(P<0.05).   

Knowledge 
Type 

CNV Type Dichotomizing Cholesterol Phenotype Shared 
Significant 
Knowledge*4th Quartile vs. 3rd, 

2nd, 1st Quartiles 
4th, 3rd Quartiles vs. 
2nd, 1st Quartiles 

4th, 3rd, 2nd Quartiles 
vs. 1st Quartile 

Pathway Dup 32 38 36 28 
Total CNV 20 10 21 13 

GO Dup 39 62 62 43 
Total CNV 50 38 58 26 

Pfam Dup 43 46 35 22 
Total CNV 63 57 68 20 

*Shared	significant	knowledge	denotes	the	number	of	distinct	knowledge	that	appears	in	at	least	more	than	two	
dichotomized	phenotypes.	

of dichotomized phenotype, top quartile as cases vs. three bottom quartiles as controls, for further 
analysis. This approach is also commonly used in many epidemiology studies in order to calculate 
odds ratio for the continuous phenotype [18]. 

Through the proposed functional annotation method, significant pathways, GOs, and Pfams 
were obtained based on the selected dichotomized phenotype. Table 3 shows the results of 
pathway knowledge for duplication and total CNV burden. We restricted the significance threshold 
(permutation P-value <0.01) to remove marginally significant results. Based on a stricter 
threshold, 6 pathways were found from duplication burden and 2 pathways were selected from 
total CNV burden as pathways associated with the cholesterol phenotype (Table 3). Similarly, 
significant GOs and Pfams were also found (Table 4 and Table 5). 

3.3.  Biological interpretation 

Previously, many studies have reported that hypercholesterolemia or lower cholesterol levels are 
associated with CNV [19]. In addition, hyperlipidemia is associated with many other diseases such 
as myocardial infarction. For example, one study found several CNVs to have a link to myocardial 
infarction and hyperlipidemia [20]. Most of these studies were focused on specific CNVs or genes 
within CNV regions. However, we found that CNV burden is associated with cholesterol level. 
This is the first study to identify the association between the cholesterol quantitative trait and CNV 
burden in the literature. This suggests that cholesterol levels may also be associated with global 
genetic effects of many genes/regions. 
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Table 3. The list of significant pathways. Significant pathways associated with cholesterol were selected based on 
CNV burden data set (P<0.01). Continuous cholesterol phenotype was dichotomized at the 75th percentile in order to 
perform the proposed functional annotation pipeline, comparing CNVs  in the top quartile (‘high’) with those in the 
bottom 3 quartiles (‘low’). 

CNV Type Significant Pathways Permutation P-value 

Dup Hepatitis C 0.001998 
 Toll-like receptor signaling pathway 0.001998 
 Cytokine-cytokine receptor interaction 0.006993 
 Shigellosis 0.006993 
 RIG-I-like receptor signaling pathway 0.007992 
 Influenza A 0.00999 
Total CNV Toll-like receptor signaling pathway 0.001 
 Renal cell carcinoma 0.002997 

Table 4. The list of significant protein families. Significant protein families associated with cholesterol were selected 
based on CNV burden data set (P<0.01). Continuous cholesterol phenotype was dichotomized at the 75th percentile in 
order to perform the proposed functional annotation pipeline comparing CNVs  in the top quartile (‘high’) with those 
in the bottom 3 quartiles (‘low’).	

CNV Type Significant Pfams Permutation P-value 

Dup Cell morphogenesis central region 0.001998 

 Cell morphogenesis C-terminal 0.001998 

 Cell morphogenesis N-terminal 0.001998 

 RAVE protein 1 C terminal 0.00999 

 Zinc-binding domain 0.00999 

Total CNV Poly (ADP-ribose) glycohydrolase (PARG) 0.001 

 Adenylate and Guanylate cyclase catalytic domain 0.001 

 Thrombospondin type 1 domain 0.000999 

 ADAM-TS Spacer 1 0.000999 

 Cell morphogenesis central region 0.001998 

 Cell morphogenesis C-terminal 0.001998 

 Cell morphogenesis N-terminal 0.001998 

 Reprolysin (M12B) family zinc metalloprotease 0.008991 

 Zinc binding domain 0.00999 
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Table 5. The list of significant GOs. Significant GOs associated with cholesterol were selected based on CNV burden 
data set (P<0.01). Continuous cholesterol phenotype was dichotomized at the 75th percentile in order to perform the 
proposed functional annotation pipeline comparing CNVs  in the top quartile (‘high’) with those in the bottom 3 
quartiles (‘low’). 

CNV Type Significant GOs Permutation P-value 

Dup Nucleoside triphosphatase activity 0.001 

 GTPase activity 0.001 

 Pyrophosphatase activity 0.001 

 Cellular defense response 0.000999 

 Hydrolase activity, acting on acid anhydrides 0.000999 

 Caspase regulator activity 0.005994 

 Histone acetyltransferase activity 0.006993 

 Response to virus 0.007992 

 Microtubule organizing center organization and biogenesis 0.008991 

 Centrosome organization and biogenesis 0.008991 

 Nuclear envelope 0.00999 

Total CNV Sensory organ development 0.001 

 Nicotinic acetylcholine-gated receptor-channel complex 0.000999 

 Nicotinic acetylcholine-activated cation-selective channel 
activity 

0.000999 

 Double stranded DNA binding 0.001998 

 Cyclase activity 0.002997 

 Phosphorus-oxygen lyase activity 0.002997 

 Secondary metabolic process 0.005994 

 Learning and/or memory 0.006993 
 Serotonin receptor activity 0.007992 

 Microvillus 0.008991 

 Amino acid transmembrane transporter activity 0.008991 

																																																		

In order to better understand possible mechanisms of the association between the cholesterol 
phenotype and CNV burden, the proposed functional annotation test was performed based on 
CNV profiles. Six pathways, hepatitis C, toll-like receptor signaling pathway, cytokine-cytokine 
receptor interaction, shigellosis, RIG-I-like receptor signaling pathway, and influenza A were 
found in the annotation results based on duplication burden. In particular, toll-like receptor (TLR) 
signaling pathway is a well-known pathway that acts an important role in atherosclerosis [21]. A 
prior study found that TLR4 can directly interfere with cholesterol metabolism in macrophages, 
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which suggests that TLR4 could affect disease pathology [21]. The results from a second study 
revealed that Hepatitis C virus entry, in cooperation with CD81 and scavenger receptor B type I, is 
also partially dependent on membrane cholesterol [22]. In addition, TLR signaling pathways and 
renal cell carcinoma were obtained based on total CNV burden. In a recent study of patients who 
underwent surgery for renal cell carcinoma, preoperative serum cholesterol was implicated as an 
independent factor for prognosis. Lower cholesterol levels were found to be associated with 
advanced disease and worse survival, which may be due to cholesterol’s increased storage in 
tumour cells and role in new membrane biosynthesis [23]. For Pfam, 5 and 9 protein families were 
found based on duplication and total copy number burden, respectively. Interestingly, many cell 
morphogenesis-related protein families were found, in line with findings that cholesterol is 
important for proper cell morphogenesis due to its role in maintaining membrane order [24]. 
Among many significant GOs, nucleoside triphosphatase activity (NTPase) was found to be 
associated with cholesterol. Nuclear membrane cholesterol both modulates NTPase activity and 
can alter activity when oxidized [25]. Furthermore, similarly to the aforementioned Hepatitis C 
virus, cholesterol is important for membrane fusion during virus infection into host cells, as the 
enrichment of cholesterol helps to maintain membrane fluidity in the cell [26]. Taken together 
these results demonstrate the utility of the proposed pipeline for annotating the results of CNV 
burden analysis underlying complex traits such as total cholesterol phenotype. 

4.  Conclusions 

In this study, we developed a systematic pipeline for annotating copy number variants into 
genes/genomic regions and subsequently pathways and other biological knowledge using Biofilter 
2.0. In addition, a new method that takes into account the frequency information of genes in 
rare/common CNVs was proposed and led to the finding of many biologically relevant pathways, 
GOs, and protein families associated with cholesterol. Based on the copy number burden analysis, 
it follows that with larger copy number changes and a greater accumulation of copy number 
changes, it is more likely that genes known to influence disease risk and phenotypic severity will 
be affected. Thus, our study suggests the proposed pipeline could improve the interpretability of 
copy number burden analysis where hundreds of loci or genes contribute toward disease 
susceptibility via biological knowledge groups such as pathways. This CNV annotation pipeline 
with Biofilter can be used for CNV data from any genotyping or sequencing platform and to 
explore CNV enrichment for any traits or phenotypes. Biofilter is open source and freely available 
at http://ritchielab.psu.edu/software.  Biofilter continues to be a powerful bioinformatics tool for 
annotation, filtering, and constructing biologically informed models for association analysis – now 
including copy number variants. 

As demonstrated by this and other studies, CNV burden analysis is a new powerful method to 
investigate the association between accumulated genetic effects and many traits or phenotypes. In 
particular, the development of an appropriate annotation pipeline for CNV burden analysis will be 
valuable to better understand possible mechanisms associated with phenotypes in the context of 
accumulated effect of rare/common CNVs. As more well-designed genetic and phenotypic data 
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are generated based on EHR for better precision medicine, CNV burden analysis continues to 
demonstrate the strengths along with the proposed annotation pipeline. 
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